Geomagnetic insights on an active tectonic contact: Peceneaga-Camena Fault
Highly detailed, very accurate ground magnetic investigations were jointly conducted by Romanian and Ukrainian researchers on a segment of the Peceneaga-Camenas Fault (PCF) in order to reveal the potential of geomagnetic method for active faults investigating. The survey succeeded to outline the PCF...
Gespeichert in:
Datum: | 2014 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут геофізики ім. С.I. Субботіна НАН України
2014
|
Schriftenreihe: | Геофизический журнал |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/100197 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Geomagnetic insights on an active tectonic contact: Peceneaga-Camena Fault / L. Besutiu, M. Orlyuk, L. Zlagnean, A. Roments, L. Atanasiu, I. Makarenko // Геофизический журнал. — 2014. — Т. 36, № 1. — С. 133-144. — Бібліогр.: 30 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-100197 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1001972016-05-18T03:02:12Z Geomagnetic insights on an active tectonic contact: Peceneaga-Camena Fault Besutiu, L. Orlyuk, M. Zlagnean, L. Roments, A. Atanasiu, L. Makarenko, I. Highly detailed, very accurate ground magnetic investigations were jointly conducted by Romanian and Ukrainian researchers on a segment of the Peceneaga-Camenas Fault (PCF) in order to reveal the potential of geomagnetic method for active faults investigating. The survey succeeded to outline the PCF track in the area covered by recent sediments, and provide insights on the fault structure and in-depth development. 2D numerical modeling has been employed for interpreting the obtained geomagnetic anomaly. Lateral variations in magnetization, as suggested by the model, reveal the complex geological architecture in the area, hidden by recent deposits. The zero magnetization outlined in the central part of the survey lines has been interpreted in geodynamic terms, as a breccias zone created along PCF track by its active dynamics. С целью оценки возможностей геомагнитного метода при изучении активных разломов совместно с румынскими и украинскими учеными были выполнены высокоточные наземные исследования Печенежско-Каменского разлома (ПКР). Съемка позволила проследить положение ПКР под современными осадочными образованиями и получить представление о его глубинной структуре. Интерпретация выделенных вдоль профилей магнитных аномалий была выполнена с помощью двумерного численного моделирования. В соответствии с моделью, латеральные вариации намагниченности исследуемой зоны свидетельствуют о сложном геологическом строении, скрытом под молодыми осадками. Область коры с нулевой намагниченностью, которая выделена в центральной части геомагнитных профилей, проинтерпретирована с геодинамичеких позиций как пояс брекчированных пород, образованных вдоль ПКР вследствие активных перемещений по нему. 2014 Article Geomagnetic insights on an active tectonic contact: Peceneaga-Camena Fault / L. Besutiu, M. Orlyuk, L. Zlagnean, A. Roments, L. Atanasiu, I. Makarenko // Геофизический журнал. — 2014. — Т. 36, № 1. — С. 133-144. — Бібліогр.: 30 назв. — англ. 0203-3100 http://dspace.nbuv.gov.ua/handle/123456789/100197 550.389:550.838 en Геофизический журнал Інститут геофізики ім. С.I. Субботіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Highly detailed, very accurate ground magnetic investigations were jointly conducted by Romanian and Ukrainian researchers on a segment of the Peceneaga-Camenas Fault (PCF) in order to reveal the potential of geomagnetic method for active faults investigating. The survey succeeded to outline the PCF track in the area covered by recent sediments, and provide insights on the fault structure and in-depth development. 2D numerical modeling has been employed for interpreting the obtained geomagnetic anomaly. Lateral variations in magnetization, as suggested by the model, reveal the complex geological architecture in the area, hidden by recent deposits. The zero magnetization outlined in the central part of the survey lines has been interpreted in geodynamic terms, as a breccias zone created along PCF track by its active dynamics. |
format |
Article |
author |
Besutiu, L. Orlyuk, M. Zlagnean, L. Roments, A. Atanasiu, L. Makarenko, I. |
spellingShingle |
Besutiu, L. Orlyuk, M. Zlagnean, L. Roments, A. Atanasiu, L. Makarenko, I. Geomagnetic insights on an active tectonic contact: Peceneaga-Camena Fault Геофизический журнал |
author_facet |
Besutiu, L. Orlyuk, M. Zlagnean, L. Roments, A. Atanasiu, L. Makarenko, I. |
author_sort |
Besutiu, L. |
title |
Geomagnetic insights on an active tectonic contact: Peceneaga-Camena Fault |
title_short |
Geomagnetic insights on an active tectonic contact: Peceneaga-Camena Fault |
title_full |
