Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system
Modernization of horizontal low pressure deposition system has been performed. The liquid source delivery system using the bubblers has been developed. The PSG and BPSG film deposition processes and film properties using TEOS-Dimethylphosphite-TEB system have been studied. It is shown that the use o...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
2015
|
Назва видання: | Технология и конструирование в электронной аппаратуре |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/100479 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system / A.S. Turtsevich, O.Y. Nalivaiko // Технология и конструирование в электронной аппаратуре. — 2015. — № 1. — С. 49-58. — Бібліогр.: 34 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-100479 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1004792016-05-23T03:02:14Z Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system Turtsevich, A.S. Nalivaiko, O.Y. Материалы электроники Modernization of horizontal low pressure deposition system has been performed. The liquid source delivery system using the bubblers has been developed. The PSG and BPSG film deposition processes and film properties using TEOS-Dimethylphosphite-TEB system have been studied. It is shown that the use of dimethylphosphite allows varying the phosphorus concentration in the wide range. It is found that the optimal range of the total boron and phosphorus concentration ensuring the acceptable topology planarity and resistance to defect formation during storage is 8.7?0.3 wt% when the phosphorus concentration is 3.0—3.8 wt%. It is found that at use of the TEOS-DMP-TEB system the depletion of the phosphorus concentration along reaction zone does not occur, and the total dopant concentration is practically constant. At the same time the deposition rate of BPSG films is 9.0—10.0 nm/min and the good film thickness uniformity are ensured. The as-deposited films have “mirror-like surface” that is proof of minimal surface roughness. The BPSG films with optimal composition are characterized by the reduced reaction capability against atmospheric moisture. Проведена модернизация горизонтального реактора пониженного давления. Разработана система подачи жидкого реагента с использованием барботеров. Исследованы процессы осаждения пленок и свойства пленок ФСС и БФСС с использованием системы ТЭОС-диметилфосфит(ДМФ)-триметилборат(ТМФ). Проведено модернізацію горизонтального реактора зниженого тиску. Розроблено систему подачі рідкого реагенту з використанням барботерів. Досліджено процеси осадження плівок і властивості плівок ФСС і БФСС з використанням системи ТЕОС-діметілфосфіт(ДМФ)-тріметілборат(ТМФ). 2015 Article Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system / A.S. Turtsevich, O.Y. Nalivaiko // Технология и конструирование в электронной аппаратуре. — 2015. — № 1. — С. 49-58. — Бібліогр.: 34 назв. — англ. 2225-5818 DOI: 10.15222/TKEA2015.1.49 http://dspace.nbuv.gov.ua/handle/123456789/100479 621.315.612 en Технология и конструирование в электронной аппаратуре Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Материалы электроники Материалы электроники |
spellingShingle |
Материалы электроники Материалы электроники Turtsevich, A.S. Nalivaiko, O.Y. Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system Технология и конструирование в электронной аппаратуре |
description |
Modernization of horizontal low pressure deposition system has been performed. The liquid source delivery system using the bubblers has been developed. The PSG and BPSG film deposition processes and film properties using TEOS-Dimethylphosphite-TEB system have been studied. It is shown that the use of dimethylphosphite allows varying the phosphorus concentration in the wide range. It is found that the optimal range of the total boron and phosphorus concentration ensuring the acceptable topology planarity and resistance to defect formation during storage is 8.7?0.3 wt% when the phosphorus concentration is 3.0—3.8 wt%. It is found that at use of the TEOS-DMP-TEB system the depletion of the phosphorus concentration along reaction zone does not occur, and the total dopant concentration is practically constant. At the same time the deposition rate of BPSG films is 9.0—10.0 nm/min and the good film thickness uniformity are ensured. The as-deposited films have “mirror-like surface” that is proof of minimal surface roughness. The BPSG films with optimal composition are characterized by the reduced reaction capability against atmospheric moisture. |
format |
Article |
author |
Turtsevich, A.S. Nalivaiko, O.Y. |
author_facet |
Turtsevich, A.S. Nalivaiko, O.Y. |
author_sort |
Turtsevich, A.S. |
title |
Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system |
title_short |
Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system |
title_full |
Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system |
title_fullStr |
Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system |
title_full_unstemmed |
Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system |
title_sort |
deposition of borophosphosilicate glass films using the teos–dimethylphosphite–trimethylborate system |
publisher |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
publishDate |
2015 |
topic_facet |
Материалы электроники |
url |
http://dspace.nbuv.gov.ua/handle/123456789/100479 |
citation_txt |
Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system / A.S. Turtsevich, O.Y. Nalivaiko // Технология и конструирование в электронной аппаратуре. — 2015. — № 1. — С. 49-58. — Бібліогр.: 34 назв. — англ. |
series |
Технология и конструирование в электронной аппаратуре |
work_keys_str_mv |
AT turtsevichas depositionofborophosphosilicateglassfilmsusingtheteosdimethylphosphitetrimethylboratesystem AT nalivaikooy depositionofborophosphosilicateglassfilmsusingtheteosdimethylphosphitetrimethylboratesystem |
first_indexed |
2025-07-07T08:52:47Z |
last_indexed |
2025-07-07T08:52:47Z |
_version_ |
1836977611400544256 |
fulltext |
Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1
49
MATERIALS OF ELECTRONICS
ISSN 2225-5818
UDC 621.315.612
A. S. TURTSEVICH, Dr. Sci. (Techn), O. Y. NALIVAIKO
Republic of Belarus, Minsk, JSC INTEGRAL, Management Company of INTEGRAL Holding
E-mail: Aturtsevich@integral.by, onalivaiko@integral.by
DEPOSITION OF BOROPHOSPHOSILICATE GLASS
FILMS USING THE TEOS–DIMETHYLPHOSPHITE–
TRIMETHYLBORATE SYSTEM
With shrinking device geometries the task of
planarizing surface topography becomes more
important [1]. Phosphosilicate glass (PSG) and
borophosphosilicate glass (BPSG) are widely used
for this purpose [2]. These binary and ternary glass
films have an intrinsic flow property due to the
temperature dependence of glass viscosity. BPSG
films are also more attractive for use than PSG in
contact reflow process (second thermal reflow),
which is used for rounding of sharp contact edges
to improve the step coverage by subsequent metal
film. PSG and BPSG films are mostly produced
by oxidation of silane [3] or pyrolytic decompo-
sition of tetraethylorthosilicate [4, 5] with the
addition of boron and phosphorus dopants during
deposition.
The main disadvantages of silane-based proc-
esses are using toxic reagents, difficulty of process
control, relatively high defect density of deposited
films because the oxidation of silane (and phos-
phine) proceeds by the free-radical chain mecha-
nism with intermediates being formed in the gas
phase [6, 7]. Furthermore, silane processes take
place at a relatively low temperature and cannot
provide good step coverage. Silane based BPSG
films need high doping to provide flowability, but
this also leads to poor film stability in storage.
