Pathways of the Modified Atlantic Water across the Strait of Sicily
Цель данного исследования — изучение среднемасштабной динамики, а также динамики суббассейнового масштаба в Центральном Средиземноморье и выяснение маршрутов атлантических вод в этой области при помощи высокоразрешающей численной модели вихреразрешающего простейшего уравнения. Сезонная изменчивость...
Gespeichert in:
Datum: | 2014 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут геофізики ім. С.I. Субботіна НАН України
2014
|
Schriftenreihe: | Геофизический журнал |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/100426 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Pathways of the Modified Atlantic Water across the Strait of Sicily / I. Ben Jaber, J. Abdennadher, M. Boukthir // Геофизический журнал. — 2014. — Т. 36, № 4. — С. 75-84. — Бібліогр.: 36 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-100426 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1004262016-05-22T03:02:39Z Pathways of the Modified Atlantic Water across the Strait of Sicily Ben Jaber, I. Abdennadher, J. Boukthir, M. Цель данного исследования — изучение среднемасштабной динамики, а также динамики суббассейнового масштаба в Центральном Средиземноморье и выяснение маршрутов атлантических вод в этой области при помощи высокоразрешающей численной модели вихреразрешающего простейшего уравнения. Сезонная изменчивость двух потоков модифицированных атлантических вод, пересекающих Сицилийский пролив, существенно различается. Главный поток вдоль побережья Туниса, дающий начало Атлантическому тунисскому течению, сильнее, чем Атлантический ионийский поток (АИП) с осени до весны. Атлантическое тунисское течение, которое, по-видимому, присутствует в течение года, по результатам моделирования характеризуется высокой пространственной и временной изменчивостью. Высокоразрешающая модель способна хорошо воспроизводить течение и изменчивость АИП, включая такие ассоциирующие характерные структуры, как Эдвенче Бенк Вортекс, Молтиз Ченнел Крест, Иониан Бенк Вортекс и выброс в северную часть Ионического моря. Мета цього дослідження — вивчення середньомасштабної динаміки, а також динаміки суббасейнового масштабу в Центральному Середземномор’ї та з’ясування маршрутів атлантичних вод в цій області за допомогою високодозвільної чисельної моделі вихорораздільного простого рівняння. Сезонна мінливість двох потоків модифікованих атлантичних вод, що перетинають Сицилійську протоку, істотно розрізняється. Головний потік уздовж узбережжя Тунісу, що дає початок Атлантичній туніській течії, сильніше, ніж Атлантичний іонійський потік (АІП) з осені до весни. Атлантична туніська течія, яка, мабуть, присутня впродовж року, за результатами моделювання характеризується високою просторовою і тимчасовою мінливістю. Високороздільна модель здатна добре відтворювати течію і мінливість АІП, включаючи такі асоціюючи характерні структури, як Едвенче Бенк Вортекс, Молтіз Ченнел Крест, Іоніан Бенк Вортекс і викид в північну частину Іонічного моря. 2014 Article Pathways of the Modified Atlantic Water across the Strait of Sicily / I. Ben Jaber, J. Abdennadher, M. Boukthir // Геофизический журнал. — 2014. — Т. 36, № 4. — С. 75-84. — Бібліогр.: 36 назв. — англ. 0203-3100 http://dspace.nbuv.gov.ua/handle/123456789/100426 en Геофизический журнал Інститут геофізики ім. С.I. Субботіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Цель данного исследования — изучение среднемасштабной динамики, а также динамики суббассейнового масштаба в Центральном Средиземноморье и выяснение маршрутов атлантических вод в этой области при помощи высокоразрешающей численной модели вихреразрешающего простейшего уравнения. Сезонная изменчивость двух потоков модифицированных атлантических вод, пересекающих Сицилийский пролив, существенно различается. Главный поток вдоль побережья Туниса, дающий начало Атлантическому тунисскому течению, сильнее, чем Атлантический ионийский поток (АИП) с осени до весны. Атлантическое тунисское течение, которое, по-видимому, присутствует в течение года, по результатам моделирования характеризуется высокой пространственной и временной изменчивостью. Высокоразрешающая модель способна хорошо воспроизводить течение и изменчивость АИП, включая такие ассоциирующие характерные структуры, как Эдвенче Бенк Вортекс, Молтиз Ченнел Крест, Иониан Бенк Вортекс и выброс в северную часть Ионического моря. |
format |
Article |
author |
Ben Jaber, I. Abdennadher, J. Boukthir, M. |
spellingShingle |
Ben Jaber, I. Abdennadher, J. Boukthir, M. Pathways of the Modified Atlantic Water across the Strait of Sicily Геофизический журнал |
author_facet |
Ben Jaber, I. Abdennadher, J. Boukthir, M. |
author_sort |
Ben Jaber, I. |
title |
Pathways of the Modified Atlantic Water across the Strait of Sicily |
title_short |
Pathways of the Modified Atlantic Water across the Strait of Sicily |
title_full |
