Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system

Modernization of horizontal low pressure deposition system has been performed. The liquid source delivery system using the bubblers has been developed. The PSG and BPSG film deposition processes and film properties using TEOS-Dimethylphosphite-TEB system have been studied. It is shown that the use o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Turtsevich, A.S., Nalivaiko, O.Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2015
Назва видання:Технология и конструирование в электронной аппаратуре
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/100479
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system / A.S. Turtsevich, O.Y. Nalivaiko // Технология и конструирование в электронной аппаратуре. — 2015. — № 1. — С. 49-58. — Бібліогр.: 34 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-100479
record_format dspace
spelling irk-123456789-1004792016-05-23T03:02:14Z Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system Turtsevich, A.S. Nalivaiko, O.Y. Материалы электроники Modernization of horizontal low pressure deposition system has been performed. The liquid source delivery system using the bubblers has been developed. The PSG and BPSG film deposition processes and film properties using TEOS-Dimethylphosphite-TEB system have been studied. It is shown that the use of dimethylphosphite allows varying the phosphorus concentration in the wide range. It is found that the optimal range of the total boron and phosphorus concentration ensuring the acceptable topology planarity and resistance to defect formation during storage is 8.7?0.3 wt% when the phosphorus concentration is 3.0—3.8 wt%. It is found that at use of the TEOS-DMP-TEB system the depletion of the phosphorus concentration along reaction zone does not occur, and the total dopant concentration is practically constant. At the same time the deposition rate of BPSG films is 9.0—10.0 nm/min and the good film thickness uniformity are ensured. The as-deposited films have “mirror-like surface” that is proof of minimal surface roughness. The BPSG films with optimal composition are characterized by the reduced reaction capability against atmospheric moisture. Проведена модернизация горизонтального реактора пониженного давления. Разработана система подачи жидкого реагента с использованием барботеров. Исследованы процессы осаждения пленок и свойства пленок ФСС и БФСС с использованием системы ТЭОС-диметилфосфит(ДМФ)-триметилборат(ТМФ). Проведено модернізацію горизонтального реактора зниженого тиску. Розроблено систему подачі рідкого реагенту з використанням барботерів. Досліджено процеси осадження плівок і властивості плівок ФСС і БФСС з використанням системи ТЕОС-діметілфосфіт(ДМФ)-тріметілборат(ТМФ). 2015 Article Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system / A.S. Turtsevich, O.Y. Nalivaiko // Технология и конструирование в электронной аппаратуре. — 2015. — № 1. — С. 49-58. — Бібліогр.: 34 назв. — англ. 2225-5818 DOI: 10.15222/TKEA2015.1.49 http://dspace.nbuv.gov.ua/handle/123456789/100479 621.315.612 en Технология и конструирование в электронной аппаратуре Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Материалы электроники
Материалы электроники
spellingShingle Материалы электроники
Материалы электроники
Turtsevich, A.S.
Nalivaiko, O.Y.
Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system
Технология и конструирование в электронной аппаратуре
description Modernization of horizontal low pressure deposition system has been performed. The liquid source delivery system using the bubblers has been developed. The PSG and BPSG film deposition processes and film properties using TEOS-Dimethylphosphite-TEB system have been studied. It is shown that the use of dimethylphosphite allows varying the phosphorus concentration in the wide range. It is found that the optimal range of the total boron and phosphorus concentration ensuring the acceptable topology planarity and resistance to defect formation during storage is 8.7?0.3 wt% when the phosphorus concentration is 3.0—3.8 wt%. It is found that at use of the TEOS-DMP-TEB system the depletion of the phosphorus concentration along reaction zone does not occur, and the total dopant concentration is practically constant. At the same time the deposition rate of BPSG films is 9.0—10.0 nm/min and the good film thickness uniformity are ensured. The as-deposited films have “mirror-like surface” that is proof of minimal surface roughness. The BPSG films with optimal composition are characterized by the reduced reaction capability against atmospheric moisture.
format Article
author Turtsevich, A.S.
Nalivaiko, O.Y.
author_facet Turtsevich, A.S.
Nalivaiko, O.Y.
author_sort Turtsevich, A.S.
title Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system
title_short Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system
title_full Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system
title_fullStr Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system
title_full_unstemmed Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system
title_sort deposition of borophosphosilicate glass films using the teos–dimethylphosphite–trimethylborate system
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
publishDate 2015
topic_facet Материалы электроники
url http://dspace.nbuv.gov.ua/handle/123456789/100479
citation_txt Deposition of borophosphosilicate glass films using the TEOS–dimethylphosphite–trimethylborate system / A.S. Turtsevich, O.Y. Nalivaiko // Технология и конструирование в электронной аппаратуре. — 2015. — № 1. — С. 49-58. — Бібліогр.: 34 назв. — англ.