Geomagnetic insights on an active tectonic contact: Peceneaga-Camena Fault |
title_fullStr |
Geomagnetic insights on an active tectonic contact: Peceneaga-Camena Fault |
title_full_unstemmed |
Geomagnetic insights on an active tectonic contact: Peceneaga-Camena Fault |
title_sort |
geomagnetic insights on an active tectonic contact: peceneaga-camena fault |
publisher |
Інститут геофізики ім. С.I. Субботіна НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/100197 |
citation_txt |
Geomagnetic insights on an active tectonic contact: Peceneaga-Camena Fault / L. Besutiu, M. Orlyuk, L. Zlagnean, A. Roments, L. Atanasiu, I. Makarenko // Геофизический журнал. — 2014. — Т. 36, № 1. — С. 133-144. — Бібліогр.: 30 назв. — англ. |
series |
Геофизический журнал |
work_keys_str_mv |
AT besutiul geomagneticinsightsonanactivetectoniccontactpeceneagacamenafault AT orlyukm geomagneticinsightsonanactivetectoniccontactpeceneagacamenafault AT zlagneanl geomagneticinsightsonanactivetectoniccontactpeceneagacamenafault AT romentsa geomagneticinsightsonanactivetectoniccontactpeceneagacamenafault AT atanasiul geomagneticinsightsonanactivetectoniccontactpeceneagacamenafault AT makarenkoi geomagneticinsightsonanactivetectoniccontactpeceneagacamenafault |
first_indexed |
2025-07-07T08:31:37Z |
last_indexed |
2025-07-07T08:31:37Z |
_version_ |
1836976281324879872 |
fulltext |
������������ ���
���
��
��� �������
��������
����
������
��������
�������
�������������
� !"#$
%
&'
()
*+'
,-&. &**
��� 550.389:550.838
Peceneaga-Camena Fault: Geomagnetic insights
into active tectonic contact
©©©©© L. Besutiu 1, M. Orlyuk 2, L. Zlagnean 1, A. Romenets 2,
L. Atanasiu 1, I. Makarenko 2, 2014
1Institute of Geodynamics of the Romanian Academy (IGAR),
Bucharest, Romania
2 Institute of Geophysics National Academy of Sciences of Ukraine,
Kiev, Ukraine
Received 18 July 2013
Presented by Editorial Board Member V. I. Starostenko
Highly detailed, very accurate ground magnetic investigations were jointly conducted by Ro-
manian and Ukrainian researchers on a segment of the Peceneaga-Camenas Fault (PCF) in
order to reveal the potential of geomagnetic method for active faults investigating. The survey
succeeded to outline the PCF track in the area covered by recent sediments, and provide in-
sights on the fault structure and in-depth development. 2� numerical modeling has been em-
ployed for interpreting the obtained geomagnetic anomaly. Lateral variations in magnetization,
as suggested by the model, reveal the complex geological architecture in the area, hidden by
recent deposits. The zero magnetization outlined in the central part of the survey lines has been
interpreted in geodynamic terms, as a breccias zone created along PCF track by its active dy-
namics.
Key words: magnetic survey, magnetization, residual geomagnetic anomaly, modeling, faults,
geodynamics.
���������
��
�����������
����
��������
������������ � ����� ������ � �� ������
©©©©©��������
���
���������������������������������
������� ��
������
�������������
����
�����
���������
������������
��
��������������������
��������
������ ����
�������
��������
�������������
���������
���� � ������
�
�����������
���
����!
������ �����
�"�#���
�����!����
��������� ����$#�%&'��(���������� � ������ �!
���
��� ���
���#�%������������
����������
����� ������
�"������� ����
�����!
���� �
���������� � �
������������'�)
����������"����� �
������
����*� ������
��!
����
��� ��� � ������
�
��������+
��������
������� �
�������� �����
�"'�,�����!
���������������
�-� �����
������������
����
���
�������� ����������
�������!
��
���������� ��
������ ���������������
��-��������������� ��������������'�. !
���
��������
� �����
����
���
���
�-�������"����� �
������
���
���������������!
��
������*� ��-�����
������������
���������
�����������������������"�� �������!
��
��������-�� ������
������
�#�%��� �������������
���������+�
������
���'
� �������� ���/����
��
�"��(����-�
����
���
���
-��������
�"�������
��
�"��
�!
�� �"-����� �����
��-���� ���-������
�����'
)
/������'
)
�0
1�2'
)
3
������'
�)
0� �����'
)
��������'
�)
�2�0��2�
&*. �������������
� !"#$
%
&'
()
*+'
,-&.
General consideration. The Peceneaga-Ca-
mena Fault (PCF) represents one of the most studi-
ed tectonic features in the Romanian territory, even
from the beginning of the 20th century [Mrazec, 1912;
Macovei, 1912]. It generally appears (Fig. 1) as the
boundary between the Moesian Platform (MP), re-
presented in the area by Central Dobrogea (CD),
and North Dobrogea (ND) geological units.
During the time, PCF has been alternately con-
sidered as a simple reverse fault [Macovei, 1912],
or the over thrusting plan of the hypothetic Green
Schists Nappe [Preda, 1964]. More recent research
pointed out its strike-slip nature [Sandulescu, 1980;
Gradinaru, 1984; Hippolyte et al.,1996; Besutiu, 1997;
Banks, Robinson, 1997].