Using organosilicon compounds (TEOS) allows to
obtain the high-quality films [8], to reduce nox-
ious emissions [9], and to improve step coverage
Modernization of horizontal low pressure deposition system has been performed. The liquid source delivery
system using the bubblers has been developed. The PSG and BPSG film deposition processes and film
properties using TEOS-Dimethylphosphite-TEB system have been studied. It is shown that the use of
dimethylphosphite allows varying the phosphorus concentration in the wide range. It is found that the
optimal range of the total boron and phosphorus concentration ensuring the acceptable topology planarity
and resistance to defect formation during storage is 8.7±0.3 wt% when the phosphorus concentration is
3.0—3.8 wt%. It is found that at use of the TEOS-DMP-TEB system the depletion of the phosphorus
concentration along reaction zone does not occur, and the total dopant concentration is practically
constant. At the same time the deposition rate of BPSG films is 9.0—10.0 nm/min and the good film
thickness uniformity are ensured. The as-deposited films have “mirror-like surface” that is proof of
minimal surface roughness. The BPSG films with optimal composition are characterized by the reduced
reaction capability against atmospheric moisture.
Keywords: borophosphatesilicate glass, deposition, topological relief planarity.
[10] and narrow gap filling [5, 11]. Nonetheless,
moisture absorption and defect formation in highly
doped glass films are still big challenges for these
solutions.
Table 1 summarizes physical and chemical
properties of common source materials for the
deposition of PSG and BPSG films. With the
TEOS—trimethylphosphate(TMPO)–O2 and
TEOS—TMPO—trimethylborate(TMB)–O2 sys-
tems, films of over 3 wt% P are relatively difficult
to produce because TMPO has a low vapor pres-
sure [13, 14]. Furthermore, the P concentration of
BPSG films is known to be strongly dependent on
the temperature of deposition when this involves
TMPO [15].
Fig. 1 depicts the dependence of the B and P
concentrations in BPSG films on the deposi-
tion temperature in the case of the TEOS–
trimethylphosphite(TMPite)–TMB–O2 system.
Notice that the P concentration falls from 4.2 to 1
wt% at a rate of about 0.06 wt%/deg as the deposi-
tion temperature is raised from 675 to 725°C, while
the B concentration remains fairly constant at
6.2—6.4 wt%. The authors of [13] have shown that
a flow angle a less than 45° is achieved when the
sum of the B and P concentrations exceeds 8.7 wt%,
provided that they are greater than 5.65 and 1.4 wt%,
respectively. On the other hand, boron-rich films
are very hygroscopic and unstable in storage
[16—19] and are not adequate in gettering alkali
DOI: 10.15222/TKEA2015.1.49
Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1
50
MATERIALS OF ELECTRONICS
ISSN 2225-5818
T
ab
le
1
P
hy
si
ca
l
an
d
c
he
m
ic
al
p
ro
pe
rt
ie
s
of
c
om
m
on
s
ou
rc
e
m
at
er
ia
ls
f
or
t
he
d
ep
os
it
io
n
of
P
S
G
a
nd
B
P
S
G
f
il
m
s
M
at
er
ia
l
A
bb
re
vi
at
io
n
C
he
m
ic
al
f
or
m
ul
a
R
el
at
iv
e
m
ol
ec
ul
ar
m
as
s
P
hy
si
ca
l
st
at
e
M
el
ti
ng
po
in
t,
°C
B
oi
li
ng
po
in
t,
°
C
D
en
si
ty
,
g/
cm
3
(g
as
),
g/
m
l
(l
iq
ui
d)
R
ef
ra
ct
iv
e
in
de
x
T
hr
es
ho
ld
li
m
it
va
lu
e,
m
g/
m
3
M
on
os
il
an
e
—
S
iH
4
32
.1
2
ga
s
–
18
5
–
11
2
1.
44
—
1.
0
T
et
ra
et
hy
l o
rt
ho
si
li
ca
te
T
E
O
S
(C
2H
5O
) 4
S
i
20
8.
34
li
qu
id
–
82
.5
16
6.
5
0.
96
82
5°
С
1.
38
37
20
D
im
et
hy
l d
ic
hl
or
o-
si
la
ne
D
M
D
C
S
(C
H
3)
2C
l 2
S
i
12
9.
06
li
qu
id
–
36
70
.3
1.
06
42
0°
С
1.
40
55
1.
0
P
ho
sp
hi
ne
—
P
H
3
34
.0
ga
s
–
13
3.
8
–
87
.4
1.
53
—
0.
1
T
ri
m
et
hy
l p
ho
sp
ha
te
T
M
P
,
T
M
P
O
(C
H
3O
) 3
P
O
14
0.
07
li
qu
id
–
46
19
3—
19
7
1.
21
42
5°
С
1.
40
89
2.
69
T
ri
m
et
hy
l p
ho
sp
hi
te
T
M
P
it
e
(C
H
3O
) 3
P
12
4
li
qu
id
–
78
11
1
1.
05
2
—
—
D
im
et
hy
l p
ho
sp
hi
te
[1
2]
D
M
P
(C
H
3O
) 2
P
(O
)H
11
0.
04
li
qu
id
—
17
0.
5
1.
19
44
1.
40
36
—
P
ho
sp
ho
ru
s
tr
ic
hl
or
id
e
—
P
C
l 3
13
7.
33
li
qu
id
–
90
.3
75
.1
1.
55
7
1.
51
6
0.
2
P
ho
sp
ho
ru
s
ox
yc
hl
or
id
e
—
P
O
C
l 3
15
3.
33
li
qu
id
—
10
5.
8
1.
67
5
1.
46
0
0.
05
D
ib
or
an
e
—
B
2H
6
27
.6
7
ga
s
–
16
5.
5
–
92
.5
1.
24
—
0.
1
T
ri
m
et
hy
lb
or
at
e
T
M
B
(C
H
3O
) 3
B
10
3.
91
li
qu
id
–
34
68
-6
9
0.
91
52
0°
С
—
—
T
ri
et
hy
lb
or
at
e
T
E
B
(C
2H
5O
) 3
B
14
5.
99
li
qu
id
–
84
.5
11
7.
4
0.
85
8
—
—
T
ri
pr
op
yl
bo
ra
te
T
P
B
(C
3H
7O
) 3
B
18
8.
08
li
qu
id
—
17
5—
17
8
0.
86
25
°С
1.
39
4
—
B
or
on
t
ri
ch
lo
ri
de
—
B
C
l 3
11
7.
17
li
qu
id
–
10
7
12
.4
1.
43
4
1.
42
8
—
Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1
51
MATERIALS OF ELECTRONICS
ISSN 2225-5818
metals (ions). Moreover, using the boron-rich
BPSG films can cause the contact-to-contact short
failure in ultra large-scsale integration by wiggling
contact profile [20].
Furthermore, with the TEOS—TMPO—TMB
system, the considerable depletion of phosphorus
along the deposition zone makes it difficult to
strike a balance between the deposition rate, the
amount and the uniformity of P concentration,
and the thickness uniformity.