series Технология и конструирование в электронной аппаратуре
work_keys_str_mv AT turtsevichas depositionofborophosphosilicateglassfilmsusingtheteosdimethylphosphitetrimethylboratesystem
AT nalivaikooy depositionofborophosphosilicateglassfilmsusingtheteosdimethylphosphitetrimethylboratesystem
first_indexed 2025-07-07T08:52:47Z
last_indexed 2025-07-07T08:52:47Z
_version_ 1836977611400544256
fulltext Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1 49 MATERIALS OF ELECTRONICS ISSN 2225-5818 UDC 621.315.612 A. S. TURTSEVICH, Dr. Sci. (Techn), O. Y. NALIVAIKO Republic of Belarus, Minsk, JSC INTEGRAL, Management Company of INTEGRAL Holding E-mail: Aturtsevich@integral.by, onalivaiko@integral.by DEPOSITION OF BOROPHOSPHOSILICATE GLASS FILMS USING THE TEOS–DIMETHYLPHOSPHITE– TRIMETHYLBORATE SYSTEM With shrinking device geometries the task of planarizing surface topography becomes more important [1]. Phosphosilicate glass (PSG) and borophosphosilicate glass (BPSG) are widely used for this purpose [2]. These binary and ternary glass films have an intrinsic flow property due to the temperature dependence of glass viscosity. BPSG films are also more attractive for use than PSG in contact reflow process (second thermal reflow), which is used for rounding of sharp contact edges to improve the step coverage by subsequent metal film. PSG and BPSG films are mostly produced by oxidation of silane [3] or pyrolytic decompo- sition of tetraethylorthosilicate [4, 5] with the addition of boron and phosphorus dopants during deposition. The main disadvantages of silane-based proc- esses are using toxic reagents, difficulty of process control, relatively high defect density of deposited films because the oxidation of silane (and phos- phine) proceeds by the free-radical chain mecha- nism with intermediates being formed in the gas phase [6, 7]. Furthermore, silane processes take place at a relatively low temperature and cannot provide good step coverage. Silane based BPSG films need high doping to provide flowability, but this also leads to poor film stability in storage. Using organosilicon compounds (TEOS) allows to obtain the high-quality films [8], to reduce nox- ious emissions [9], and to improve step coverage Modernization of horizontal low pressure deposition system has been performed. The liquid source delivery system using the bubblers has been developed. The PSG and BPSG film deposition processes and film properties using TEOS-Dimethylphosphite-TEB system have been studied. It is shown that the use of dimethylphosphite allows varying the phosphorus concentration in the wide range. It is found that the optimal range of the total boron and phosphorus concentration ensuring the acceptable topology planarity and resistance to defect formation during storage is 8.7±0.3 wt% when the phosphorus concentration is 3.0—3.8 wt%. It is found that at use of the TEOS-DMP-TEB system the depletion of the phosphorus concentration along reaction zone does not occur, and the total dopant concentration is practically constant. At the same time the deposition rate of BPSG films is 9.0—10.0 nm/min and the good film thickness uniformity are ensured. The as-deposited films have “mirror-like surface” that is proof of minimal surface roughness. The BPSG films with optimal composition are characterized by the reduced reaction capability against atmospheric moisture. Keywords: borophosphatesilicate glass, deposition, topological relief planarity. [10] and narrow gap filling [5, 11]. Nonetheless, moisture absorption and defect formation in highly doped glass films are still big challenges for these solutions. Table 1 summarizes physical and chemical properties of common source materials for the deposition of PSG and BPSG films. With the TEOS—trimethylphosphate(TMPO)–O2 and TEOS—TMPO—trimethylborate(TMB)–O2 sys- tems, films of over 3 wt% P are relatively difficult to produce because TMPO has a low vapor pres- sure [13, 14]. Furthermore, the P concentration of BPSG films is known to be strongly dependent on the temperature of deposition when this involves TMPO [15]. Fig. 1 depicts the dependence of the B and P concentrations in BPSG films on the deposi- tion temperature in the case of the TEOS– trimethylphosphite(TMPite)–TMB–O2 system. Notice that the P concentration falls from 4.2 to 1 wt% at a rate of about 0.06 wt%/deg as the deposi- tion temperature is raised from 675 to 725°C, while the B concentration remains fairly constant at 6.2—6.4 wt%. The authors of [13] have shown that a flow angle a less than 45° is achieved when the sum of the B and P concentrations exceeds 8.7 wt%, provided that they are greater than 5.65 and 1.4 wt%, respectively. On the other hand, boron-rich films are very hygroscopic and unstable in storage [16—19] and are not adequate in gettering alkali DOI: 10.15222/TKEA2015.1.49 Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1 50 MATERIALS OF ELECTRONICS ISSN 2225-5818 T ab le 1 P hy si ca l an d c he m ic al p ro pe rt ie s of c om m on s ou rc e m at er ia ls f or t he d ep os it io n of P S G a nd B P S G f il m s M at er ia l A bb re vi at io n C he m ic al f or m ul a R el at iv e m ol ec ul ar m as s P hy si ca l st at e M el ti ng po in t, °C B oi li ng po in t, ° C D en si ty , g/ cm 3 (g as ), g/ m l (l iq ui d) R ef ra ct iv e in de x T hr es ho ld li m it va lu e, m g/ m 3 M on os il an e — S iH 4 32 .1 2 ga s – 18 5 – 11 2 1. 44 — 1. 0 T et ra et hy l o rt ho si li ca te T E O S (C 2H 5O ) 4 S i 20 8. 34 li qu id – 82 .5 16 6. 5 0. 96 82 5° С 1. 