Pathways of the Modified Atlantic Water across the Strait of Sicily |
title_fullStr |
Pathways of the Modified Atlantic Water across the Strait of Sicily |
title_full_unstemmed |
Pathways of the Modified Atlantic Water across the Strait of Sicily |
title_sort |
pathways of the modified atlantic water across the strait of sicily |
publisher |
Інститут геофізики ім. С.I. Субботіна НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/100426 |
citation_txt |
Pathways of the Modified Atlantic Water across the Strait of Sicily / I. Ben Jaber, J. Abdennadher, M. Boukthir // Геофизический журнал. — 2014. — Т. 36, № 4. — С. 75-84. — Бібліогр.: 36 назв. — англ. |
series |
Геофизический журнал |
work_keys_str_mv |
AT benjaberi pathwaysofthemodifiedatlanticwateracrossthestraitofsicily AT abdennadherj pathwaysofthemodifiedatlanticwateracrossthestraitofsicily AT boukthirm pathwaysofthemodifiedatlanticwateracrossthestraitofsicily |
first_indexed |
2025-07-07T08:49:00Z |
last_indexed |
2025-07-07T08:49:00Z |
_version_ |
1836977372851601408 |
fulltext |
PATHWAYS OF THE MODIFIED ATLANTIC WATER ACROSS THE STRAIT OF SICILY
Геофизический журнал № 4, Т. 36, 2014 75
Introduction. The variability of the water mass-
es properties and circulation characteristics in the
Central Mediterranean Sea has been largely inves-
tigated in the past years through hydrographical
observations [Manzella, La Violette, 1990; Sam-
mari et al., 1999], sub-surface currentmeters data
[Gasparini et al., 1999; Vetrano et al., 2004; As-
traldi et al., 2005], Lagrangian drifters [Poulain,
Zambianchi, 2007] and high resolution numerical
simulations [Onken et al., 2003; Sorgente et al.,
2003; Béranger et al., 2005]. However, available ob-
servations are often characterized by poor spatial
and temporal coverages, and are usually confined
to the Italian continental shelves while there is
lack of observations over the Tunisian and Libyan
Pathways of the Modified Atlantic Water across
the Strait of Sicily
© I. Ben Jaber, J. Abdennadher, M. Boukthir, 2014
Preparatory Institut for the Engineer Studies of Tunis, Tunisia
Received 10 January 2014
Presented by Editorial Board Member O. M. Rusakov
Цель данного исследования — изучение среднемасштабной динамики, а также динамики
суббассейнового масштаба в Центральном Средиземноморье и выяснение маршрутов
атлантических вод в этой области при помощи высокоразрешающей численной модели
вихреразрешающего простейшего уравнения. Сезонная изменчивость двух потоков
модифицированных атлантических вод, пересекающих Сицилийский пролив, существенно
различается. Главный поток вдоль побережья Туниса, дающий начало Атлантическому
тунисскому течению, сильнее, чем Атлантический ионийский поток (АИП) с осени до весны.
Атлантическое тунисское течение, которое, по-видимому, присутствует в течение года,
по результатам моделирования характеризуется высокой пространственной и временной
изменчивостью. Высокоразрешающая модель способна хорошо воспроизводить течение и
изменчивость АИП, включая такие ассоциирующие характерные структуры, как Эдвенче
Бенк Вортекс, Молтиз Ченнел Крест, Иониан Бенк Вортекс и выброс в северную часть
Ионического моря.
Ключевые слова: Центральное Средиземноморье, сезонная изменчивость, атлантические
воды, мезомасштаб.
Мета цього дослідження — вивчення середньомасштабної динаміки, а також динаміки
суббасейнового масштабу в Центральному Середземномор’ї та з’ясування маршрутів ат-
лантичних вод в цій області за допомогою високодозвільної чисельної моделі вихорораз-
дільного простого рівняння. Сезонна мінливість двох потоків модифікованих атлантичних
вод, що перетинають Сицилійську протоку, істотно розрізняється. Головний потік уздовж
узбережжя Тунісу, що дає початок Атлантичній туніській течії, сильніше, ніж Атлантичний
іонійський потік (АІП) з осені до весни. Атлантична туніська течія, яка, мабуть, присутня
впродовж року, за результатами моделювання характеризується високою просторовою і
тимчасовою мінливістю. Високороздільна модель здатна добре відтворювати течію і мінли-
вість АІП, включаючи такі асоціюючи характерні структури, як Едвенче Бенк Вортекс, Мол-
тіз Ченнел Крест, Іоніан Бенк Вортекс і викид в північну частину Іонічного моря.
Ключові слова: Центральне Середземномор’я, сезонна мінливість, атлантичні води, ме-
зомасштаб.
continental shelves. Only few datasets have ad-
equate temporal and spatial resolution to capture
the mesoscale in local areas [Lermusiaux, Robin-
son, 2001]. It is important to note that very few
data have been collected along the African coasts
which imply a substantial under sampling of Tuni-
sian and Libyan waters on the shelf slope and on
the continental shelf. For example, the current off
Cap Bon (Tunisia) may be truncated by the sam-
pling [Béranger et al., 2004]. In this context, nu-
merical model simulations constitute an important
tool to fill the observational gaps and to study the
spatial and temporal ocean circulation variability.