Geophysics brought significant evidence on the
PCF in-depth extent. The international deep seis-
mic soundings (DSS) line 0 2 [Radulescu et al.,
1976] has revealed its crustal nature , showing a
step of about 10 km at the both Conrad and Moho
discontinuities. Later on, seismic tomography ima-
ges based on CALIXTO experiment [Martin et al.,
2006], have revealed PCF as a major lithospheric
contact between East European Plate (EEP) and
Moesian Micro-plate (MoP) reactivated during the
W Black Sea opening [Besutiu, Zugravescu, 2004;
Besutiu, 2009].
Geological evidence shows a PCF geodynamic
evolution during the time with both right-lateral and
left-lateral slip episodes [Pavelescu, Nitu, 1977; San-
dulescu, 1980; Gradinaru, 1984; 1988; Seghedi, Oaie,
1995; Banks, Robinson, 1997; Cosma et al., 2010].
The Baspunar Geodynamic Observatory (BGD)
was especially designed and run by the Solid Earth
Dynamics Department at the Institute of Geody-
namics of the Romanian Academy in order to moni-
Fig. 1. Simplified tectonic setting of PCF and location of the study area: 1 — North Dobrogea boundaries (a —
cropping out, b — covered); 2 — strike—slip faults; 3 — structural axes (a — syncline, b — anticline); 4 —
boundaries between North Dobrogea main units (a — cropping out; b — buried); 5 — Cirjelari-Camena
Outcrop Belt (a — cropping out, b — covered); 6 — episutural post-tectonic cover; 7 — river; 8 — settlements
(a — major cities; b — villages); 9 — Baspunar Geodynamic Observatory (BGD) location; PDD — Predobro-
gean Depression; ND — North Dobrogea; CD — Central Dobrogea; BB — Babadag Basin.
������������ ���
���
��
��� �������
��������
����
������
��������
�������
�������������
� !"#$
%
&'
()
*+'
,-&. &*4
tor slip along PCF. This paper mainly deals with
results of the high accuracy detailed magnetic in-
vestigations carried out on the PCF segment loca-
ted in the neighborhood of the BGD, aimed at re-
vealing the path and in-depth structure of the PCF
in the monitoring area. Research has been carried
out in the frame of the bi-lateral project INRAF (“In-
tegrated research of some active faults located in
the NW inland of the Black Sea on the Romanian
and Ukrainian territories”), jointly developed by the
Institute of Geodynamics of the Romanian Acade-
my and the Institute of Geophysics of the National
Academy of Sciences of Ukraine.
The local geological background. North
Dobrogea. The area subject to geophysical inves-
tigation mainly belongs to the so called Cirjelari-Ca-
mena Outcrop Belt (CCOB). A thorough descripti-
on of the structure and lithostratigraphy of this unit
was provided by Gradinaru [Gradinaru 1980, 1984,
1988], and a simplified geological sketch for the stu-
dy area is shown in Fig. 2, along with the location
of the magnetically surveyed panels.
On the overall, the study area is dominated by the
presence of the Jurassic sedimentary and volcanic
rocks, unconformable overlying older Palaeozoic de-
posits of the Macin Unit and largely covered by the
post-tectonic sedimentary cover of the Cretaceous
Babadag Basin and shallow Quaternary formations.
The Quaternary rocks are mainly represented
by shallow layers of loess deposits.
The Babadag Basin comprises two main Upper
Cretaceous formations: Iancina and Dolosman se-
Fig. 2. Simplified geologic sketch of the study area (modified after [Gradinaru, 1988]): 1 — Quaternary; 2 —
Babadag basin, Episutural sedimentary cover; 3—9 — CCOB (3 — Baspunar Melange; 4 — Formation Sfanta
(a), Amara Formation (b), 5 — Amara Breccia; 6 — Baspunar Spilite; 7 — Baspunar Formation; 8 — Camena
Rhyolite; 9 — Aiorman Formation); 10—13 — Magin unit (10 — Uspenia Formation, 11 — Cirjelari Rhyolite, 12 —
Camena Formation, 13 — Lower Paleozoic (marbles, quartzites and argillites)); 14—16 — Central Dobrogea
(14 — Infragrauwacke, 15 — Lower Grauwacke, 16 — Upper Grauwacke), 17 — settlement; 18 — quarry; 19 —
cross-section location; 20 — BGD; 21 — magnetic survey panel; 22 — PCF track (a — exposed, b — covered).
)
/������'
)
�0
1�2'
)
3
������'
�)
0� �����'
)
��������'
�)
�2�0��2�
&*+ �������������
� !"#$
%
&'
()
*+'
,-&.
ries mainly consist of limestone and sandstone,
with transient facia (between sandy limestone and
limy sandstones). Overall, the Upper Cretaceous do-
es not contain any source of geomagnetic anoma-
lies, except for some residual red shale deposits,
locally developed within confined volumes, but able
to provide slight geomagnetic effects at the surfa-
ce [Besutiu, Nicolescu, 1999]).