38 37 20 D im et hy l d ic hl or o- si la ne D M D C S (C H 3) 2C l 2 S i 12 9. 06 li qu id – 36 70 .3 1. 06 42 0° С 1. 40 55 1. 0 P ho sp hi ne — P H 3 34 .0 ga s – 13 3. 8 – 87 .4 1. 53 — 0. 1 T ri m et hy l p ho sp ha te T M P , T M P O (C H 3O ) 3 P O 14 0. 07 li qu id – 46 19 3— 19 7 1. 21 42 5° С 1. 40 89 2. 69 T ri m et hy l p ho sp hi te T M P it e (C H 3O ) 3 P 12 4 li qu id – 78 11 1 1. 05 2 — — D im et hy l p ho sp hi te [1 2] D M P (C H 3O ) 2 P (O )H 11 0. 04 li qu id — 17 0. 5 1. 19 44 1. 40 36 — P ho sp ho ru s tr ic hl or id e — P C l 3 13 7. 33 li qu id – 90 .3 75 .1 1. 55 7 1. 51 6 0. 2 P ho sp ho ru s ox yc hl or id e — P O C l 3 15 3. 33 li qu id — 10 5. 8 1. 67 5 1. 46 0 0. 05 D ib or an e — B 2H 6 27 .6 7 ga s – 16 5. 5 – 92 .5 1. 24 — 0. 1 T ri m et hy lb or at e T M B (C H 3O ) 3 B 10 3. 91 li qu id – 34 68 -6 9 0. 91 52 0° С — — T ri et hy lb or at e T E B (C 2H 5O ) 3 B 14 5. 99 li qu id – 84 .5 11 7. 4 0. 85 8 — — T ri pr op yl bo ra te T P B (C 3H 7O ) 3 B 18 8. 08 li qu id — 17 5— 17 8 0. 86 25 °С 1. 39 4 — B or on t ri ch lo ri de — B C l 3 11 7. 17 li qu id – 10 7 12 .4 1. 43 4 1. 42 8 — Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1 51 MATERIALS OF ELECTRONICS ISSN 2225-5818 metals (ions). Moreover, using the boron-rich BPSG films can cause the contact-to-contact short failure in ultra large-scsale integration by wiggling contact profile [20]. Furthermore, with the TEOS—TMPO—TMB system, the considerable depletion of phosphorus along the deposition zone makes it difficult to strike a balance between the deposition rate, the amount and the uniformity of P concentration, and the thickness uniformity. In view of the above, we find it worthwhile to identify alternative systems of source materials for the deposition of PSG and BPSG films that would allow a higher degree of control over the B and P concentrations and better thickness reproducibility in deposition, and would provide films more stable in storage. The TEOS—DMP, TEOS—DMP— TEB, and TEOS—DMP—TMB systems are of particular interest in these respects. This paper presents an experimental investigation into the deposition kinetics of PSG and BPSG films from the TEOS—DMP—TEB(TMB) reactant system, and into the properties of the films. Experiment The experiments were performed using 4 inch B-doped, <100> oriented, 12 Ω⋅cm resistivity silicon wafers as substrates. The deposition of PSG and BPSG films was carried out in a horizontal hot wall LPCVD reactor (Karat model) [18], using liquid reagents. Since the liquid reagents have different saturated-vapor pressure at the same temperature, the separate bubbling evaporators were used for each liquid 16 12 8 4 0 C B , C P , w t% 450 500 550 600 650 700 750 Deposition temperature, °C Fig. 1. Previously reported boron (CB) and phosphorus (CP) concentrations in BPSG films vs. deposition temperature in the case of the TEOS—TMPite—TMB—O2 system — boron [13]; — boron [15]; — phosphorus [13]; — phosphorus [15] Fig. 2. Gas and vapor distribution system of the LPCVD reactor: 1 — SiC cantilever; 2 — quartz reactor; 3 — wafer boat; 4 — pressure gauge; 5 — shutter; 6 — vacuum gate; 7 — valves; 8 — nitrogen trap; 9 — mass flow controllers; 10 — valve with calibrated orifice for nitrogen backfill; 11 — vacuum pumps; 12 — TEB (TMB), TEOS, DMP bubblers (the TEOS and DMP bubblers use the carrier gas) Pure N2 High Purity N2 1 2 3 4 5 6 7 7 7 8 9 9 9 9 10 11 12 TEB (TMB) TEOS DMP Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1 52 MATERIALS OF ELECTRONICS ISSN 2225-5818 reagent. The gas and vapor distribution system is presented in Fig. 2. The special liquid vaporizing system was used to provide the stable pressure and flow of TEOS vapor. This system contains the bulk supply container (10 liters), compartment with metallic container (bubbler) for holding TEOS to be va- porized, mass flow controller (MFC) for carrier gas and a bubbling tube inserted into bubbler, an outlet pipe for ejecting TEOS vapor with carrier gas, liquid supply pipe for refilling the bubbler from bulk container, temperature detection and adjustment means for maintaining the TEOS temperature and temperature inside the bubbler compartment. This liquid vaporizing system can be operated under temperatures above 50°C, which are needed for TEOS evaporation in case of BPSG deposition in horizontal LPCVD reactor. The TEOS vapor pipes to reactor were electrically heated 5—10°C above the temperature of the bub- bler, using insulated wire. The liquid source materials were TEOS (dis- tilled), dimethylphosphite, and trimethylborate conforming to the Russian technical specifications ÒУ 2637-059-44493179-04, ÒУ 2634-002-40475629- 99, and ÒУ 2634-001-40475629-99, respectively. They were evaporated in the respective temperature ranges 55—57, 22—24, and 20—40°C, with each temperature point maintained to within ±0.5°C. The wafers were placed in specially designed perforated quartz boats. The wafer spacing was 7.5 mm. The PSG films were deposited at 680—715°C and 45±3 Pa; the BPSG films — at 660—690°C and 45±3 Pa. The chamber pressure was main- tained by feeding nitrogen through MFC. The carrier gas was oxygen or nitrogen; its flow rate through each bubbler was 200 sccm or less. The PSG and BPSG deposition process included the following steps: 1. Loading wafers into the chamber and nitro- gen purge through the chamber; 2. Chamber pumpdown; 3. Nitrogen purge of the chamber; 4. Chamber pumpdown, temperature stabiliza- tion at given values; 5. Leak check; 6. Chamber pumpdown; 7. Deposition of BPSG films; 8. Nitrogen purge of the