The Seasonal circulation of the central Medi-
terranean Sea was numerically investigated by
I. BEN JABER, J. ABDENNADHER, M. BOUKTHIR
76 Геофизический журнал № 4, Т. 36, 2014
many authors [Sorgente et al., 2003; Béranger et
al., 2005; Astraldi et al., 2002]. Although these ef-
forts allowed understanding a lot about this cir-
culation, some interrogations remain without con-
vincing answers. One of the main objectives of this
work is to examine the time and spatial variability
of the Atlantic Tunisian Current (ATC), which is
not well documented. Moreover, its long-term
variability in space and time is only inferred from
surface drifters [Poulain, Zambianchi, 2007] and
SST satellite images [Hamad et al., 2005]. To this
end, we have investigated the seasonal variations
of the surface circulation in the central Mediter-
ranean Sea from a high resolution eddy-resolving
primitive equation numerical model (ROMS).
Model setup. Model description. The model
used in this study is based on the Regional Ocean-
ic Modelling System (ROMS), a three-dimensional
primitive equation, finite difference hydrodynamic
model. ROMS solves the primitive equations in an
earth-centred rotating environment, based on the
Boussinesq approximation and hydrostatic verti-
cal momentum balance. ROMS uses stretched,
terrain-following coordinates in the vertical and
orthogonal curvilinear coordinates in the horizon-
tal. ROMS is a split-explicit, free-surface oceanic
model, where short time steps are used to advance
the surface elevation and barotropic momentum
equations, with a much larger time step used for
temperature, salinity, and baroclinic momentum.
ROMS employs a special 2-way time-averaging
procedure for the barotropic mode, which satis-
fies the 3D continuity equation. For further details
and more complete description of the model, the
reader is referred to [Shchepetkin, McWilliams,
2005]. The vertical mixing of momentum, heat,
and salt are determined by a turbulence submodel
known as the Mellor—Yamada level 2.5 turbu-
lence closure scheme [Mellor, Yamada, 1982].
Horizontal mixing uses Smagorinsky diffusivity
where the horizontal mixing coefficient depends
on the grid size and horizontal shear as well as an
arbitrary constant.
The surface boundary condition for momen-
tum is:
0
M
z
K
z
=
u
. (1)
where τ is the wind stress vector, KM is the vertical
kinematic viscosity, ρ0=1025 kg·m–3 is a reference
density and η is the free surface elevation. The
wind stress components use a drag coefficient
Cd=Cd(Ta, T, W) as function of the wind amplitude
(W), the air temperature (Ta) and the sea surface
temperature predicted by the model (T) following
the polynomial approximation given by [Heller-
man, Rosenstein, 1983]. The surface boundary
conditions for potential temperature take the
classic form:
0
T
H
z P
QTK
z C
= (2)
where QT is the net heat flux, CP (4186 J kg−1 K−1)
is the specific heat capacity of pure water at con-
stant pressure and KH is the vertical heat diffu-
sivity. The net heat flux QT (Eq. 2) involves the
balance between surface solar radiation (QS), the
net long-wave radiation (QB), the latent (QE) and
sensible (QH) heat fluxes.
For the salinity flux we consider the water
balance:
( ) ( )*
H
z
SK E P R S C S S
z
(3)
where E is the evaporation rate, P the precipita-
tion rate, R is the river runoff and S is the surface
model salinity at the first level. In our simulations
the runoff R is set to 0 because of the absence of
rivers with significant discharge. The last term of
Eq. (3) is the salinity flux correction and accounts
for the imperfect knowledge of E-P (P especially).
S* is the monthly mean sea climatology surface
salinity from Med12 dataset.
The Model domain. The region covered by the
present study includes the Tunisian continental
Shelf, the Sicily Strait and the adjacent areas. The
model domain (Fig. 1) extends from 8.8°E to 17°E
and from 31°N to 40°N. The horizontal grid reso-
lution is chosen to be 1/32° in both longitudinal
and latitudinal directions, which corresponds to
3.5 km in the longitude/latitude. The grid resolu-
tion is chosen to be 1/32° for a better represen-
tation of the mesoscale eddy activity and of the
exchanges through the Strait of Sicily. This reso-
lution is below the first internal Rossby radius of
deformation, about 10 km long [Send et al., 1999].
A grid spacing in σ is used in the vertical with 30
vertical levels. For numerical stability, the external
time step Δt is set to 8 s with an internal integra-
tion every 240 s, in order to satisfy the CFL con-
dition 2t s gh , where Δs is the minimum
grid length.