In view of the above, we find it worthwhile to
identify alternative systems of source materials for
the deposition of PSG and BPSG films that would
allow a higher degree of control over the B and P
concentrations and better thickness reproducibility
in deposition, and would provide films more stable
in storage. The TEOS—DMP, TEOS—DMP—
TEB, and TEOS—DMP—TMB systems are of
particular interest in these respects. This paper
presents an experimental investigation into the
deposition kinetics of PSG and BPSG films from
the TEOS—DMP—TEB(TMB) reactant system,
and into the properties of the films.
Experiment
The experiments were performed using 4 inch
B-doped, <100> oriented, 12 Ω⋅cm resistivity
silicon wafers as substrates.
The deposition of PSG and BPSG films was
carried out in a horizontal hot wall LPCVD reactor
(Karat model) [18], using liquid reagents. Since
the liquid reagents have different saturated-vapor
pressure at the same temperature, the separate
bubbling evaporators were used for each liquid
16
12
8
4
0
C
B
,
C
P
,
w
t%
450 500 550 600 650 700 750
Deposition temperature, °C
Fig. 1. Previously reported boron (CB) and phosphorus (CP)
concentrations in BPSG films vs. deposition temperature
in the case of the TEOS—TMPite—TMB—O2 system
— boron [13]; — boron [15]; — phosphorus [13];
— phosphorus [15]
Fig. 2. Gas and vapor distribution system of the LPCVD reactor:
1 — SiC cantilever; 2 — quartz reactor; 3 — wafer boat; 4 — pressure gauge; 5 — shutter; 6 — vacuum gate; 7 — valves;
8 — nitrogen trap; 9 — mass flow controllers; 10 — valve with calibrated orifice for nitrogen backfill; 11 — vacuum pumps;
12 — TEB (TMB), TEOS, DMP bubblers (the TEOS and DMP bubblers use the carrier gas)
Pure N2 High Purity N2
1 2 3
4
5
6
7
7
7
8
9
9 9
9
10
11
12
TEB
(TMB) TEOS DMP
Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1
52
MATERIALS OF ELECTRONICS
ISSN 2225-5818
reagent. The gas and vapor distribution system is
presented in Fig. 2.
The special liquid vaporizing system was used
to provide the stable pressure and flow of TEOS
vapor. This system contains the bulk supply
container (10 liters), compartment with metallic
container (bubbler) for holding TEOS to be va-
porized, mass flow controller (MFC) for carrier
gas and a bubbling tube inserted into bubbler, an
outlet pipe for ejecting TEOS vapor with carrier
gas, liquid supply pipe for refilling the bubbler
from bulk container, temperature detection and
adjustment means for maintaining the TEOS
temperature and temperature inside the bubbler
compartment. This liquid vaporizing system can
be operated under temperatures above 50°C, which
are needed for TEOS evaporation in case of BPSG
deposition in horizontal LPCVD reactor. The
TEOS vapor pipes to reactor were electrically
heated 5—10°C above the temperature of the bub-
bler, using insulated wire.
The liquid source materials were TEOS (dis-
tilled), dimethylphosphite, and trimethylborate
conforming to the Russian technical specifications
ÒУ 2637-059-44493179-04, ÒУ 2634-002-40475629-
99, and ÒУ 2634-001-40475629-99, respectively.
They were evaporated in the respective temperature
ranges 55—57, 22—24, and 20—40°C, with each
temperature point maintained to within ±0.5°C. The
wafers were placed in specially designed perforated
quartz boats. The wafer spacing was 7.5 mm.
The PSG films were deposited at 680—715°C
and 45±3 Pa; the BPSG films — at 660—690°C
and 45±3 Pa. The chamber pressure was main-
tained by feeding nitrogen through MFC. The
carrier gas was oxygen or nitrogen; its flow rate
through each bubbler was 200 sccm or less.
The PSG and BPSG deposition process included
the following steps:
1. Loading wafers into the chamber and nitro-
gen purge through the chamber;
2. Chamber pumpdown;
3. Nitrogen purge of the chamber;
4. Chamber pumpdown, temperature stabiliza-
tion at given values;
5. Leak check;
6. Chamber pumpdown;
7. Deposition of BPSG films;
8. Nitrogen purge of the chamber and chamber
pumpdown;
9. Repeat step 8 an appropriate number of
times;
10. Chamber backfill using nitrogen until at-
mospheric pressure is reached;
11. Unloading wafers.
Film thickness was measured by spectrophotom-
etry (Leica’s MPV-SP), the phosphorus concentra-
tion by X-ray fluorescence (Rigaku’s M3613), the
boron concentration by infrared (IR) spectroscopy
(SPECORD-75) and Fourier-transform spectros-
copy (FSM-1201 FTIR analyzer), and refractive
index by laser ellipsometry (LEF-3M).
The test structure, having the polysilicon lines
1 mm thick was used for evaluating topology
planarity. The films 0.75±0.05 mm thick were
subjected to thermal reflow in dry oxygen at 850°C
during 45 min for BPSG or at 950°C during 30 min
for PSG. The topology planarity was evaluated
by measuring the slope angle a after reflow [4, 8]
as seen in cross-sectional scanning-electron-micro-
scope images.
Results and discussion
Fig. 3 and 4 depict the observed dependence of
P concentration in PSG films on deposition tem-
perature and DMP temperature, respectively, with
the carrier gas flow rate maintained at 200 sccm.
The P concentration decreases steadily from 10.0 to
6.0 wt% as the deposition temperature is elevated
from 680 to 715°C when DMP temperature is about
30°C (Fig. 3). It also increases steadily with DMP
temperature (Fig. 4).
When nitrogen is used as the carrier gas, in-
creasing its flow rate from 67 to 200 sccm reduces
the PSG deposition rate from 7.5 to 5.5 nm/min,
that can be explained by the TEOS partial pressure
reduction. The carrier-gas flow rate has a signifi-
cant influence on the wafer-to-wafer (w/w) thick-
ness uniformity: raising the former to 200 sccm
10
8
6
4
C
P
w
t%
670 680 690 700 710 720
Deposition temperature, °C
Fig. 3. Phosphorus concentration vs. deposition
temperature for PSG films
12
10
8
6
4
C
P
,
w
t%
15 20 25 30 35 40 45
DMP temperature, °C
Fig. 4. Phosphorus concentration vs. DMP temperature
for PSG films at a deposition temperature of 715 (♦),
700 ( ) and 680 °C (▲)
Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1
53
MATERIALS OF ELECTRONICS
ISSN 2225-5818
improves the w/w thickness uniformity from ±12.6
to ±4.6%. Using oxygen as the carrier gas increases
the deposition rate by a factor of 1.3 and provides
an increase in average P concentration by about
1.5 wt%. Those might be related to the increase
in the number of P—O bonds in the film being
deposited. The within wafer thickness uniformity
of PSG films was less than ±5.0% for each of the
processes performed. The PSG films have a refrac-
tive index of 1.45±0.01.
The dependences of phosphorus concentration
on the deposition temperatures and DMP bubbler
temperature makes enable to control the concentra-
tion of phosphorus over wide ranges.