chamber and chamber pumpdown; 9. Repeat step 8 an appropriate number of times; 10. Chamber backfill using nitrogen until at- mospheric pressure is reached; 11. Unloading wafers. Film thickness was measured by spectrophotom- etry (Leica’s MPV-SP), the phosphorus concentra- tion by X-ray fluorescence (Rigaku’s M3613), the boron concentration by infrared (IR) spectroscopy (SPECORD-75) and Fourier-transform spectros- copy (FSM-1201 FTIR analyzer), and refractive index by laser ellipsometry (LEF-3M). The test structure, having the polysilicon lines 1 mm thick was used for evaluating topology planarity. The films 0.75±0.05 mm thick were subjected to thermal reflow in dry oxygen at 850°C during 45 min for BPSG or at 950°C during 30 min for PSG. The topology planarity was evaluated by measuring the slope angle a after reflow [4, 8] as seen in cross-sectional scanning-electron-micro- scope images. Results and discussion Fig. 3 and 4 depict the observed dependence of P concentration in PSG films on deposition tem- perature and DMP temperature, respectively, with the carrier gas flow rate maintained at 200 sccm. The P concentration decreases steadily from 10.0 to 6.0 wt% as the deposition temperature is elevated from 680 to 715°C when DMP temperature is about 30°C (Fig. 3). It also increases steadily with DMP temperature (Fig. 4). When nitrogen is used as the carrier gas, in- creasing its flow rate from 67 to 200 sccm reduces the PSG deposition rate from 7.5 to 5.5 nm/min, that can be explained by the TEOS partial pressure reduction. The carrier-gas flow rate has a signifi- cant influence on the wafer-to-wafer (w/w) thick- ness uniformity: raising the former to 200 sccm 10 8 6 4 C P w t% 670 680 690 700 710 720 Deposition temperature, °C Fig. 3. Phosphorus concentration vs. deposition temperature for PSG films 12 10 8 6 4 C P , w t% 15 20 25 30 35 40 45 DMP temperature, °C Fig. 4. Phosphorus concentration vs. DMP temperature for PSG films at a deposition temperature of 715 (♦), 700 ( ) and 680 °C (▲) Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1 53 MATERIALS OF ELECTRONICS ISSN 2225-5818 improves the w/w thickness uniformity from ±12.6 to ±4.6%. Using oxygen as the carrier gas increases the deposition rate by a factor of 1.3 and provides an increase in average P concentration by about 1.5 wt%. Those might be related to the increase in the number of P—O bonds in the film being deposited. The within wafer thickness uniformity of PSG films was less than ±5.0% for each of the processes performed. The PSG films have a refrac- tive index of 1.45±0.01. The dependences of phosphorus concentration on the deposition temperatures and DMP bubbler temperature makes enable to control the concentra- tion of phosphorus over wide ranges. The process temperature is known to be a major factor in BPSG deposition using the TEOS— TMPO—TMB system [21, 22]. It has been found experimentally that phosphorus plays the central role because its excess or deficiency accelerates or inhibits the deposition process, respectively. Note also that it is very difficult to provide an adequate thickness uniformity when the deposition process is carried out at 590—680°C, on the other hand, lower temperatures result in a sharp decrease in deposition rate. Therefore, the determination of optimal BPSG deposition conditions should be based on a compromise between individual proc- ess parameters. Using the TEOS–DMP–TEB(TMB) sys- tem, we have obtained stable BPSG films with CP+CB = 8.5—9.3 wt% and CB = 3.4—4.7 wt% (see Table 2). Acceptable slope angles after reflow have been achieved at CP + CB = 8.7—9.2 wt% and CP = 2.4—5.0 wt% (see Table 3). It was de- fined that the formation of boric acid crystals in 8 hours after deposition when boron concentration was more than 6.3 wt%. With phos- phorus concentration over 5 wt% the defect formation after thermal treatment was observed. The side wall step coverage by BPSG films was 0.56 at 320°C, 0.73 at 430°C and 0.87 at 650°C [9], which are in good agreement with experimental results of other authors [23, 24]. Table 4 lists major process char- acteristics and compares them with those reported previously. Since the BPSG deposition rate is very sensitive to the DMP flow rate, it is advantageous to maintain CP between 3.0 and 3.8 wt% to provide the stability and reproducibility of film thickness uniformity. Such BPSG films are deposited at 9.0— 10.0 nm/min and have a refractive index of 1.45—1.46. When DMP is used as a phospho- rus source, the CP profile is virtually independent on the deposition tem- perature profile. The TEOS, DMP, and TEB flow rates — and therefore CB and CP — are mostly determined by the bubbler temperatures. For the first time, it was found that there is no depletion in phosphorus Process no. СP, wt % СB, wt % СP+СB, wt % Defect formation in Х hours after deposition 0,3 h 2 h 4 h 24 h 72 h 1 4.8 7.5 12.3 + + + + + 2 2.7 6.9 9.6 — + + + + 3 6.2 4.4 10.9 — + + + + 4 1.2 7.0 8.2 — — + + + 5 1.7 6.9 8.6 — — + + + 6 6.5 3.7 10.2 — — + + + 7 7.0 3.5 10.5 — — + + + 8 7.1 3.2 10.3 — — + + + 9 1.6 6.6 8.2 — — — + + 10 2.4 6.4 8.8 — — — + + 11 3.2 6.0 9.2 — — — + + 12 5.1 4.5 9.6 — — — + + 13 5.6 4.2 9.8 — — — + + 14 6.1 3.6 9.7 — — — + + 15 7.4 2.5 9.9 — — — + + 16 3.0 5.8 8.8 — — — — + 17 3.9 5.0 8.9 — — — — + 18 4.7 4.9 9.6 — — — — + 19 5.0 4.1 9.1 — — — — + 20 4.2 4.7 8.9 — — — — — 21 4.8 3.8 8.6 — — — — — 22 5.1 3.4 8.5 — — — — — 23 5.9 3.4 9.3 — — — — — Table 2 BPSG film stability Note: The plus and minus signs indicate the presence and absence of defects, respectively. Wafer