Bathymetry and initial conditions. The model
bathymetry is deduced from Smith and Sandwell
topography database [Smith, Sandwell, 1997] by
a bilinear interpolation of the depth data onto the
model grid. The resulting bathymetry is shown in
PATHWAYS OF THE MODIFIED ATLANTIC WATER ACROSS THE STRAIT OF SICILY
Геофизический журнал № 4, Т. 36, 2014 77
Fig. 2. It shows the main features of the modelled
area geometry which is mainly characterised by
the Tunisian shelf, the Adventure Bank and the
Malta plateau where depths are less than 100 m
and a much deeper eastern area with a maximum
depth exceeding 2000 m. The Tunisian continental
shelf is very wide and covers a large of the Strait.
In the Gulf of Gabes, the bathymetry is shallower
than 30 m for large stretches away from the coast.
The isobath 100 m is 200 km away from the coast.
The model was initialized with the tempera-
ture and salinity fields provided by the MEDAT-
LAS monthly climatology [MEDAR/MEDATLAS
Group., 2002].
Lateral open boundary conditions. The model
has four open boundaries located in the south-
ern Tyrrhenian Sea (along 39.5°N), in the Sar-
dinia Channel (along 9°E) and in the open Ionian
Sea (along 17°E). At the lateral open boundaries
the regional model receives information of tem-
perature, salinity and velocity fields from coarse
resolution basin scale model MED12 [Lebeaupin
Brossier et al., 2013]. Lateral open boundary con-
ditions are defined through a simple off-line one
way nesting technique that represents an efficient
way to downscale the model solutions from the
basin-scale (9 km, the coarse model) to the sub-
regional scale (3.4 km). It has been largely used
in numerical weather predictions and recently in
numerical oceanography to simulate the hydro-
dynamics of limited coastal areas [Sorgente et al.,
2003; Drago et al., 2003; Oddo, Pinardi, 2008]. The
monthly mean values of temperature, salinity, total
velocity were transferred from the coarse spaced
grid of MED12 [Lebeaupin Brossier et al., 2013] to
the finely spaced grid of the ROMS open bound-
aries through an off-line, one-way asynchronous
nesting. On the vertical plane, the coarse and fine
resolution models have different vertical coordi-
nate systems. The coarse resolution model uses a
z-level discretization model, while the high resolu-
tion model uses a sigma-coordinate system. The
Fig. 1. Model domain and the main subbasins.
I. BEN JABER, J. ABDENNADHER, M. BOUKTHIR
78 Геофизический журнал № 4, Т. 36, 2014
main advantage with the latter vertical discretiza-
tion is that a smooth representation of the bottom
topography can be obtained. It has been shown
[Bell, 1997] that, especially with finer grids, the
step structure of a z-level model can lead to vortic-
ity errors and consequently, to errors in the baro-
tropic component of the flow, leading to rather
large temperature errors. In the sigma-coordinate
system, the top numerical level follows the free sea
surface, while the lowest numerical level follows
the bottom depth.
Results. Surface circulation. The schematic
of the surface circulation in the Central Mediter-
ranean Sea was investigated by several authors
[Onken et al., 2003; Béranger et al., 2004; Astraldi
et al., 1996; Ben Jaber et al., 2013]. The Atlantic
water (AW) enters the Mediterranean Sea through
the Strait of Gibraltar, becoming warmer and salt-
ier along the African coast and constituting the
origin of the Modified Atlantic Water (MAW) pro-
ceeding towards east [Warn-Varnas et al., 1999]. In
the Sardinia Channel the MAW is partially deviat-
ed northward by the shallow Tunisian Skerki Bank
[Manzella et al., 1990] and then divides into two
main branches under the effect of the bathymetry.
The first branch directly flows into the Tyrrhenian
Sea along the northern coast of Sicily [Astraldi et
al., 1996], while the second turns southward into
Fig. 2. Bathymetry (in m) in the central Mediterranean Sea.
PATHWAYS OF THE MODIFIED ATLANTIC WATER ACROSS THE STRAIT OF SICILY
Геофизический журнал № 4, Т. 36, 2014 79
the Sicily Channel as a strong and narrow jet. In-
stead of these efforts, some uncertainties remain
concerning the behavior of the veins crossing the
Strait of Sicily, in particular the path of the main
flow along the Tunisian coast as well as its width.