Jurassic rocks of CCOB (Gradinaru, herein) may
be grouped into several main sedimentary formati-
ons (��):
– Cirjelari �� (�
3 ox-km
) is composed of: 1) gaizes,
spongolites, tuffittes, 2) polimictic conglomera-
tes, 3) (marly and silty) shales, 4) bioclastic cal-
carenites and calcirudites, 5) oolitic calcareni-
tes. Also in the Cirjelari �� mixtites with Green
Schist clasts, Cirjelari Rhyolite clasts, and oli-
gomictic conglomerates may occur;
– Baspunar �� (�
3 ox
) consists of: 1) gaizes, spon-
golites, tuffittes, 2) crinoidal calcarenites, marl-
stones, marly shales, 3) rhyolitic tuffs at the bottom;
– Aiorman �� (�
2
) is composed of terrigenous tur-
bidites;
– Movila Goala �� (�
2
) consists of: 1) terrigeneous
turbidites, 2) black oolitic calcarenites, 3) crino-
idal calcarenites, bottomed by calcitized rhyo-
lite lava flows. Another two special tectono-stra-
tigraphic units should be also mentioned: the
Amara breccia (�
3
) and Baspunar Melange, with
metabasic rocks, probably shared remnants of
an incipiently developing oceanic crust in the fi-
nal stage of CCOB [Gradinaru, 1984];
– the Amara Breccia (�
3 ox-km
) has been interpreted
[Gradinaru, 1984] as a shared remnant of a for-
mer more extensive talus breccias. It is a clast
supported monomictic breccias consisting of ele-
ments belonging to CD “Green Schist” series,
and several levels of carbonates rocks from the
Cirjelari ��, with a carbonate matrix;
– the Baspunar Melange occurred later on (Late
Jurassic), when the movement along PCF beca-
me left-lateral. It contains blocks of Lower Pa-
laeozoic marbles and quartzites of the Macin unit,
but also blocks of Jurassic sedimentary and me-
tabasic rocks.
The Triassic deposits (Uspenia ��) mainly con-
sist of gray limestone [Mirauta, Mirauta, 1961].
The Palaeozoic formations are practically hid-
den by younger deposits, except for some confi-
ned areas where they may crop out (Cirjelari valley,
where Aiorman �� unconformable lies on Palaeo-
zoic basement rocks).
According to [Mirauta, Mirauta, 1961; Mirauta,
1966] the Palaeozoic deposits in the area mainly
consist of Devonian (philite, limestone, serricite-chlo-
rite schist), and Carboniferous, represented by Carape-
lit �� (conglomerates, sandstones and schist series).
The bimodal (acid and basic) CCOB volcanic
rocks may be grouped into Camena Rhyolite (��
3
)
and Baspunar spilite (�
3
).
The Camena Porphyries (�
3
?) crop out between
Cara Burun Hill (Camena) and Baspunar, and seem
to be connected to the tectonic lineament Baspu-
nar-Camena. They pierce the Proterozoic crystalli-
ne series, but occur as remnants in the Liassic cong-
lomerates. They have been described as micro-gra-
nites accompanied by dykes [Mirauta, Mirauta, 1961],
tuffs, ignimbrites and lava flows [Gradinaru, 1984].
The Baspunar spilite (�3) is mainly represented
by pillow-lava flows interbeded in Jurassic limestone.
Central Dobrogea (CD). South PCF, CD de-
posits are mainly represented by the Upper Prote-
rozoic Green Schist Series (GSS), largely descri-
bed during the time by various authors [Mrazec,
1910, 1912; Macovei, 1912; Mirauta, Mirauta, 1961;
Mirauta, 1964, 1965, 1969; Paraschiv, Paraschiv, 1978].
Mirauta describes several horizons of increas-
ing (top to bottom) grade metamorphic rocks [Mira-
uta, 1964]:
1) upper grauwacke (grauwacke , siliceous
schists, micro-conglomerates);
2) lower grauwacke (grauwacke, schists);
3) infragrauwacke (green philites, green chlori-
tic quartzites (meta-grauwacke).
The infragrauwacke series are bottomed by so-
me mezzo- to high-grade metamorphic rocks (mi-
caschiste, quartzites, amphibolytes) occurring in the
axis of the reverse mega-anticline structure Ceamu-
rlia-Baspunar (Mirauta, herein). They are conside-
red by various authors [Besutiu, 1997] as the source
of the regional geomagnetic high overlying the axis
of the Baspunar-Camena-Ceamurlia anticline.
Since early times, it has been also noticed [Mo-
tas, 1913] that CD deposits in the PCF contact zone
are sometimes intercalated with, or intruded by mag-
matic rocks of North Dobrogea (rhyolites), which might
represent another source for geomagnetic anomalies.