no. Film thick- ness, mm СP, wt% СB, wt% СP+СB, wt% a, deg Deposition rate, nm/min Thickness uniformity within wafer, ±% 1 0.75 2.4 6.4 8.8 39 7.0 4.2—6.0 2 0.73 5.0 4.1 9.1 31 11.9 5.0—6.8 3 0.76 2.8 5.9 8.7 35 7.9 3.4—4.2 4 0.60 1.2 7.0 8.2 61 4.8 2.1—2.7 5 0.75 6.1 3.6 9.7 46 14.7 3.9—5.6 6 0.74 4.6 4.5 9.1 30 11.6 2.4—5.3 7 0.39 3.2 6.0 9.2 39 8.9 2.8—4.6 Table 3 Slope angle a after BPSG reflow as dependent on film properties and process parameters Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1 54 MATERIALS OF ELECTRONICS ISSN 2225-5818 concentration along the deposition zone when the TEOS—DMP—TEB system is employed; and CB+CP is almost uniform. As-deposited films have mirror-like surface and roughness of 0.3—0.35 nm, which is three times lower than that for BPSG films in [23] and 2.7—3.6 lower than for PSG films, obtained using TEOS-DMP (0.97—1.09 nm). BPSG films have density of 2.22 g/cm3 at 320—430°C and 2.30 g/cm3 at 650°C, respectively [10]. Note that BPSG flowability is more sensitive to boron than to phosphorus; for example, reduc- ing a from 30° to 20° requires 1 wt% increase in CB or 7 wt% increase in CP [21]. Fig. 5 depicts a correlation between moisture absorption and dopant concentrations for BPSG films, which were defect-free in 24 hours after the deposition (H — moisture penetration depth). Previously, stable BPSG films were produced with deposition followed up by in-situ thermal reflow. This was necessary because the range of optimum boron and phosphorus concentrations was above the defect formation boundary, as seen in Fig. 5. In another study, 24-h stability of BPSG films was achieved within narrow ranges of CB and CP [26]. Using the TEOS–DMP–TEB system, we were able to expand do- pant concentration ranges because DMP allows obtaining higher phos- phorus concentration under higher deposition temperatures; furthermore, the range of optimum boron and phos- phorus concentrations is below the defect formation boundary (Fig. 5). In situ thermal reflow [13] was also employed in the present study and it as well allowed to obtain BPSG films that were immune to defect formation in the subsequent process steps and during storage, and to considerably reduce the defect density by eliminat- ing exposure of as-deposited films to the air. Reagents Through- put, wafers/ batch Wafer diameter, mm Pres sure, Pa Tempera- ture, °C Deposi- tion rate, nm/min СP, wt % СB, wt % Thickness uniform- ity within wafer, ±% Dopant range, w/w, ± wt % TEOS, PH3, О2, TMPO, TMPite [4] 90 100 66.5 620—680 15 10.8 5.6 4.0 1.5 TEOS, TMB, TMPite, О2, N2 [4] 50 60 40—106 675—750 10—30 4.0 4.0 — — DMDCS, phos- phorus chlorides, ethyl borates, О2, N2 [4] 50 100 200 750—850 8—13 9.7 9.5 5.0 — TEOS, TMB, TMPite, О2, N2 [4] 30 100 40 510—680 5—15 5.0 13 10.0 — DADBS*, TMB, TMPite [4] 50 60 66.5 470—550 2—25 4.0 5 — — TEOS, DMP, TEB (TMB) [present work] 50 150 45 660—690 9.0—10.0 3.0 ... 3.5 5.0 ... 5.5 4.8 0.4 Table 4 Major characteristics of BPSG deposition process as compared with previous results * DADBS — di-acetoxy-di-t-butoxy-silane. C P + C B , w t% 12 10 8 6 4 2 0 H, mm 0.75 0.50 0.25 0 0.2 0.4 0.6 0.8 1.0 CB/(CP+CB), rel. units Fig. 5. Correlation between the moisture absorption and dopant concentrations of BPSG films [13]: ♦♦— defect formation boundary [this work]; ▲ — TEOS–DMP [this work]; — TEOS–TMPate [13]; × — APCVD BPSG [26]; * — moisture penetration depth [28]; — optimum region [25]; + — defect formation boundary [25] Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1 55 MATERIALS OF ELECTRONICS ISSN 2225-5818 Table 5 lists the comparison of deposition process parameters and properties of BPSG films, obtained on different types of tool [27]. Fig. 6 presents the IR absorption spectra of BPSG films some of which were subjected to in situ thermal reflow, the spectra being measured immediately, 12 days, and 30 days after deposition. It is seen that the spectra of as-deposited films, whether or not thermal reflow has been applied, do not exhibit dips or oscillations in the wave- number ranges 2900—3640 and 1500—1600 cm–1, indicating zero water content. During 12 days of storage, BO–H bonds are formed in unreflowed films, as evidenced by weak peaks near 2250 cm–1 and oscillations in the ranges 2900—4000 and 1500—1600 cm–1 [28]. The spectra of reflowed films do not have such peaks and show small oscillations over the wave numbers 1500 to 1600 cm–1. Dips in the range 3500—3800 cm–1 start to appear after the 14th day of storage. Thus, the IR spectroscopy data provide evidence that the BPSG deposition method used in this study Table 5 The comparison of deposition process parameters and properties of BPSG films, obtained on different types of tool [27] Parameter Tool model Horizontal LPCVD system “Karat” Concept-1 (Novellus) Precision-5000 (Applied Materials) Process type Low pressure CVD Plasma enhanced CVD Plasma enhanced CVD Reactor type Batch (Furnace) Single wafer (multiposition) Single wafer Temperature 700°С 400°С 39°С Silicon source TEOS SiH4 TEOS Phosphorus and boron source DMP, TMB PH3, B2H6 TMPO, TMB Deposition rate, nm/min 9.4 700 760 Within wafer thickness unifor- mity (6 inch), % ≤±5.0 ≤±1.5 ≤±2.0 Refractive index 1.46±0.01 1.46±0.01 1.46±0.01 Density, g/cm3 2.28—2.3 2.12—2.18 2.12—2.27 Range of optimal dopant con- centration, wt%, and time to defect formation, h P: 3.0—4.0 В: 6.0—5.0 >>24 P: 4.0—4.5 В: 4.5—4.0 >24 P: 3.0—3.5 В: 5.5—5.0 >24 Total dopant concentration, wt% 8.5—9.0 8.0—8.5 8,0—8.5 Throughput, w/h 12—15 20 20 (2 chamber) Note: Boron and