Fig. 3 shows the monthly mean of sea surface
salinity and sea surface temperature fields in April
during the 11th year of the simulation. This presen-
tation was chosen, on one hand, to figure out the
major water masses of the Central Mediterranean
Sea surface and, on the other hand, to specify their
pathway. Indeed, the MAW can be traced by its low
salinity and temperature values. It is evident from
Fig. 3 that the MAW invades the strait of Sicily and
continues to flow eastward to the Tyrrhenian Sea
and after crossing the strait, the major water flux
follows the isobath 200m and occupies a large part
of the Tunisian continental shelf and the rest goes
to the south coast of Sicily. The monthly distribu-
tion of the simulated salinity field increases from
the eastern Tunisian shelf to the eastern side of
the domain, with a gradual modification of surface
properties of the MAW. The Gulf of Gabes, a region
characterized by a shallow bathymetry, is charac-
terized by strong anomalies of the temperature
and salinity. To better identify the pathway of the
modified Atlantic water in the eastern basin, we
show in Fig. 4 the velocity vectors at a depth of
20 m in summer and in winter during as simulated
by our model. It is apparent from Fig. 4 that in the
Sardinia Channel the MAW is partially deviated
northward by the shallow Tunisian Skerki Bank in
agreement with observations and then divides into
three main branches under the effect of the bathym-
etry [Herbaut et al., 1998]. One branch enters the
Tyrrhenian Sea, flowing along the northern Sicil-
ian coast as Bifurcation Tyrrhenian Current (BTC);
the other two MAW veins flow into to the eastern
Mediterranean basin crossing the Sicilian Channel,
in agreement with previous studies [Astraldi et al.,
1999; Sorgente et al., 2003; Béranger et al., 2004].
The main flow in the crossing the Sicilian Channel
is along the Tunisian coast and gives rise to the
Atlantic Tunisian Coast (ATC), while the smaller
flux on the southern Sicilian shelf gives rise to the
northern meandering AIS-Atlantic Ionian Stream
[Robinson et al., 1999].
Our simulations show that the ATC flows south-
ward over the Tunisian continental slope with an
associated salinity minimum (see Fig. 4) as a rela-
tively strong current decreasing progressively its
velocity south-eastward. It flows approximately
following the 200 m isobaths. The semipermanent
features linked to the meanders of the AIS during
summer described by several studies [Robinson
et al., 1999; Lermusiaux, 1999; Sorgente et al.,
2003; Lermusiaux, Robinson, 2001; Béranger et
al., 2004], namely, the cyclonic Adventure Bank
Vortex (ABV hereafter), the anti-cyclonic Maltese
Channel Crest (MCC hereafter), the cyclonic Io-
nian Shelf break Vortex (ISV hereinafter), and the
intermittent cyclonic Messina Rise Vortex (MRV
hereafter) are well reproduced (see Fig. 4). These
meanders and eddies vary in strength, size and
shape, shift their positions, and interact. They
are partly controlled by topographic features,
coastal geometry, and thermohaline boundary
forcing. The seasonal variability of the ATC and
the AIS is significantly different. The southern flow
along the African coast reaches its maximum in
late autumn, in agreement with the observations
[Astraldiet al., 1996]. The MAW vein close to the
southern Sicilian coast is most conspicuous during
Fig. 3. Monthly mean of sea surface salinity (SSS) and potential
temperature (SST) in April.
I. BEN JABER, J. ABDENNADHER, M. BOUKTHIR
80 Геофизический журнал № 4, Т. 36, 2014
summer and autumn, proceeding eastward along
the swift topographically controlled AIS. During
winter, the MAW fills the whole extent of the Strait
up to the westernmost tip of the southern Sicilian
shelf. Starting from spring, this MAW then starts
to progressively detach from the surface, taking
the form of a subsurface core at a depth of about
60 m in autumn [Sorgente et al., 2003].
For the MAW branch, which entered the Tyr-
rhenian Sea, the trajectory varied with season. In
summer situation, the circulation is characterized
by many eddies. In particular, a big anticyclonic
eddy is seen off northwestern Sicily (Fig. 4, a),
which has been identified from satellite altimeter
data [Boukthir et al., 2007]. On the other hand, in
winter, the MAW flowed along the northern coast
of Sicily and cyclonically in the Tyrrhenian Sea
(Fig. 4, b). The seasonal variability of the surface
circulation off northwestern Sicily deduced from
our numerical simulation has been confirmed from
the analysis of eleven years of Topex/Poseidon and
ERS1/2 data [Abdennadher, Boukthir, 2007].
Circulation in the eastern Tunisian shelf.
The circulation in the eastern Tunisian shelf is
characterized mainly by a strong and relatively
cooler eastward flow, entailing the Modified At-
lantic Water southward. This current, called the
Atlantic Tunisian current, is following closely to
the African shelf edge. South of Lampedusa Is-
land, the ATC splits into two branches at 34.5°N.
One branch flows into the Ionian Sea (branch 3,
Fig. 5, a), while the second flows south-eastward
and bifurcates into two veins (1) and (2) as illus-
trated in Fig. 5. The first one (1) entered the Gulf
of Gabes and the second one (2) flows approxi-
mately following the 200 m isobaths until Libya
coast which can be considered as the eastward
extension of ATC along the Libyan coast [Poulain,
Fig. 6. Monthly mean vertical sections of salinity and potential temperature in Аugust and January along latitude 36,4°N (Sicily
strait, SS section), and along latitude 34,1°N (Gulf of Gabes, GG section).
PATHWAYS OF THE MODIFIED ATLANTIC WATER ACROSS THE STRAIT OF SICILY
Геофизический журнал № 4, Т. 36, 2014 81
Zambianchi, 2007; Napolitano et al., 2003]. The
ATC is characterized by an important seasonal
variability. During autumn-winter period, the ATC
invades the Tunisian continental shelf (Fig. 5, c, d)
and there is no more flow toward the Ionian Sea.