Data acquisition and processing. Field ob-
servations were conducted by using two � 856 ��
magnetometers (one for the record of diurnal geo-
magnetic activity, and the second one for observa-
tions along the survey lines).
Basically, the survey lines were designed al-
most perpendicular to the assumed PCF track. The
lines are 4 m apart, and a step of 2 m between two
consecutive stations along each line was used to
survey the study area. Location of data points was
set by using a Garmin 78 GPS receiver. The geo-
graphic coordinates on WGS 1984 ellipsoid were
then transferred into the rectangular coordinates
PECENEAGA-CAMENA FAULT: GEOMAGNETIC INSIGHTS INTO ACTIVE TECTONIC CONTACT
Ãåîôèçè÷åñêèé æóðíàë ¹ 1, Ò. 36, 2014 137
Fig. 3. Residual geomagnetic anomaly along various PCF segments (a — micro-panel
P1, b — micro-panels P3—P5) as obtained after removing a first order polynomial trend.
Black dots mark data points. Brown solid lines show topography contours (in meters).
Dashed zone marks the assumed PCF track.
L. BESUTIU, M. ORLYUK, L. ZLAGNEAN, A. ROMENETS, L. ATANASIU, I. MAKARENKO
138 Ãåîôèçè÷åñêèé æóðíàë ¹ 1, Ò. 36, 2014
Fig. 5. Tentative interpretative model of the geomagnetic anomaly across PCF: 1 — residual geomagnetic
anomaly, 2 — predicted field, 3 — body ID, 4 — magnetic susceptibility (in 10–6 CGSu); 5—13 — North Dobrogea
(5 — loess, 6 — post-tectonic cover (K2), 7 — Upper Jurassic limestone, 8 — Lower Jurassic, 9 — Triassic
limestone, 10 — Camena Fm (P2—T1), 11 — Baspunar spilite, 12 — Camena Porphyry, 13 — Cirjelari Rhyolite);
14—18 — Central Dobrogea (14 — diorite dykes, 15 — low-grade GSS, 16 — higher-grade GSS, 17 — secondary
fault, 18 — breccias zone generated by fault dynamics).
������������ ���
���
��
��� �������
��������
����
������
��������
�������
�������������
� !"#$
%
&'
()
*+'
,-&. &*5
of the Romanian national stereographic projection
system [Avramiuc et al., 2001].
The geomagnetic sensor was placed at 3 m abo-
ve the ground in order to avoid (or at least to miti-
gate) shallow local effects.
Diurnal geomagnetic activity was observed and
recorded every minute during the survey in a local
base-station, located close to the surveyed area.
Routine processing has been applied to the raw
observations in order to provide data consistency:
removal of the effect of external sources and base
reduction.
As a result, a time-invariant Δ� as referred to the
survey base-station was obtained. Finally, a residu-
al geomagnetic anomaly was computed by remo-
ving a first-order polynomial trend from the obser-
vations, and Δ�
a
geomagnetic maps were plotted
(Fig. 3).
Modeling geomagnetic sources. Taking
into consideration the pattern of the geomagnetic
anomaly and some previous information on the stu-
dy area, attempts for modeling the geomagnetic so-
urces and their geological interpretation have been
performed.
The software. The professional GM-SYS® soft-
ware run on the Geosoft OASIS® platform has been
used for 2� modeling along the survey lines. It is
based on the methods proposed by [Talwani et al.,
1959; Talwani, Heirtzler, 1964], and employs algo-
rithms published by [Won, Bevis, 1987].
Rocks magnetic properties. Magnetic pro-
perties of the rocks in the area have been conside-
red according to previous rock physics determina-
tions [Besutiu, 1997; Besutiu, Nicolescu, 1999], to
which additional determinations on outcrops samp-
les were performed in the IG-NASU laboratory.
Table 1 shows some magnetic properties of the
main geological formations within North Dobrogea
and the study area.
Polarizing field. As Köenigsberger coefficient
(�) of the geological formations known in the study
area generally shows small values, the induced mag-
netization model has been considered during the
computation, with the following parameters for the
polarising field:
– total intensity field �� �48 500 nT,
– geomagnetic inclination � �62°
,
– geomagnetic declination
� �3° �.
Physical model. Two main aspects of the mo-
deling should be stressed:
– to get a better fit between the observed
and predicted anomaly, laterally extended geo-
magnetic source models (exceeding the survey
line) were taken into consideration;
– due to the close vicinity of the survey lines,
similar geomagnetic patterns, and, consequent-
ly, except for small lateral changes in geomet-
ry, rather similar models of the sources of the
geomagnetic anomalies as showed in the follo-
wings were outlined along various lines.
Basically, following the trial & error process of
2� modeling along the survey lines the best fit has
been obtained for the geometry and rock magnetic
properties as illustrated in Fig. 4.
Fig. 4. Physical model for the source of the residual geomagnetic anomaly along the line P:
1 — observed field, 2 — predicted effect, 3 — magnetic body ID (see Table 2).