phosphorus concentration uniformity are ±0.5 è ±0.2 wt%, respectively. Fig. 6. IR absorption spectra of BPSG fi lms measured immediately after deposition (1, 4), 12 days (2, 5) and 30 days (3, 6) after deposition, and of films subjected to in-situ thermal reflow (4—6) 1000 2000 3000 4000 Wave number, cm–1 5 4 3 2 1 0 A bs or pt an ce B—O B—O B—O B—O—Si P—O Si—O 2 1 6 5 3 4 Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1 56 MATERIALS OF ELECTRONICS ISSN 2225-5818 research allows to obtain films of low porosity and sufficiently high density, which absorb less moisture in storage. In porous BPSG films, moisture absorption is assumed to proceed through pores. For dense, reasonably ordered films, the mechanism is more complicated; it is illustrated in Fig. 7 [28]. Water molecules are first adsorbed by B–O bonds. Then adsorbed water molecules diffuse inward and re- act with P–O groups, forming P=O and PO=H bonds; the reaction with P=O constitutes the rate-determining step of adsorption. However, if the porosity is high enough, diffusion proceeds much faster than this reaction, resulting in a lin- ear dependence of moisture penetration depth on storage time; that is typical for boron-rich BPSG films. Indeed, BPSG films deposited using the TEOS—DMP—TEB system are characterized by a smaller moisture penetration depth as com- pared with films obtained by hydride oxidation. The defect formation boundary for such BPSG films moves to higher B concentrations (Fig. 5). Thus, obtained BPSG films are less reactive with moisture and have a high density. These are char- acteristic features of type II films, which have a dense structure and homogenous distribution of boron and phosphorus oxides [29]. Fig. 8 compares the regions of optimal dopant concentrations in BPSG films identified in this study and earlier from the viewpoint of film sta- bility and planarity after reflow. Note also that TEB can be replaced with TMB, a less expensive reagent, without compromising the structural stability, moisture resistance, and other important properties of films. Having a higher vapor pres- sure, TMB requires no bubbling, provides a more uniform boron concentration along the deposition zone, and is consumed in smaller quantities. The combined process of BPSG deposition and in-situ thermal reflow is protected by patent [30], as well as the PSG deposition process using the TEOS–DMP system [31, 32] and the BPSG deposition process using the TEOS—DMP—TEB (TMB) system [33, 34]. Conclusions The authors investigated the chemical vapor deposition of PSG and BPSG films from the TEOS–DMP–TEB(TMB) reactant system at 660—715°C in horizontal LPCVD reactor equipped with a specifically designed system for supplying each liquid reagent to reactor. The special liquid vaporizing system was used to provide the stable pressure and flow of TEOS vapor. The authors found that using the DMP allows varying the concentration of phosphorus in PSG films over wide ranges. We identified the optimal range of the total boron and phosphorus concen- tration ensuring the acceptable topology planarity and resistance to defect formation during storage that is 8.7—0.3 wt% when the phosphorus con- centration is 3.0—3.8 wt%. The defect formation boundary for such BPSG films moves to higher B concentrations. We found that at use of the TEOS-DMP—TEB system the depletion of the phosphorus concentration along reaction zone does not occur, and the total dopant concentration is practically constant. The developed process has the deposition rate of 9.0—10.0 nm/min and en- sures the good film thickness uniformity and the reduced reaction capability of BPSG films against atmospheric moisture. The side wall step coverage by BPSG films was 0.56 at 320°C, 0.73 at 430°C and 0.87 at 690°C. As-deposited films have mirror- like surface and roughness of 0.3—0.35 nm, that is 2.7—3.6 times lower than for PSG films, obtained using TEOS-DMP (0.97—1.09 nm). In situ thermal reflow was also employed in the present study and it as well allowed to obtain BPSG films that were immune to defect forma- Fig. 7. Mechanism of glass–water interaction in a BPSG film: 1 — water adsorption at B–O surface centers; 2 — bulk and surface diffusion of water molecules toward P centers; 3 — reaction with P—O or the formation of a hydrogen bond with P—O 1 2 3 Fig. 8. Ranges of optimum B and P concentrations in BPSG films identified in this study and earlier from the viewpoint of structural quality and planarity: ♦ — defect limit [29]; — defect limit [this study]; ▲ — optimum range [29]; × — optimum range [this study] 8 6 4 2 0 C P , w t% 2 4 6 8 CB, wt% Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1 57 MATERIALS OF ELECTRONICS ISSN 2225-5818 tion in the subsequent process steps and during storage, and to considerably reduce the defect density by eliminating exposure of as-deposited films to the air. REFERENCES 1. Labunov V. A., Nemtsev V.S., Danilovich I.I. Topography planarization in LSI manufacture. Zarubezh. Elektron. Tekh., 1987, no. 8, pp. 3–23. [В.А. Лàбóíîâ, В.С. Нåмцåâ, И.И. Дàíèëîâèч, Пëàíàðèзàцèÿ òîïîëîãèчåñêîãî ðåëьåфà â òåõíîëîãèè БИС. Зарубежная электронная тех- ника, 1987, ¹ 8, ñ. 3-23.] 2. Skidmore K. Techniques for planarizing device topog- raphy. Semicond. Int., 1988, no. 4, pp. 115–119. 3. Saxena A.N., Pramanik D. Planarization techniques for multilevel metallization. Solid State Technol., 1986, vol. 29, no. 10, pp. 95–100. 4. Dukhanova T.G., Vasilev V.Y., Veretenin V.I. Deposition, properties, and applications of borophosphosili- cate glass films in ICs. Obz. Elektron. Tekh., Ser. 3, 1988, iss. 4 (1370), pp. 2–72. [Дóõàíîâà Ò.