The process temperature is known to be a major
factor in BPSG deposition using the TEOS—
TMPO—TMB system [21, 22]. It has been found
experimentally that phosphorus plays the central
role because its excess or deficiency accelerates or
inhibits the deposition process, respectively. Note
also that it is very difficult to provide an adequate
thickness uniformity when the deposition process
is carried out at 590—680°C, on the other hand,
lower temperatures result in a sharp decrease in
deposition rate. Therefore, the determination of
optimal BPSG deposition conditions should be
based on a compromise between individual proc-
ess parameters.
Using the TEOS–DMP–TEB(TMB) sys-
tem, we have obtained stable BPSG films with
CP+CB = 8.5—9.3 wt% and CB = 3.4—4.7 wt%
(see Table 2). Acceptable slope angles after reflow
have been achieved at CP + CB = 8.7—9.2 wt%
and CP = 2.4—5.0 wt% (see Table 3). It was de-
fined that the formation of boric acid crystals in
8 hours after deposition when boron concentration
was more than 6.3 wt%. With phos-
phorus concentration over 5 wt%
the defect formation after thermal
treatment was observed. The side
wall step coverage by BPSG films
was 0.56 at 320°C, 0.73 at 430°C and
0.87 at 650°C [9], which are in good
agreement with experimental results
of other authors [23, 24].
Table 4 lists major process char-
acteristics and compares them with
those reported previously. Since
the BPSG deposition rate is very
sensitive to the DMP flow rate,
it is advantageous to maintain CP
between 3.0 and 3.8 wt% to provide
the stability and reproducibility
of film thickness uniformity. Such
BPSG films are deposited at 9.0—
10.0 nm/min and have a refractive
index of 1.45—1.46.
When DMP is used as a phospho-
rus source, the CP profile is virtually
independent on the deposition tem-
perature profile. The TEOS, DMP,
and TEB flow rates — and therefore
CB and CP — are mostly determined
by the bubbler temperatures. For
the first time, it was found that
there is no depletion in phosphorus
Process
no.
СP,
wt %
СB,
wt %
СP+СB,
wt %
Defect formation in Х hours
after deposition
0,3 h 2 h 4 h 24 h 72 h
1 4.8 7.5 12.3 + + + + +
2 2.7 6.9 9.6 — + + + +
3 6.2 4.4 10.9 — + + + +
4 1.2 7.0 8.2 — — + + +
5 1.7 6.9 8.6 — — + + +
6 6.5 3.7 10.2 — — + + +
7 7.0 3.5 10.5 — — + + +
8 7.1 3.2 10.3 — — + + +
9 1.6 6.6 8.2 — — — + +
10 2.4 6.4 8.8 — — — + +
11 3.2 6.0 9.2 — — — + +
12 5.1 4.5 9.6 — — — + +
13 5.6 4.2 9.8 — — — + +
14 6.1 3.6 9.7 — — — + +
15 7.4 2.5 9.9 — — — + +
16 3.0 5.8 8.8 — — — — +
17 3.9 5.0 8.9 — — — — +
18 4.7 4.9 9.6 — — — — +
19 5.0 4.1 9.1 — — — — +
20 4.2 4.7 8.9 — — — — —
21 4.8 3.8 8.6 — — — — —
22 5.1 3.4 8.5 — — — — —
23 5.9 3.4 9.3 — — — — —
Table 2
BPSG film stability
Note: The plus and minus signs indicate the presence and absence of
defects, respectively.
Wafer
no.
Film thick-
ness, mm СP, wt% СB, wt% СP+СB, wt% a, deg Deposition
rate, nm/min
Thickness uniformity
within wafer, ±%
1 0.75 2.4 6.4 8.8 39 7.0 4.2—6.0
2 0.73 5.0 4.1 9.1 31 11.9 5.0—6.8
3 0.76 2.8 5.9 8.7 35 7.9 3.4—4.2
4 0.60 1.2 7.0 8.2 61 4.8 2.1—2.7
5 0.75 6.1 3.6 9.7 46 14.7 3.9—5.6
6 0.74 4.6 4.5 9.1 30 11.6 2.4—5.3
7 0.39 3.2 6.0 9.2 39 8.9 2.8—4.6
Table 3
Slope angle a after BPSG reflow as dependent on film properties and process parameters
Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1
54
MATERIALS OF ELECTRONICS
ISSN 2225-5818
concentration along the deposition zone when the
TEOS—DMP—TEB system is employed; and
CB+CP is almost uniform.
As-deposited films have mirror-like surface
and roughness of 0.3—0.35 nm, which is three
times lower than that for BPSG films in [23] and
2.7—3.6 lower than for PSG films, obtained using
TEOS-DMP (0.97—1.09 nm).
BPSG films have density of 2.22 g/cm3 at
320—430°C and 2.30 g/cm3 at 650°C, respectively
[10]. Note that BPSG flowability is more sensitive
to boron than to phosphorus; for example, reduc-
ing a from 30° to 20° requires 1 wt% increase in
CB or 7 wt% increase in CP [21].
Fig. 5 depicts a correlation between moisture
absorption and dopant concentrations for BPSG
films, which were defect-free in 24 hours after the
deposition (H — moisture penetration depth).
Previously, stable BPSG films were produced with
deposition followed up by in-situ thermal reflow.
This was necessary because the range of optimum
boron and phosphorus concentrations was above
the defect formation boundary, as
seen in Fig. 5. In another study, 24-h
stability of BPSG films was achieved
within narrow ranges of CB and CP
[26]. Using the TEOS–DMP–TEB
system, we were able to expand do-
pant concentration ranges because
DMP allows obtaining higher phos-
phorus concentration under higher
deposition temperatures; furthermore,
the range of optimum boron and phos-
phorus concentrations is below the
defect formation boundary (Fig. 5).
In situ thermal reflow [13] was also
employed in the present study and it
as well allowed to obtain BPSG films
that were immune to defect formation
in the subsequent process steps and
during storage, and to considerably
reduce the defect density by eliminat-
ing exposure of as-deposited films to
the air.
Reagents
Through-
put,
wafers/
batch
Wafer
diameter,
mm
Pres sure,
Pa
Tempera-
ture, °C
Deposi-
tion rate,
nm/min
СP,
wt %
СB, wt
%
Thickness
uniform-
ity within
wafer, ±%
Dopant
range,
w/w,
± wt %
TEOS, PH3,
О2, TMPO,
TMPite [4]
90 100 66.5 620—680 15 10.8 5.6 4.0 1.5
TEOS, TMB,
TMPite, О2,
N2 [4]
50 60 40—106 675—750 10—30 4.0 4.0 — —
DMDCS, phos-
phorus chlorides,
ethyl borates,
О2, N2 [4]
50 100 200 750—850 8—13 9.7 9.5 5.0 —
TEOS, TMB,
TMPite, О2,
N2 [4]
30 100 40 510—680 5—15 5.0 13 10.0 —
DADBS*, TMB,
TMPite [4] 50 60 66.5 470—550 2—25 4.0 5 — —
TEOS, DMP,
TEB (TMB)
[present work]
50 150 45 660—690 9.0—10.0 3.0 ...