)
/������'
)
�0
1�2'
)
3
������'
�)
0� �����'
)
��������'
�)
�2�0��2�
&.- �������������
� !"#$
%
&'
()
*+'
,-&.
�������
� �
���
���
����������
�
��
���
��
������
���� ��
�ö
���������
����
��
�
�Q�
�������� ��
��
����������
�������� ������ ������� ����
��������������� ��!����
"����#����$��������%�#��
���&��� '������' ���'
(������)$��������%�#��
���&��� ����'� ����
�67896:;9
<8=�8>6:
��*������+��� ���������,����� �-!��-�� ����
.�/�������0������ ������ ��--
%�������� )����
.�/�������12�.������%����� �!����! ����
���3�������$��0���� �����-'
�����
��/�3�������$��%����� �-�-' ����
��
�������
����������(��4� �����!' ��'�
����������������5�4������ �'����-� ���'
����������(���� '���� ����
&��������
��������6������� �����'� ����
&��������
��������1����,��� !��� ����
7����)
�������������)%����
�� �'!�-�� ����
8�+���)
������ �!������ ���!
(����$��������(���� �'���!� ����
���������(����96������� �������� �'�'�
%�������:�%���,�����;49
������ �������' ����
&����
���������9
������ ��������� ���!
��
������/���������������:
���<������
��)*����� ������ ����
����4,�� ������ ��'���'� ����
=���
����/��������������� ����'�! ����
%%=&
"��������/)����� ���� ���
>,�����������$�4�����/���<��
���4������ ��� ��-
%��?������Fm ���� ���
&��,�����Fm ���- ��-
8���4���Fm ���� ���
%�4������/����� -����� ���
&��,������,����� ����-�� ���
%��?��������/����� ������ ���
���������$/+�� �������� ���
%��������� ��
��
�,,������3)
��$� �
���3��+� ����-� ���
0�*������
�)
��$� �
���3��+� ����'-� ���
� ���������� !��� �
���
����������������"��# �
��������
�����# ���
�
���$���"�%������ �
&���'(
������������ ���
���
��
��� �������
��������
����
������
��������
�������
�������������
� !"#$
%
&'
()
*+'
,-&. &.&
(�&�
ID
� �
���
���
����������
������
)���
�� ���������
�����
���
�
%�� �������� &��,������,�����
%�' �������� &��,������,�����
%�� �������� &��,������,�����
%�� �������� &��,������,�����
%�- �������� &��,������,�����
%�� �������� &��,������,�����
%�� �������� &��,������,�����
%�� �������� %�4������/�����@9&��,������,�����@
%�! �������� %�4������/�����@9&��,������,�����@
%�� ��������
A��$/���4��������%����������,���)��������
��<��
%�� �������� %�4����Fm
%�' ������-� %��?��������/�����
%�� ��������
����������4�����������,�����Fm
%�� �������� ���������9 ��������&��,�����4����
�
%�- �������� ���������,����/�3�������$
%�� �������� ���������,����/�3�������$
%�� �������� ���������*����
%�� �������� B�������$�$�������@9��*��
���3��+�@
%! �������� B�������$�$�������@9��*��
���3��+�@
%� �������� B�������$�$�������@9��*��
���3��+�@
%� �������� 5�
��/�3�������$�#�����*����@9*������@
%' ������'� B�������$�$�������@9��*��
���3��+�@
%� �������� 0�*��
���3��+��
%� �������� 0�*��
���3��+��
%- �������� 0�*��
���3��+��
%� �������� 7�3���
���3��+�
%� �������� 7�3���
���3��+�
Overall, to predict the geomagnetic anomaly,
several 2� magnetic bodies have been considered.
Table 2 shows their magnetic susceptibilities along
with the assumed geological significance.
Geological interpretation. Based on previ-
ously gathered tectonic knowledge and rock phy-
sics of the main geological formations occurring in
the study area and neighbouring region, an attempt
for interpreting the geomagnetic sources outlined by
modeling has been made. The results are syntheti-
cally illustrated in Fig. 5. As previously mentioned,
the interpretative geological cross-section lateral-
ly extends over the magnetic line in order to miti-
gate the effect of the signal truncation and side
effects.
Overall, the geological interpretation of the syn-
thetic model has allowed outlining the PCF path
by separating PCF flanks due to the general dis-
tinct geomagnetic behaviour of their different em-
bedded geological formations (basically magnetic
CD Proterozoic GSS versus non-magnetic ND Pa-
laeozoic sedimentary).
But, the survey accuracy has also allowed dis-
criminating some distinct layers with different mag-
netization within GSS, as well as the presence of
some intrusive rocks (diorite dykes?) penetrating
the geological formations.
On the other hand, basalt flows (Ba�punar spi-
lite) embedded within the Ba�punar �� (Jurassic
and/or Triassic limestone) significantly complicate
� ��������*� !��� �
���
����������������"������
��#�&��
)
/������'
)
�0
1�2'
)
3
������'
�)
0� �����'
)
��������'
�)
�2�0��2�
&., �������������
� !"#$
%
&'
()
*+'
,-&.
the interpretation by locally increasing the geomag-
netic behaviour of the respective sedimentary pile.