Г., Вàñèëьåâ В.Ю., Вåðåòåíèí В.И. Пîëóчåíèå, ñâîéñòâà è ïðèмåíåíèå ñëî- åâ бîðîфîñфîðîñèëèêàòíîãî ñòåêëà â òåõíîëîãèè èíòå- ãðàëьíыõ ñõåм. Обзоры по электронной технике, серия 3. Микроэлектроника, 1988, âыï.4 (1370), ñ. 2-71.] 5. Jagadeesha T., Kim L., Gonsalvis J., Gowda T. Innovative low pressure borophosphosilicate glass process for nano devices. Indian J. of Engineering and Material Science, 2009, vol. 16, pp. 341-346. 6. Repinskii S.M. Chemical kinetics of dielectric film growth. In book “Current issues in the physical chemistry of semiconductor surfaces”. Novosibirsk, Nauka, 1988, pp. 90–152. [�åïèíñêèé С.�. Хèмèчåñêàÿ êèíåòèêà ðîñòà ñëîåâ �èýëåê-�åïèíñêèé С.�. Хèмèчåñêàÿ êèíåòèêà ðîñòà ñëîåâ �èýëåê- òðèêîâ. В êí. «Современные проблемы физической химии». Нîâîñèбèðñê: Нàóêà, Сèбèðñêîå îò�åëåíèå, 1988, ñ.90-152.] 7. Semenov I.I. Chain Reactions, Moscow: Nauka, 1986, pp. 163–192. [Сåмåíîâ И.И. Цепные реакции, �: Нàóêà, 1986, ñ.163-192.] 8. Vasilev V.Y., Sukhov M.S. Equipment and techniques for low-pressure chemical vapor deposition. Part 1. Obz. Elektron. Tekh., Ser. 7, 1985, iss. 4, p. 52. [Вàñèëьåâ В.Ю., Сóõîâ �.С., Аïïàðàòóðà è мåòî�èêà îñàж�åíèÿ ñëîåâ ïðè ïîíèжåííîм �àâëåíèè. Ч. 1. Обзоры по ЭТ, Сер.7, 1985, âыï. 4, ñ. 52.] 9. Turtsevich A.S., Gran’ko V.I., Shilo O.A., Tikhonov V.I. Environmental issues in chemical vapor deposition. Elektron. Prom-st., 1993, no. 10, pp. 87–95. [Òóðцåâèч А.С., Гðàíьêî В.И., Шèëî О.А., Òèõîíîâ В.И. Эêîëîãèчåñêèå ïðîбëåмы õèмèчåñêîãî îñàж�åíèÿ èз ãàзîâîé фàзы. Электронная промышленность, 1993, âыï. 10, ñ. 87-95.] 10. Turtsevich A.S., Zaitsev D.A., Kabakov M.M., Shilo O.A., Misyuchenko V.M., Tikhonov V.I. Planarity of borophosphosilicate-glass films as dependent on the deposition Conditions, Elektron. Tekh., Ser. 3, 1992, issue 1 (146), pp. 24–27. [Òóðцåâèч А.С., Зàéцåâ Д.А., Кàбàêîâ �.�., Шèëî О.А., �èñючåíêî В.�., Òèõîíîâ В.И. Вëèÿíèå óñëîâèé îñàж�åíèÿ бîðîфîñфîðîñèëèêàòíîãî ñòåêëà íà ïëàíàðíîñòь òîïîëîãèчåñêîãî ðåëьåфà èíòåãðàëьíыõ ñõåм. Электронная техника, Сер.3, 1992, âыï.1 (146), ñ. 24-27.] 11. Jagadeesha T., Kim L., Lee W.T., Gowda T. Development of new BPSG process to reduce boron concen- tration range in BPSG SAVD process. Int. J. of Engineering Science and Technology, 2011, vol. 3, no. 1, pp. 156-161. 12. Dimethylphosphite: TU 2634-002-40475629-99 Specification. 13. Turtsevich A.S., Zakharik S.V., Makarevich I.I., Nalivaiko O.Yu., Anoshin V.M., Rumak N.V., Turtsevich, V.V. Deposition of borophosphosilicate-glass films from the TEOS–TMPate–TMB–O2 reactant system. Elektron. Prom-st., 1995, no. 3, pp. 19–22. [Òóðцåâèч А.С., Зàõàðèê С.В., �àêàðåâèч И.И., Нàëèâàéêî О.Ю., Аíîшèí В.�., �óмàê Н.В., Òóðцåâèч В.В. Оñàж�åíèå ñëîåâ бîðîфîñфî- ðîñèëèêàòíîãî ñòåêëà â ñèñòåмå ÒЭОС-Ò�Ф’àò-Ò�Б-O2. Электронная промышленность, 1995, ¹ 3, ñ. 19-22.] 14. Becker F.S., Pawlik D., Schäfer M., Staudigl G. Process and film characterization of low pressure tetraethyl- orthosilicate-borophosphosilicate glass. J. Vac. Sci. Technol., B, 1986, vol. 4, no. 3, pp. 732–744. 15. Williams D.S., Dein E.A., LPCVD of borophospho- silicate glass from organic reactants. J. Electrochem. Soc., 1987, vol. 134, no. 3, pp. 657–664. 16. Turtsevich A.S., Rumak N.V., Misyuchenko V.M., et al. Influence of dopant concentrations on defect formation in borophosphosilicate-glass films. Vestsi NAN Belarusi, Ser. Fiz.-Tekh. Navuk, 1993, no. 4, pp. 70–73. [Òóðцåâèч А.С., �óмàê Н.В., �èñючåíêî В.�. è �ð., Вëèÿíèå êîíцåíòðà- цèè ëåãèðóющèõ ïðèåñåé íà ïðîцåññы �åфåêòîîбðàзîâàíèÿ â ïëåíêàõ бîðîфîñфîðîñèëèêàòíîãîî ñòåêëà. Вести АНБ Сер. физ.-техн., 1993, ¹ 4, ñ. 70-73.] 17. Levy R.A., Vincent S.M., McGahan,T.E. Evaluation of the phosphorus concentration and its effect on viscous flow and reflow in phosphosilicate glass. J. Electrochem. Soc., 1985, vol. 132, no. 6, pp. 1472–1480. 18. Turtsevich A.S., Anufriev L.P., Nalivaiko O.Yu. Silicon nitride film deposition by dichlorosilane ammonolysis in a Karat LPCVD reactor. Izv. Belarus. Inzh. Akad., 2004, no. 2 (18), pp. 104–106. [Òóðцåâèч А.С., Аíóфðèåâ Л.П., Нàëèâàéêî О.Ю. Пðîцåññ îñàж�åíèÿ ïëåíîê íèòðè�à êðåм- íèÿ àммîíîëèзîм �èõëîðñèëàíà â ðåàêòîðå ïîíèжåííîãî �àâëåíèÿ «Кàðàò». Материалы IX Междунар. науч.- технич. конф. «Современные средства связи», Беларусь, Нарочь, 27.09—1.10 2004. Известия Белорусской инже- нерной академии, 2004, ¹ 2 (18), ñ. 104-106.] 19. Vasilev V.Y., Dukhanova T.G., Borophosphosilicate glass composition optimized for IC manufacture. Elektron. Prom-st., 1989, no. 3, p. 31. [Вàñèëьåâ В.Ю., Дóõàíîâà Ò.Г. Оïòèмàëьíыé �ëÿ òåõíîëîãèè ИС ñîñòàâ ñëîåâ бîðîфîñфîðíî-ñèëèêàòíîãî ñòåêëà. Электронная промыш- ленность, 1989, ¹ 3, ñ. 31.] 20. Kim H.-J., Choi P., Kim K., Choi B. A study on the fluorine effect of direct contact process in high-doped boron phosphorus silicate glass (BPSG). J. of Semiconductor Technology and Science, 2013, vol. 13, no. 6, pp. 662-667. 21. Rumak N.V., Khat’ko V.V. Dielectric films in solid-state microelectronics. Minsk: Nauka i Tekhnika, 1990, pp. 140–141. [�óмàê Н.В., Хàòьêî В.В. Диэлектрические пленки в твер- дотельной микроэлектронике. �èíñê: Нàóêà è òåõíèêà, 1990, ñ. 140-141.] 22. Rumak N.V., Turtsevich A.S., Shilo O.A., Tikhonov V.I. Planarity of borophosphosilicate-glass films as dependent on the deposition temperature. Vestsi NAN Belarusi, Ser. Fiz.-Tekh. Navuk, 1993, no. 2, pp. 54–56. [�óмàê Н.В., Òóðцåâèч А.С., Шèëî О.А., Òèõîíîâ В.И. Вëèÿíèå òåм- ïåðàòóðы îñàж�åíèÿ бîðîфîñфîðîñèëèêàòíîãî ñòåêëà íà ïëàíàðíîñòь òîïîëîãèчåñêîãî ðåëьåфà èíòåãðàëьíыõ ñõåм. Вести АН БССР, Cер. физ.