3.5
5.0 ...
5.5 4.8 0.4
Table 4
Major characteristics of BPSG deposition process as compared with previous results
* DADBS — di-acetoxy-di-t-butoxy-silane.
C
P
+
C
B
,
w
t%
12
10
8
6
4
2
0
H, mm
0.75
0.50
0.25
0
0.2 0.4 0.6 0.8 1.0
CB/(CP+CB), rel. units
Fig. 5. Correlation between the moisture absorption and dopant
concentrations of BPSG films [13]:
♦♦— defect formation boundary [this work]; ▲ — TEOS–DMP [this
work]; — TEOS–TMPate [13]; × — APCVD BPSG [26]; * —
moisture penetration depth [28]; — optimum region [25]; + — defect
formation boundary [25]
Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1
55
MATERIALS OF ELECTRONICS
ISSN 2225-5818
Table 5 lists the comparison of deposition
process parameters and properties of BPSG films,
obtained on different types of tool [27].
Fig. 6 presents the IR absorption spectra of
BPSG films some of which were subjected to in
situ thermal reflow, the spectra being measured
immediately, 12 days, and 30 days after deposition.
It is seen that the spectra of as-deposited films,
whether or not thermal reflow has been applied,
do not exhibit dips or oscillations in the wave-
number ranges 2900—3640 and 1500—1600 cm–1,
indicating zero water content. During 12 days of
storage, BO–H bonds are formed in unreflowed
films, as evidenced by weak peaks near 2250 cm–1
and oscillations in the ranges 2900—4000 and
1500—1600 cm–1 [28]. The spectra of reflowed
films do not have such peaks and show small
oscillations over the wave numbers 1500 to 1600
cm–1. Dips in the range 3500—3800 cm–1 start
to appear after the 14th day of storage. Thus,
the IR spectroscopy data provide evidence that
the BPSG deposition method used in this study
Table 5
The comparison of deposition process parameters and properties of BPSG films, obtained on different types
of tool [27]
Parameter
Tool model
Horizontal LPCVD system
“Karat”
Concept-1
(Novellus)
Precision-5000
(Applied Materials)
Process type Low pressure CVD Plasma enhanced CVD Plasma enhanced CVD
Reactor type Batch (Furnace) Single wafer
(multiposition) Single wafer
Temperature 700°С 400°С 39°С
Silicon source TEOS SiH4 TEOS
Phosphorus and boron source DMP, TMB PH3, B2H6 TMPO, TMB
Deposition rate, nm/min 9.4 700 760
Within wafer thickness unifor-
mity (6 inch), % ≤±5.0 ≤±1.5 ≤±2.0
Refractive index 1.46±0.01 1.46±0.01 1.46±0.01
Density, g/cm3 2.28—2.3 2.12—2.18 2.12—2.27
Range of optimal dopant con-
centration, wt%, and time to
defect formation, h
P: 3.0—4.0
В: 6.0—5.0
>>24
P: 4.0—4.5
В: 4.5—4.0
>24
P: 3.0—3.5
В: 5.5—5.0
>24
Total dopant concentration,
wt% 8.5—9.0 8.0—8.5 8,0—8.5
Throughput, w/h 12—15 20 20 (2 chamber)
Note: Boron and phosphorus concentration uniformity are ±0.5 è ±0.2 wt%, respectively.
Fig. 6. IR absorption spectra
of BPSG fi lms measured
immediately after deposition
(1, 4), 12 days (2, 5) and 30
days (3, 6) after deposition,
and of films subjected to in-situ
thermal reflow (4—6)
1000 2000 3000 4000
Wave number, cm–1
5
4
3
2
1
0
A
bs
or
pt
an
ce
B—O
B—O B—O
B—O—Si
P—O
Si—O
2
1
6
5
3
4
Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1
56
MATERIALS OF ELECTRONICS
ISSN 2225-5818
research allows to obtain films of low porosity
and sufficiently high density, which absorb less
moisture in storage.
In porous BPSG films, moisture absorption
is assumed to proceed through pores. For dense,
reasonably ordered films, the mechanism is more
complicated; it is illustrated in Fig. 7 [28]. Water
molecules are first adsorbed by B–O bonds. Then
adsorbed water molecules diffuse inward and re-
act with P–O groups, forming P=O and PO=H
bonds; the reaction with P=O constitutes the
rate-determining step of adsorption. However, if
the porosity is high enough, diffusion proceeds
much faster than this reaction, resulting in a lin-
ear dependence of moisture penetration depth on
storage time; that is typical for boron-rich BPSG
films. Indeed, BPSG films deposited using the
TEOS—DMP—TEB system are characterized
by a smaller moisture penetration depth as com-
pared with films obtained by hydride oxidation.
The defect formation boundary for such BPSG
films moves to higher B concentrations (Fig. 5).
Thus, obtained BPSG films are less reactive with
moisture and have a high density. These are char-
acteristic features of type II films, which have a
dense structure and homogenous distribution of
boron and phosphorus oxides [29].
Fig. 8 compares the regions of optimal dopant
concentrations in BPSG films identified in this
study and earlier from the viewpoint of film sta-
bility and planarity after reflow. Note also that
TEB can be replaced with TMB, a less expensive
reagent, without compromising the structural
stability, moisture resistance, and other important
properties of films. Having a higher vapor pres-
sure, TMB requires no bubbling, provides a more
uniform boron concentration along the deposition
zone, and is consumed in smaller quantities.
The combined process of BPSG deposition
and in-situ thermal reflow is protected by patent
[30], as well as the PSG deposition process using
the TEOS–DMP system [31, 32] and the BPSG
deposition process using the TEOS—DMP—TEB
(TMB) system [33, 34].
Conclusions
The authors investigated the chemical vapor
deposition of PSG and BPSG films from the
TEOS–DMP–TEB(TMB) reactant system at
660—715°C in horizontal LPCVD reactor equipped
with a specifically designed system for supplying
each liquid reagent to reactor. The special liquid
vaporizing system was used to provide the stable
pressure and flow of TEOS vapor.
The authors found that using the DMP allows
varying the concentration of phosphorus in PSG
films over wide ranges. We identified the optimal
range of the total boron and phosphorus concen-
tration ensuring the acceptable topology planarity
and resistance to defect formation during storage
that is 8.7—0.3 wt% when the phosphorus con-
centration is 3.0—3.8 wt%. The defect formation
boundary for such BPSG films moves to higher
B concentrations. We found that at use of the
TEOS-DMP—TEB system the depletion of the
phosphorus concentration along reaction zone does
not occur, and the total dopant concentration is
practically constant. The developed process has
the deposition rate of 9.0—10.0 nm/min and en-
sures the good film thickness uniformity and the
reduced reaction capability of BPSG films against
atmospheric moisture. The side wall step coverage
by BPSG films was 0.56 at 320°C, 0.73 at 430°C
and 0.87 at 690°C. As-deposited films have mirror-
like surface and roughness of 0.3—0.35 nm, that is
2.7—3.6 times lower than for PSG films, obtained
using TEOS-DMP (0.97—1.09 nm).