Revealing the PCF track. Taking into consi-
deration the peculiarities of the geomagnetic field
pattern over the two flanks of the PCF, and the re-
sults of the quantitative interpretation of the 2� mo-
deling along the survey lines, PCF track could be
clearly outlined in the areas covered by recent depo-
sits except for some confined areas due to the insuf-
ficient westward extension of the survey lines Fig. 6.
Geodynamic considerations. One interest-
ing aspect pointed out by the geomagnetic mode-
ling has been the apparent lack of magnetic proper-
ties in the central compartment of the interpreta-
tive cross-section, located along the assumed PCF
track.
This has been interpreted in terms of fragmen-
tation of the PCF flanks, generating rock-debris thro-
ugh the abrasion of the fault flanks as a consequ-
ence of its active slip. Despite some initial indivi-
dual magnetic properties, on the overall, elements
of this compartment may not be reflected in the pat-
tern of the geomagnetic anomaly due to the cur-
rent of randomly distributed direction of magneti-
zation of the breccias elements. Besides, water cir-
culating within the contact zone accelerated the
magnetic minerals weathering and, consequently,
the loss/mitigation of original magnetic properties.
Fig. 6. PCF imprint in the pattern of the residual geomagnetic anomaly along various survey lines.
Fault track is marked by the blue dashed zone.
������������ ���
���
��
��� �������
��������
����
������
��������
�������
�������������
� !"#$
%
&'
()
*+'
,-&. &.*
Concluding remarks. Detailed high accura-
cy ground magnetic survey on a PCF segment lo-
cated in the vicinity of BGD succeeded to outline
the fault track and in-depth structure, based on the
interpretation of some 2� models simulating sourc-
es of geomagnetic effects.
The active character of the fault has been indi-
rectly revealed through the loose of magnetic be-
References
Avramiuc N., Dragomir P. I., Rus T., 2001. Algo-
rithm for direct and inverse coordinate transfor-
mation between ETRS89 CRS and S-42 CRS. J.
Geosdesy and Cadastre, 105—114.
Banks C. J., Robinson A., 1997. Mesozoic strike-
slip back-arc basins of the western Black Sea
region. In: A. G. Robinson (Ed.). Regional and
Petroleum Geology of the Black Sea and Sur-
rounding Region. AAPG Mem. 68, 53—62.
Besutiu L.,1997. Contributions to the modeling of
the transient zone between North Dobrogea in-
land and the Black Sea off-shore, based on the
interpretation of geophysical data by using mo-
deling technique: Ph. D. thesis, University of Bu-
charest, 206 p. (in Romanian).
Besutiu L., 2009. Geodynamic and seismotecton-
ic setting of the SE Carpathians and their fore-
land. In: L. Besutiu (Ed.) Integrated research on
the intermediate depth earthquakes genesis with-
in Vrancea zone. Vergiliu Publ. House, P. 233—
248.
Besutiu L., Nicolescu A., 1999. Old and new geo-
physical images within North Dobrogea Orogen:
Proceedings of “Dobrogea — the interface bet-
ween Carpathians and the Trans-European Su-
ture Zone” — Joint Meeting of TESZ, PANCARDI
and GEORIFT projects. Rom. J. Tect. Reg. Geol.,
P. 54.
Besutiu L., Zugravescu D., 2004. Considerations
on the Black Sea opening and related geody-
namic echoes in its NW inland as inferred from
geophysical data interpretation. Ukrainian Geo-
logist (3), 51—60.
Cosma C., Dinu A., Papp B., Begy R., Gabor A.,
Brisan N., Be�utiu L., 2010. Radon implication
in the life and Earth Science. Workshop, NAMA
2010 (Nuclear Analytical Methods and Applica-
tions), Bucuresti, 3—4 Nov 2010.
Gradinaru E., 1984. Jurassic rocks of north Dobro-
haviour in the contact area of the PCF flanks, where
active slip produced a chaotic distribution of mag-
netization of the rock-debris.
Within the joint international effort of the Roma-
nian and Ukrainian specialists, the experiment suc-
ceeded to demonstrate the potential of the old geo-
magnetic method for investigating structure and
dynamics of some active faults.
gea. A depositional-tectonic approach. Rev. Roum.
Géol., Géophys. Géogr. 28, 61—72.
Gradinaru E., 1988. Jurassic sedimentary rocks
and bimodal volcanics of the Cirjelari-Camena out-
crop belt: evidence for a transtensile regime of
the Peceneaga-Camena Fault. St. Cerc. Geol.
Geofiz. Geogr. (Geol.) 33, 97—121.
Gradinaru E., 1980. Rocile sedimentare si vulcani-
tele acide si bazice ale Jurasicului superior (Ox-
fordian) din zona Camena (Dobrogea de Nord).