Our simulations show that the ATC exists in sum-
mer (Fig. 5, b) but it is the subject of high interan-
nual variability. Indeed, the ATC becomes weak
in summer and may even disappear during some
other years. This could explain the contradiction
between those who assert that the ATC does not
exist in summer [Béranger et al., 2004] and those
who assert its existence during the same season
[Napolitano et al., 2003]. The dynamics of the
area is also characterized by a permanent anticy-
clonic gyre located in the Gulf of Hammamet and
by a pair of small-scale anticyclonic gyres during
spring/summer (see Fig. 5, a, d), located off the
Libyan coast between 14°E and 15.5°E.
Vertical structures. In order to assess the
vertical structures we have selected two vertical
sections, one in the Strait of Sicily at 36.43°N (SS
hereafter) and the second in the Gulf of Gabes at
34.13°N (GG hereafter) (see Fig. 6 on p. 80). Our
results reproduce qualitatively well the vertical
distribution of the potential temperature. Its distri-
bution (see Fig. 5) shows that during the summer
period (August) the vertical stratification is stron-
ger than during winter (January) in SS and GG.
The thermocline is clearly established in summer.
During winter, a period of strong wind, the latter
has been acting at the sea surface and enhances
the vertical mixing and consequently reduces the
strength of the vertical stratification. In winter,
the potential temperature from bottom to surface
ranges from 13.5°C to 18°C for SS vertical section
and from 13.75°C to 17.5°C in the GG vertical sec-
tion. In August, the potential temperature at the
sea surface increases in both sections since it is
about 25°C in SS section and 27°C in GG section.
This high summer temperature is due to the strong
positive surface heat fluxes and the shallow bathy-
metry in the Gulf of Gabes. It is interesting to note
that the temperature at the bottom of both sections
SS and GG is almost the same during January and
August. The thermocline is clearly established in
summer and the mixed layer is deeper in winter
than in summer due to the action of the wind, par-
ticularly strong during winter.
Conclusion. This study aimed to obtain a
coherent picture of the modified Atlantic water
pathway in the Strait of Sicily and the adjacent
areas, particularly along the Tunisian coasts.
The surface circulation has been inferred from a
high resolution general circulation model of the
Central Mediterranean Sea. The monthly mean
values of temperature, salinity, total velocity and
elevation were transferred from the coarse spaced
grid of MED12 to the finely spaced grid of the
ROMS open boundaries through an off-line, one-
way nesting. It is evident that the high resolution
model is able to simulate the major water masses
and the surface circulation patterns in the central
Mediterranean. Particularly, it reproduces well the
AIS flow and variability, including the associated
characteristic structures such as the Adventure
Bank Vortex, the Maltese Channel Crest, the Io-
Fig. 4. Horizontal current at depth 20 m in summer (upper)
and winter (lower).
I. BEN JABER, J. ABDENNADHER, M. BOUKTHIR
82 Геофизический журнал № 4, Т. 36, 2014
nian Bank Vortex and the overshooting into the
northern Ionian Sea. Our results are compared
reasonably with those deduced from observa-
tions [Astraldi et al., 1996; 2002; Sorgente et al.,
2011]. The simulated circulation reproduces the
branching of the modified Atlantic water into two
main streams. The southern branch follows the
Tunisian shelf edge and spreads over the Tunisian
and the wide shallow Libyan continental platform,
particularly in autumn. The northern branch flows
along the Sicilian shelf. Both have a strong sea-
sonal variability, particularly in their volume trans-
port. The path of the Atlantic Tunisian Current
and its variability are clarified, particularly south
of Lampedusa Isle. The Atlantic Tunisian Current
flows eastward mainly along the 200 m isobath.
South of Lampedusa Isle, it splits into two main
branches. The first branch directly flows toward
the southern part of the Levantine basin, while
the second is flowing over the Tunisian shelf. The
latter divides into two veins, the first one invades
the Tunisian shelf in the Gulf of Gabes and re-
circulates anticyclonally on the shelf, while the
second continues flowing southeastward as an
important coastal current and comes close to the
Fig. 5. Horizontal current at depth 20 m in the Gulf of Gabes in spring (a), summer (b), autumn (c), and winter (d).
Libyan coast, giving rise to a strong coastal jet
near the Libyan current. This scheme is different
from an earlier ones estimated from models of
coarse resolution. A small cyclonic vortex devel-
ops downstream Cape Bon and it seems that it
constrains the modified Atlantic water towards the
Tunisian slope increasing its velocity. However,
the existence of this mesoscale feature should be
confirmed by oceanographic surveys. The Atlan-
tic Tunisian Current is stronger than the Atlantic
Ionian Stream from autumn to winter. In January,
the Atlantic Ionian Stream is close to the Sicilian
coast, and the Atlantic Tunisian current close to
the Tunisian coast. The modified Atlantic water
is colder in the Atlantic Ionian Stream than in
the Atlantic Tunisian current due to mixing with
upwelling waters [Béranger et al., 2004]. In July,
the Atlantic Ionian Stream meandered, whereas
the Atlantic Tunisian current appears weak or not
present at all, in agreement with previous stud-
ies [Sorgente et al., 2003; Bérangeret al., 2005].