In situ thermal reflow was also employed in
the present study and it as well allowed to obtain
BPSG films that were immune to defect forma-
Fig. 7. Mechanism of glass–water interaction in
a BPSG film:
1 — water adsorption at B–O surface centers; 2 — bulk
and surface diffusion of water molecules toward P centers;
3 — reaction with P—O or the formation of a hydrogen
bond with P—O
1
2
3
Fig. 8. Ranges of optimum B and P concentrations in
BPSG films identified in this study and earlier from the
viewpoint of structural quality and planarity:
♦ — defect limit [29]; — defect limit [this study];
▲ — optimum range [29]; × — optimum range [this study]
8
6
4
2
0
C
P
,
w
t%
2 4 6 8
CB, wt%
Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1
57
MATERIALS OF ELECTRONICS
ISSN 2225-5818
tion in the subsequent process steps and during
storage, and to considerably reduce the defect
density by eliminating exposure of as-deposited
films to the air.
REFERENCES
1. Labunov V. A., Nemtsev V.S., Danilovich I.I.
Topography planarization in LSI manufacture. Zarubezh.
Elektron. Tekh., 1987, no. 8, pp. 3–23. [В.А. Лàбóíîâ, В.С.
Нåмцåâ, И.И. Дàíèëîâèч, Пëàíàðèзàцèÿ òîïîëîãèчåñêîãî
ðåëьåфà â òåõíîëîãèè БИС. Зарубежная электронная тех-
ника, 1987, ¹ 8, ñ. 3-23.]
2. Skidmore K. Techniques for planarizing device topog-
raphy. Semicond. Int., 1988, no. 4, pp. 115–119.
3. Saxena A.N., Pramanik D. Planarization techniques for
multilevel metallization. Solid State Technol., 1986, vol. 29,
no. 10, pp. 95–100.
4. Dukhanova T.G., Vasilev V.Y., Veretenin V.I.
Deposition, properties, and applications of borophosphosili-
cate glass films in ICs. Obz. Elektron. Tekh., Ser. 3, 1988,
iss. 4 (1370), pp. 2–72. [Дóõàíîâà Ò.Г., Вàñèëьåâ В.Ю.,
Вåðåòåíèí В.И. Пîëóчåíèå, ñâîéñòâà è ïðèмåíåíèå ñëî-
åâ бîðîфîñфîðîñèëèêàòíîãî ñòåêëà â òåõíîëîãèè èíòå-
ãðàëьíыõ ñõåм. Обзоры по электронной технике, серия 3.
Микроэлектроника, 1988, âыï.4 (1370), ñ. 2-71.]
5. Jagadeesha T., Kim L., Gonsalvis J., Gowda T.
Innovative low pressure borophosphosilicate glass process for
nano devices. Indian J. of Engineering and Material Science,
2009, vol. 16, pp. 341-346.
6. Repinskii S.M. Chemical kinetics of dielectric film
growth. In book “Current issues in the physical chemistry of
semiconductor surfaces”. Novosibirsk, Nauka, 1988, pp. 90–152.
[�åïèíñêèé С.�. Хèмèчåñêàÿ êèíåòèêà ðîñòà ñëîåâ �èýëåê-�åïèíñêèé С.�. Хèмèчåñêàÿ êèíåòèêà ðîñòà ñëîåâ �èýëåê-
òðèêîâ. В êí. «Современные проблемы физической химии».
Нîâîñèбèðñê: Нàóêà, Сèбèðñêîå îò�åëåíèå, 1988, ñ.90-152.]
7. Semenov I.I. Chain Reactions, Moscow: Nauka, 1986,
pp. 163–192. [Сåмåíîâ И.И. Цепные реакции, �: Нàóêà,
1986, ñ.163-192.]
8. Vasilev V.Y., Sukhov M.S. Equipment and techniques for
low-pressure chemical vapor deposition. Part 1. Obz. Elektron.
Tekh., Ser. 7, 1985, iss. 4, p. 52. [Вàñèëьåâ В.Ю., Сóõîâ �.С.,
Аïïàðàòóðà è мåòî�èêà îñàж�åíèÿ ñëîåâ ïðè ïîíèжåííîм
�àâëåíèè. Ч. 1. Обзоры по ЭТ, Сер.7, 1985, âыï. 4, ñ. 52.]
9. Turtsevich A.S., Gran’ko V.I., Shilo O.A., Tikhonov
V.I. Environmental issues in chemical vapor deposition.
Elektron. Prom-st., 1993, no. 10, pp. 87–95. [Òóðцåâèч А.С.,
Гðàíьêî В.И., Шèëî О.А., Òèõîíîâ В.И. Эêîëîãèчåñêèå
ïðîбëåмы õèмèчåñêîãî îñàж�åíèÿ èз ãàзîâîé фàзы.
Электронная промышленность, 1993, âыï. 10, ñ. 87-95.]
10. Turtsevich A.S., Zaitsev D.A., Kabakov M.M.,
Shilo O.A., Misyuchenko V.M., Tikhonov V.I. Planarity of
borophosphosilicate-glass films as dependent on the deposition
Conditions, Elektron. Tekh., Ser. 3, 1992, issue 1 (146), pp.
24–27. [Òóðцåâèч А.С., Зàéцåâ Д.А., Кàбàêîâ �.�., Шèëî
О.А., �èñючåíêî В.�., Òèõîíîâ В.И. Вëèÿíèå óñëîâèé
îñàж�åíèÿ бîðîфîñфîðîñèëèêàòíîãî ñòåêëà íà ïëàíàðíîñòь
òîïîëîãèчåñêîãî ðåëьåфà èíòåãðàëьíыõ ñõåм. Электронная
техника, Сер.3, 1992, âыï.1 (146), ñ. 24-27.]
11. Jagadeesha T., Kim L., Lee W.T., Gowda T.
Development of new BPSG process to reduce boron concen-
tration range in BPSG SAVD process. Int. J. of Engineering
Science and Technology, 2011, vol. 3, no. 1, pp. 156-161.
12. Dimethylphosphite: TU 2634-002-40475629-99
Specification.
13. Turtsevich A.S., Zakharik S.V., Makarevich I.I.,
Nalivaiko O.Yu., Anoshin V.M., Rumak N.V., Turtsevich,
V.V. Deposition of borophosphosilicate-glass films from
the TEOS–TMPate–TMB–O2 reactant system. Elektron.
Prom-st., 1995, no. 3, pp. 19–22. [Òóðцåâèч А.С., Зàõàðèê
С.В., �àêàðåâèч И.И., Нàëèâàéêî О.Ю., Аíîшèí В.�.,
�óмàê Н.В., Òóðцåâèч В.В. Оñàж�åíèå ñëîåâ бîðîфîñфî-
ðîñèëèêàòíîãî ñòåêëà â ñèñòåмå ÒЭОС-Ò�Ф’àò-Ò�Б-O2.