An . Univ. Buc. XXX, 80—110.
Hippolyte J.-C., Sandulescu M., Badescu D., Ba-
descu N., 1996. L’activité d’un segment de la
ligne Tornquist — Teisseyre depuis le Jurassique
supérieur: la faille de Peceneaga-Camena (Rou-
manie). C. R. Acad. Sci. Paris 323 (Série IIa),
1043—1050 (in Romanian).
Macovei G.,1912. Observations sur la ligne de che-
vauchement de Pecineaga (Dobrogea). C. R. Inst.
Geol. III, P. 155.
Martin M., Wenzel F. and the CALIXTO Working
Group, 2006. High resolution teleseismic body
wave tomography beneath SE Romania, II. Ima-
ging of a slab detachment scenario. Geophys.
J. Int. 164, 579—595.
Mirauta O., 1966. Devonianul si Triasicul din dea-
lurile Mahmudiei (Devonian and Triassic of the
Mahmudia hills). D. S. Inst. Geol. Rom. LII (2),
115—155 (in Romanian).
Mirauta O., 1964. Sisturile verzi din regiunea Doro-
bantu—Magurele (Dobrogea Centrala). Dari de
Seama ale Comitetului Geologic L (2), 259—272
(in Romanian).
Mirauta O., 1965. Stratigrafia si tectonica sisturi-
lor verzi din regiunea Istria — Baltagesti (Dobro-
gea Centrala). Dari de Seama ale Comitetului
Geologic LI (1), 257—276 (in Romanian).
Mirauta O.,1969. Tectonica Proterozoicului supe-
�������
������
������������������������
���� ������� ����
���
����������
��� ������������ �!"#$%&�'����(��)*��+,��
rior din Dobrogea centrala. Anuarul Institutului
Geologic XXXVII, 31—36.
Mirauta O., Mirauta E., 1961. Observatii asupra struc-
turii geologice a regiunii Baspunar—Camena—
Ceamurlia de Sus (Observations on the geologi-
cal structure of the Baspunar—Camena—Cea-
murlia de Sus area). D. S. Inst. Geol. Rom. XLIV,
83—93 (in Romanian).
Motas C. I., 1913. Die Tuffitzone der mittleren Do-
brogea und die Kieslagerstattten von Altîntepe,
ein Beispiel der Epigenese. Dissertation. Berlin.
Mrazec L., 1910. Discussion sur l’existence des
roches vertes en Carpathes. Dari de Seamâ ale
Institutului Geologic II (in Romanian).
Mrazec L., 1912. Sur la ligne de chevauchement
Peceneaga-Camena. Dari de Seamâ ale Institu-
tului Geologic III, 162—165 (in Romanian).
Paraschiv D., Paraschiv C., 1978. Zona sisturilor
verzi si relatiile ei cu celelalte unitati ale vorlan-
dului Carpatilor Orientali din România. Studii si
cercetari de geologie, geofizica, geografie, seria
Geologie 1 (33), 44—57 (in Romanian).
Pavelescu L., Nitu G., 1977. Le probléme de la for-
mation de l’arc carpatho-balkanique. Anu. Univ.
Bucur. Geol. 26, 19—35.
Preda D. M., 1964. Forelandul carpatic si pozitia
sa tectonica în cadrul structural-geologic al Eu-
ropei (The Carpathian foreland and its position
within the geological-structural setting of Europe).
An. Com. Geol. XXXIII, 9—44 (in Romanian).
Radulescu D. P., Cornea I., Sandulescu I., Cons-
tantinescu P., Radulescu F., Pompilian A., 1976.
Structure de la croute terrestre en Roumanie. Es-
say d’interpretation des études seismiques pro-
fondes. An. Inst. Geol. Rom. L, 5—36 (in Roma-
nian).
Sandulescu M., 1980. Analyse géotectonique des
chaînes alpines situées autour de la Mer Noire
occidentale. Ann. Inst. Geol. Geofiz. 56, 5—54
(in Romanian).
Seghedi A., Oaie G., 1995. Palaeozoic evolution
of North Dobrogea. In: Field Guidebook, Central
and North Dobrogea, IGCP Project no. 369 “Com-
parative evolution of PeriTethyan Rift Basins”,
Mamaia, P. 75.
Talwani M., Worzel J. L., Landisman M., 1959. Ra-
pid gravity computations for two-dimensional bodi-
es with application to the Mendocino submarine
fracture zone. J. Geophys Res. 64, 49—59.
Talwani M., Heirtzler J. R., 1964. Computation of
magnetic anomalies caused by two-dimensional
bodies of arbitrarz shape. In: G. A. Parks (Ed.)
Computers in the mineral indiustries, Part 1.
Stanford Univ. Publ., Geol. Sci. 9, 464—480.
Won I. J., Bevis M., 1987.Computing the gravita-
tional and magnetic anomalies due to a polygon:
Algorithms and Fortran subroutines. Geophysics
52, 232—238.
|