Nevertheless, our results show that the Atlantic
Tunisian current is clearly present in July for year
2006, suggesting a possible interannual variability
of this current. We believe that the Atlantic Tuni-
PATHWAYS OF THE MODIFIED ATLANTIC WATER ACROSS THE STRAIT OF SICILY
Геофизический журнал № 4, Т. 36, 2014 83
sian current is present during the year, although
it is difficult to identify in July, because of the re-
circulation in the Sicily Channel.
Acknowledgements. The authors are sup-
ported by Ministry of Higher Education and Sci-
entific Research Tunisia through UR11ES88. The
boundary conditions were gracefully supplied by
Dr. Béranger and they arise from simulations of
the circulation of the Mediterranean Sea realized
within the framework of the project MORCE-
MED (funded by the GIS-Climate) and the project
SiMED (funded by GMMC).
References
Abdennadher J., Boukthir M., 2007. Seasonal and in-
terannual variations of the sea surface circulation
in the central Mediterranean Sea derived from 11
years of Topex/Poseidon and ERS1/2 data. Online
J. Earth Sci. 1 (4), 180—187.
Astraldi M., Balopoulos S., Candela J., Font J., Gacic M.,
Gasparini G. P., Manca B., Theocharis A., 1999. The
role of straits and channels in understanding the
characteristics of Mediterranean circulation, Prog-
ress in Oceanography 44, 65—108.
Astraldi M., Gasparini G. P., Sparnocchia S., Moret-
ti M., Sansone E., 1996. The characteristics of the
water masses and the water transport in the Sicily
Strait at long time scales the eastern and western
Mediterranean through the Strait of Sicily. Bulle-
tin de l’Institut Oceanographique, Monaco, CIESM
Science Series (2), 95—115.
Astraldi M., Gasparini G. P., Vetrano A., Vignudelli S.,
2002. Hydrographic characteristics and interan-
nual variability of water masses in the central Me-
diterranean: a sensitivity test for longterm changes
in the Mediterranean Sea. Deep-Sea Res. Pt. I, 49,
661—680.
Bell M. J., 1997. Vortex stretching and bottom torque
in the Bryan-Cox ocean circulation model. The
Met. Office. Applications T. N. 17.
Ben Jaber I., Abdennadher J., Boukthir M., 2013. Sea-
sonal Variability of the Atlantic Tunisian current
derived from a high resolution model, 40th CIESM
Congress.
Boukthir M., Abdennadher J., Jebali J., 2007. Sea Sur-
face Circulation within the Eastern Mediterranean
derived from Satellite Observations of Altimetry
and Wind. Geophys. J. 29(1), 144—152.
Brasseur P., Beckers J. M., Brankart J. M., Schoe-
nauen R., 1996. Seasonal temperature and salin-
ity fields in the Mediterranean Sea: climatological
analyses of a historical data set. Deep-Sea Res. Pt. I,
43, 159—192.
Bйranger K., Mortier L., Crйpon M., 2005. Seasonal
variability of water transport through the Straits of
Gibraltar, Sicily and Corsica derived from a high-
resolution model of the Mediterranean circulation.
Prog. Oceanogr. 66, 341—364.
Bйranger K., Mortier L., Gaspirini G.-P., Gervasio L.,
Astraldi M., Crйpon M., 2004. The dynamics of the
Sicly strait: a comprehensive study from observa-
tions and models. Deep-Sea Res. Pt. II, 51, 411—
440.
Drago A. F., Sorgente R., Ribotti A., 2003. A high reso-
lution hydrodynamic 3-D model simulation of the
Malta shelf area. Ann. Geophys. 21, 323—344.
Gasparini G. P., Bonanno A., Zgozi S., Basilone G.,
Borghini M., Buscaino G., Cuttitta A., Essarbout N.,
Mazzola S., Patti B., Ramadan A. B., Schroeder K.,
Bahri T., Massa F., 2008. Evidence of a dense wa-
ter vein along the Libyan continental margin. Ann.
Geophys. 26, 1—6. doi:10.5194/angeo-26-1-2008.
Gasparini G. P., Ortona A., Budillon G., Astraldi M.,
Sansone E., 2005. The effect of the Eastern Medi-
terranean transient on the hydrographic character-
istics in the Straits of Sicily and in the Tyrrhenian
Sea. Deep-Sea Res. Pt. I, 52, 915—935.
Hamad N., Millot C., Taupier-Letage I., 2005. A new hy-
pothesis about the surface circulation in the east-
ern basin of the Mediterranean Sea. Prog. Ocean-
ogr. 66(2-4), 287—298.