Электронная промышленность, 1995, ¹ 3, ñ. 19-22.]
14. Becker F.S., Pawlik D., Schäfer M., Staudigl G.
Process and film characterization of low pressure tetraethyl-
orthosilicate-borophosphosilicate glass. J. Vac. Sci. Technol.,
B, 1986, vol. 4, no. 3, pp. 732–744.
15. Williams D.S., Dein E.A., LPCVD of borophospho-
silicate glass from organic reactants. J. Electrochem. Soc.,
1987, vol. 134, no. 3, pp. 657–664.
16. Turtsevich A.S., Rumak N.V., Misyuchenko V.M., et al.
Influence of dopant concentrations on defect formation in
borophosphosilicate-glass films. Vestsi NAN Belarusi, Ser.
Fiz.-Tekh. Navuk, 1993, no. 4, pp. 70–73. [Òóðцåâèч А.С.,
�óмàê Н.В., �èñючåíêî В.�. è �ð., Вëèÿíèå êîíцåíòðà-
цèè ëåãèðóющèõ ïðèåñåé íà ïðîцåññы �åфåêòîîбðàзîâàíèÿ
â ïëåíêàõ бîðîфîñфîðîñèëèêàòíîãîî ñòåêëà. Вести АНБ
Сер. физ.-техн., 1993, ¹ 4, ñ. 70-73.]
17. Levy R.A., Vincent S.M., McGahan,T.E. Evaluation
of the phosphorus concentration and its effect on viscous flow
and reflow in phosphosilicate glass. J. Electrochem. Soc.,
1985, vol. 132, no. 6, pp. 1472–1480.
18. Turtsevich A.S., Anufriev L.P., Nalivaiko O.Yu.
Silicon nitride film deposition by dichlorosilane ammonolysis
in a Karat LPCVD reactor. Izv. Belarus. Inzh. Akad., 2004,
no. 2 (18), pp. 104–106. [Òóðцåâèч А.С., Аíóфðèåâ Л.П.,
Нàëèâàéêî О.Ю. Пðîцåññ îñàж�åíèÿ ïëåíîê íèòðè�à êðåм-
íèÿ àммîíîëèзîм �èõëîðñèëàíà â ðåàêòîðå ïîíèжåííîãî
�àâëåíèÿ «Кàðàò». Материалы IX Междунар. науч.-
технич. конф. «Современные средства связи», Беларусь,
Нарочь, 27.09—1.10 2004. Известия Белорусской инже-
нерной академии, 2004, ¹ 2 (18), ñ. 104-106.]
19. Vasilev V.Y., Dukhanova T.G., Borophosphosilicate
glass composition optimized for IC manufacture. Elektron.
Prom-st., 1989, no. 3, p. 31. [Вàñèëьåâ В.Ю., Дóõàíîâà
Ò.Г. Оïòèмàëьíыé �ëÿ òåõíîëîãèè ИС ñîñòàâ ñëîåâ
бîðîфîñфîðíî-ñèëèêàòíîãî ñòåêëà. Электронная промыш-
ленность, 1989, ¹ 3, ñ. 31.]
20. Kim H.-J., Choi P., Kim K., Choi B. A study on
the fluorine effect of direct contact process in high-doped
boron phosphorus silicate glass (BPSG). J. of Semiconductor
Technology and Science, 2013, vol. 13, no. 6, pp. 662-667.
21. Rumak N.V., Khat’ko V.V. Dielectric films in solid-state
microelectronics. Minsk: Nauka i Tekhnika, 1990, pp. 140–141.
[�óмàê Н.В., Хàòьêî В.В. Диэлектрические пленки в твер-
дотельной микроэлектронике. �èíñê: Нàóêà è òåõíèêà,
1990, ñ. 140-141.]
22. Rumak N.V., Turtsevich A.S., Shilo O.A., Tikhonov
V.I. Planarity of borophosphosilicate-glass films as dependent
on the deposition temperature. Vestsi NAN Belarusi, Ser.
Fiz.-Tekh. Navuk, 1993, no. 2, pp. 54–56. [�óмàê Н.В.,
Òóðцåâèч А.С., Шèëî О.А., Òèõîíîâ В.И. Вëèÿíèå òåм-
ïåðàòóðы îñàж�åíèÿ бîðîфîñфîðîñèëèêàòíîãî ñòåêëà íà
ïëàíàðíîñòь òîïîëîãèчåñêîãî ðåëьåфà èíòåãðàëьíыõ ñõåм.
Вести АН БССР, Cер. физ.-техн., 1993, ¹ 2, ñ. 54-56.]
23. Levy L.A., Gallagher P.K., Scherey E. A new LPCVD
technique of producing borophosphosilicate glass films by
injection of miscible liquid precursors. J. Electrochemical
Society. 1987, vol. 134, no 2. pp. 430-436.
24. Vasilev V.Y., Borophosphosilicate glass films as
interlayer isolation of IC. Elektron. Prom-st., 1986, no. 1,
p. 23-26. [Вàñèëьåâ В.Ю., Дóõàíîâà Ò. Г. Сëîè бîðîфîñфî-Вàñèëьåâ В.Ю., Дóõàíîâà Ò. Г. Сëîè бîðîфîñфî-
ðîñèëèêàòíîãî ñòåêëà â êàчåñòâå мåжñëîéíîé èзîëÿцèè ИС.
Электронная промышленность.1986, âыï. 1(149), ñ. 23-26.]
25. Vasilev V.Y. Borophosphosilicate glass films in silicon
microelectronics. Part 1: Chemical vapor deposition, composi-
tion, and properties. Russ. Microelectron, 2004, vol. 33, no. 5,
pp. 271–284 [�������� �.�. ������ ���� �������������-Вàñèëьåâ В.Ю. Òîíêèå ñëîè бîðîфîñфîðîñè-
ëèêàòíîãî ñòåêëà â òåõíîëîãèè êðåмíèåâîé мèêðîýëåêòðî-
íèêè. Чàñòь 1. Оñàж�åíèå èз ãàзîâîé фàзы è ñâîéñòâà ñëîåâ
ñòåêëà. Микроэлектроника, 2004, ò. 33, ¹ 5, ñ. 334-351.]
Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1
58
MATERIALS OF ELECTRONICS
ISSN 2225-5818
А. С. ТУРЦЕВИЧ, О. Ю. НАЛИВАЙКО
�åñïóбëèêà Бåëàðóñь, ã, �èíñê, ОАО «ИНÒЕГ�АЛ»
E-mail: Aturtsevich@integral.by, onalivaiko@integral.by
ОСАЖДЕНИЕ ПЛЕНОК БО�ОФОСФО�ОСИЛИКАÒНОГО СÒЕКЛА
С ИСПОЛЬЗОВАНИЕ� СИСÒЕ�Ы ÒЭОС-ДИ�ЕÒИЛФОСФИÒ-Ò�И�ЕÒИЛБО�АÒ
Проведена модернизация горизонтального реактора пониженного давления. Разработана система подачи
жидкого реагента с использованием барботеров. Исследованы процессы осаждения пленок и свойства пле-
нок ФСС и БФСС с использованием системы ТЭОС-диметилфосфит(ДМФ)-триметилборат(ТМФ).
Клþчевые слова: борофосфоросиликатное стекло, осаждение, планарность топологического рельефà.
А. С. ТУРЦЕВИЧ, О. Ю. НАЛИВАЙКО
�åñïóбëіêà Біëîðóñь, м. �іíñьê, ВАÒ «ІНÒЕГ�АЛ»
E-mail: Aturtsevich@integral.by, onalivaiko@integral.by
ОСАДЖЕННЯ ПЛІВОК БО�ОФОСФО�ОСІЛІКАÒНОГО СКЛА
З ВИКО�ИСÒАННЯ� СИСÒЕ�И ÒЕОС-ДІ�ЕÒИЛФОСФІÒ-Ò�И�ЕÒІЛБО�АÒ
Проведено модернізаціþ горизонтального реактора зниженого тиску. Розроблено систему подачі рідкого
реагенту з використанням барботерів. Досліджено процеси осадження плівок і властивості плівок ФСС
і БФСС з використанням системи ТЕОС-діметілфосфіт(ДМФ)-тріметілборат(ТМФ).
Показано, що використання діметілфосфіта дозволяє варіþвати концентраціþ фосфору в широкому
діапазоні. Встановлено, що оптимальний діапазон сумарних концентрацій бору та фосфору, що забезпечує
прийнятну планарність топологічного рельєфу і стійкість до дефектоутворення при зберіганні, складає
8.7—0.3 ваг.%, При цьому концентрація фосфору становить 3.0—3.8 ваг.%. Встановлено, що при
використанні системи ТЕОС—ДМФ—ТМБ не відбувається збіднення концентрації фосфору уздовж
реакційної зони, а сумарна концентрація легуþчих домішок залишається практично постійноþ. У той
самий час забезпечуþться швидкість осадження плівок БФСС 9.0—10.0 нм/хв та хороша однорідність
товщини плівок. Свіжоосаждені плівки маþть «дзеркальну поверхнþ», що підтверджує їх мінімальну
шорсткість. Плівки БФСС оптимального складу характеризуþться зниженоþ реакційноþ здатністþ
по відношеннþ до атмосферної вологи.
Клþчові слова: борофосфоросілікатное скло, осадження, планарність топологічного рельєфу.
DOI: 10.15222/TKEA2015.1.49
УДК.621.315.612
26. Turtsevich A.S., Nalivaiko O.Yu., Zaitsev D.A.,
Gran’ko,V.I., Makarevich I.I. Simulation of deposition of
borophosphosilicate glass obtained by hydride oxidation at at-
mospheric pressure. Russ. Microelectron, 1996, vol. 25, no. 6,
pp. 398–403. [Òóðцåâèч А.С., НàëèâàéêîО.Ю., Зàéцåâ
Д.А., Гðàíьêî В.И., �àêàðåâèч И.И. �î�åëèðîâàíèå ïðî-
цåññà îñàж�åíèÿ бîðîфîñфîðîñèëèêàòíîãî ñòåêëà, ïîëó-
чåííîãî îêèñëåíèåм ãè�ðè�îâ ïðè àòмîñфåðíîм �àâëåíèè.
Микроэлектроника, 1996, ò. 25, ¹ 6, ñ. 451-457.]
27. Nalivaiko O.Yu., Pshenichny E.N., Plebanovich
V.I. et al. The comparison of BPSG deposition processes in
horizontal low pressure CVD reactor and in plasma enhanced
CVD reactors. V Int. scient. and techn. conf. “Electronics
and informatics 2005”, Moscow—Zelenograd, 2005, vol.1, pp.
143-144. [Нàëèâàéêî О.Ю., Пшåíèчíыé Е.Н., Пëåбàíîâèч
В.И. è �ð. Сðàâíåíèå ïðîцåññîâ îñàж�åíèÿ è ïëåíîê БФСС
â ãîðèзîíòàëьíîм ðåàêòîðå ïîíèжåííîãî �àâëåíèÿ è â ðå-
àêòîðàõ ñ ïëàзмåííîé àêòèâàцèåé ïðîцåññà. V Междунар.
научн.-техн. конф. «Электроника и информатика 2005»,
�îñêâà—Зåëåíîãðà�, 2005, ч. 1, ñ. 143-144.]
28. Thorsness A.G., Muscat A.J. Moisture absorption
and reaction in BPSG thin films. J. Electrochem. Soc., 2003,
vol. 150, no. 12, pp. F219–F228.
29. Vasilev V.Y. Borophosphosilicate glass films in silicon
microelectronics. Part 2: Structure and applications. Russ.
Microelectron, 2005, vol. 34, no. 2, pp. 67–77. [Вàñèëьåâ
В.Ю. Òîíêèå ñëîè бîðîфîñфîðîñèëèêàòíîãî ñòåêëà â òåõ-
íîëîãèè êðåмíèåâîé мèêðîýëåêòðîíèêè. Чàñòь 2. Сòðîåíèå
ñòåêîë è èõ ïðèмåíåíèå â òåõíîëîãèè. Микроэлектроника,
2005, ò. 34, ¹ 2, ñ. 83-97.]
30. Belarus Patent 2823, Published Sept. 30, 1999.
[Пàòåíò �Б 2823, Сïîñîб ïëàíàðèзàцèè êðåмíèåâыõ ñòðóê-Пàòåíò �Б 2823, Сïîñîб ïëàíàðèзàцèè êðåмíèåâыõ ñòðóê-
òóð. 30.09.1999ã.]
31. Belarus Patent 2531, Published Dec. 30, 1998. [Пàòåíò
�Б 2531, Сïîñîб îñàж�åíèÿ фîñфîðîñèëèêàòíîãî ñòåêëà.
30.12.1998ã.]
32. Belarus Patent 3924, Published June 30, 2001. [Пàòåíò
�Б 3924, Сïîñîб îñàж�åíèÿ фîñфîðîñèëèêàòíîãî ñòåêëà.
30.06.2001ã.]
33. Belarus Patent 1613, Published Mar. 30, 1997.
[Пàòåíò �Б 1613, Сïîñîб ïîëóчåíèÿ ïëåíîê бîðîфîñфîðî-Пàòåíò �Б 1613, Сïîñîб ïîëóчåíèÿ ïëåíîê бîðîфîñфîðî-
ñèëèêàòíîãî ñòåêëà. 30.03.1997ã.]
34. Belarus Patent 4154, Published Dec. 30, 2001. [Пàòåíò
�Б 4154, Сïîñîб ïîëóчåíèÿ ïëåíîê бîðîфîñфîðîñèëèêàò-
íîãî ñòåêëà. 30.12.2001ã.]
Дата поступления рукописи
в редакциþ 09.08 2014 г.
|