Hellerman S., Rosenstein M., 1983. Normal monthly
wind stress over the world ocean with error esti-
mates. J. Phys. Oceanogr. 13, 1093—1104.
Herbaut C., Codron F., Crepon M., 1998. Separation
of a Coastal Current at a Strait Level: Case of the
Strait of Sicily. J. Phys. Oceanogr. 28, 1346—1362.
Lebeaupin Brossier C., Drobindki P., Beranger K., Bas-
tin S., Orain F., 2013. Ocean memory effect on the
dynamics of coastal heavy precipitation preceded
by a mistral event in the northewestern Mediter-
ranean. Q. J. Roy. Meteorol Soc. 139, 1583—1597.
Lermusiaux P. F. J., 1999. Estimation and study of me-
soscale variability in the Strait of Sicily. Dynam. At-
mos. Oceans 29, 255—303.
Lermusiaux P. F. J., Robinson A. R., 2001. Features of
I. BEN JABER, J. ABDENNADHER, M. BOUKTHIR
84 Геофизический журнал № 4, Т. 36, 2014
dominant mesoscale variability, circulation pat-
terns and dynamics in the Strait of Sicily. Deep-Sea
Res. Pt. I, 48, 1953—1997.
Manzella G. M. R., Hopkins T. S., Minnett P. J., Naci-
ni E., 1990. AtlanticWater in the Strait of Sicily. J.
Geophys. Res. 95, 1569—1575.
Manzella G. M. R., La Violette P., 1990. The seasonal
variation of water mass content in the western
Mediterranean and its relationship with the inflow
through the Strait of Gibraltar and Sicily. J. Geo-
phys. Res. 95(C2), 1623—1626.
MEDAR/MEDATLAS Group, 2002. MEDAR/MEDAT-
LAS 2002 Database. Cruise inventory, observed
and analyzed data of temperature and bio-chemi-
cal parameters (4 CD-ROMs).
Mellor G. L., Yamada T., 1982. Development of a tur-
bulence closure model for geophysical fluid prob-
lems. Rev. Geophys. Space Phys. 20, 851—875/
Napolitano E., Sannino G., Vincenzo A., Marullo S.,
2003. Modeling the baroclinic circulation in the
area of the Sicily channel: The role of stratification
and energy diagnostics. J. Geophys. Res. 108(C7),
3230. doi:10.1029/2002JC001502.
Oddo P., Pinardi N., 2008. Lateral open boundary con-
ditions for nested limited area models: A scale se-
lective approach. Ocean Model. 20, 134—156.
Onken R., Robinson A. R., Lermusiaux P. F. J., Hal-
ey P. J., Aanderson A. L., 2003. Data-driven simula-
tions of synoptic circulation and transports in the
Tunisian-Sardinia-Sicily region. J. Geophys. Res.
108(C9), 8123—8136.
Poulain P. M., Zambianchi E., 2007. Surface circulation
in the central Mediterranean Sea as deduced from
Lagrangian drifters in the 1990s. Cont. Shelf Res.
27, 981—1001.
Robinson A. R., Sellschopp J., Warn-Varnas A., Ander-
son L. A., Lermusiaux P. F. J., 1999. The Atlantic Io-
nian Stream. J. Marine Systems 20, 129—156.
Sammari C., Millot C., Taupier-Letage I., Stefani A.,
Brahim M., 1999. Hydrological characteristics in
the Tunisian-Sardinia-Sicily area during spring
1995. Deep-Sea Res. Pt. I, 46, 1671—1703.
Send U., Font J., Krahmann G., Millot C., Rhein M.,
Tintor J., 1999. Recent advances in observing the
physical oceanography of the western Mediterra-
nean. Progress in Oceanography, 44, 37—64.
Shchepetkin A., McWilliams J., 2005. The regional
oceanic modeling system (ROMS): a split-explic-
it, free-surface, topography-following-coordinate
oceanic model. Ocean Model 9, 47—404.
Smith W. H. F., Sandwell D. T., 1997. Global sea floor
topography from satellite altimetry and ship depth
soundings. Sciences 277, 1956—1962.
Sorgente R., Drago A. F., Ribotti A., 2003. Seasonal vari-
ability in the Central Mediterranean Sea circula-
tion. Ann. Geophys. 21, 299—322. doi:10.5194/an-
geo-21-299.
Sorgente R., Olita A., Oddo P., Fazioli L., Ribotti A.,
2011. Numerical simulation and decomposition of
kinetic energy in the Central Mediterranean: in-
sight on mesoscale circulation and energy conver-
sion. Ocean Sci. 7, 503—519.
Vetrano A., Gasparini G. P., Molcard R., Astraldi M.,
2004. Water flux estimates in the central Mediter-
ranean Sea from an inverse box model. J. Geophys.
Res. 109, 1—24, C01019.
Warn-Varnas A., Sellschops J., Haley Jr. P. J., Les-
lie W. G., Lozano C. J., 1999. Strait of Sicily water
masses. Dynam. Atmos. Oceans 29, 437—469.
|