-техн., 1993, ¹ 2, ñ. 54-56.] 23. Levy L.A., Gallagher P.K., Scherey E. A new LPCVD technique of producing borophosphosilicate glass films by injection of miscible liquid precursors. J. Electrochemical Society. 1987, vol. 134, no 2. pp. 430-436. 24. Vasilev V.Y., Borophosphosilicate glass films as interlayer isolation of IC. Elektron. Prom-st., 1986, no. 1, p. 23-26. [Вàñèëьåâ В.Ю., Дóõàíîâà Ò. Г. Сëîè бîðîфîñфî-Вàñèëьåâ В.Ю., Дóõàíîâà Ò. Г. Сëîè бîðîфîñфî- ðîñèëèêàòíîãî ñòåêëà â êàчåñòâå мåжñëîéíîé èзîëÿцèè ИС. Электронная промышленность.1986, âыï. 1(149), ñ. 23-26.] 25. Vasilev V.Y. Borophosphosilicate glass films in silicon microelectronics. Part 1: Chemical vapor deposition, composi- tion, and properties. Russ. Microelectron, 2004, vol. 33, no. 5, pp. 271–284 [�������� �.�. ������ ���� �������������-Вàñèëьåâ В.Ю. Òîíêèå ñëîè бîðîфîñфîðîñè- ëèêàòíîãî ñòåêëà â òåõíîëîãèè êðåмíèåâîé мèêðîýëåêòðî- íèêè. Чàñòь 1. Оñàж�åíèå èз ãàзîâîé фàзы è ñâîéñòâà ñëîåâ ñòåêëà. Микроэлектроника, 2004, ò. 33, ¹ 5, ñ. 334-351.] Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2015, ¹ 1 58 MATERIALS OF ELECTRONICS ISSN 2225-5818 А. С. ТУРЦЕВИЧ, О. Ю. НАЛИВАЙКО �åñïóбëèêà Бåëàðóñь, ã, �èíñê, ОАО «ИНÒЕГ�АЛ» E-mail: Aturtsevich@integral.by, onalivaiko@integral.by ОСАЖДЕНИЕ ПЛЕНОК БО�ОФОСФО�ОСИЛИКАÒНОГО СÒЕКЛА С ИСПОЛЬЗОВАНИЕ� СИСÒЕ�Ы ÒЭОС-ДИ�ЕÒИЛФОСФИÒ-Ò�И�ЕÒИЛБО�АÒ Проведена модернизация горизонтального реактора пониженного давления. Разработана система подачи жидкого реагента с использованием барботеров. Исследованы процессы осаждения пленок и свойства пле- нок ФСС и БФСС с использованием системы ТЭОС-диметилфосфит(ДМФ)-триметилборат(ТМФ). Клþчевые слова: борофосфоросиликатное стекло, осаждение, планарность топологического рельефà. А. С. ТУРЦЕВИЧ, О. Ю. НАЛИВАЙКО �åñïóбëіêà Біëîðóñь, м. �іíñьê, ВАÒ «ІНÒЕГ�АЛ» E-mail: Aturtsevich@integral.by, onalivaiko@integral.by ОСАДЖЕННЯ ПЛІВОК БО�ОФОСФО�ОСІЛІКАÒНОГО СКЛА З ВИКО�ИСÒАННЯ� СИСÒЕ�И ÒЕОС-ДІ�ЕÒИЛФОСФІÒ-Ò�И�ЕÒІЛБО�АÒ Проведено модернізаціþ горизонтального реактора зниженого тиску. Розроблено систему подачі рідкого реагенту з використанням барботерів. Досліджено процеси осадження плівок і властивості плівок ФСС і БФСС з використанням системи ТЕОС-діметілфосфіт(ДМФ)-тріметілборат(ТМФ). Показано, що використання діметілфосфіта дозволяє варіþвати концентраціþ фосфору в широкому діапазоні. Встановлено, що оптимальний діапазон сумарних концентрацій бору та фосфору, що забезпечує прийнятну планарність топологічного рельєфу і стійкість до дефектоутворення при зберіганні, складає 8.7—0.3 ваг.%, При цьому концентрація фосфору становить 3.0—3.8 ваг.%. Встановлено, що при використанні системи ТЕОС—ДМФ—ТМБ не відбувається збіднення концентрації фосфору уздовж реакційної зони, а сумарна концентрація легуþчих домішок залишається практично постійноþ. У той самий час забезпечуþться швидкість осадження плівок БФСС 9.0—10.0 нм/хв та хороша однорідність товщини плівок. Свіжоосаждені плівки маþть «дзеркальну поверхнþ», що підтверджує їх мінімальну шорсткість. Плівки БФСС оптимального складу характеризуþться зниженоþ реакційноþ здатністþ по відношеннþ до атмосферної вологи. Клþчові слова: борофосфоросілікатное скло, осадження, планарність топологічного рельєфу. DOI: 10.15222/TKEA2015.1.49 УДК.621.315.612 26. Turtsevich A.S., Nalivaiko O.Yu., Zaitsev D.A., Gran’ko,V.I., Makarevich I.I. Simulation of deposition of borophosphosilicate glass obtained by hydride oxidation at at- mospheric pressure. Russ. Microelectron, 1996, vol. 25, no. 6, pp. 398–403. [Òóðцåâèч А.С., НàëèâàéêîО.Ю., Зàéцåâ Д.А., Гðàíьêî В.И., �àêàðåâèч И.И. �î�åëèðîâàíèå ïðî- цåññà îñàж�åíèÿ бîðîфîñфîðîñèëèêàòíîãî ñòåêëà, ïîëó- чåííîãî îêèñëåíèåм ãè�ðè�îâ ïðè àòмîñфåðíîм �àâëåíèè. Микроэлектроника, 1996, ò. 25, ¹ 6, ñ. 451-457.] 27. Nalivaiko O.Yu., Pshenichny E.N., Plebanovich V.I. et al. The comparison of BPSG deposition processes in horizontal low pressure CVD reactor and in plasma enhanced CVD reactors. V Int. scient. and techn. conf. “Electronics and informatics 2005”, Moscow—Zelenograd, 2005, vol.1, pp. 143-144. [Нàëèâàéêî О.Ю., Пшåíèчíыé Е.Н., Пëåбàíîâèч В.И. è �ð. Сðàâíåíèå ïðîцåññîâ îñàж�åíèÿ è ïëåíîê БФСС â ãîðèзîíòàëьíîм ðåàêòîðå ïîíèжåííîãî �àâëåíèÿ è â ðå- àêòîðàõ ñ ïëàзмåííîé àêòèâàцèåé ïðîцåññà. V Междунар. научн.-техн. конф. «Электроника и информатика 2005», �îñêâà—Зåëåíîãðà�, 2005, ч. 1, ñ. 143-144.] 28. Thorsness A.G., Muscat A.J. Moisture absorption and reaction in BPSG thin films. J. Electrochem. Soc., 2003, vol. 150, no. 12, pp. F219–F228. 29. Vasilev V.Y. Borophosphosilicate glass films in silicon microelectronics. Part 2: Structure and applications. Russ. Microelectron, 2005, vol. 34, no. 2, pp. 67–77. [Вàñèëьåâ В.Ю. Òîíêèå ñëîè бîðîфîñфîðîñèëèêàòíîãî ñòåêëà â òåõ- íîëîãèè êðåмíèåâîé мèêðîýëåêòðîíèêè. Чàñòь 2. Сòðîåíèå ñòåêîë è èõ ïðèмåíåíèå â òåõíîëîãèè. Микроэлектроника, 2005, ò. 34, ¹ 2, ñ. 83-97.] 30. Belarus Patent 2823, Published Sept. 30, 1999. [Пàòåíò �Б 2823, Сïîñîб ïëàíàðèзàцèè êðåмíèåâыõ ñòðóê-Пàòåíò �Б 2823, Сïîñîб ïëàíàðèзàцèè êðåмíèåâыõ ñòðóê- òóð. 30.09.1999ã.] 31. Belarus Patent 2531, Published Dec. 30, 1998. [Пàòåíò �Б 2531, Сïîñîб îñàж�åíèÿ фîñфîðîñèëèêàòíîãî ñòåêëà. 30.12.1998ã.] 32. Belarus Patent 3924, Published June 30, 2001. [Пàòåíò �Б 3924, Сïîñîб îñàж�åíèÿ фîñфîðîñèëèêàòíîãî ñòåêëà. 30.06.2001ã.] 33. Belarus Patent 1613, Published Mar. 30, 1997. [Пàòåíò �Б 1613, Сïîñîб ïîëóчåíèÿ ïëåíîê бîðîфîñфîðî-Пàòåíò �Б 1613, Сïîñîб ïîëóчåíèÿ ïëåíîê бîðîфîñфîðî- ñèëèêàòíîãî ñòåêëà. 30.03.1997ã.] 34. Belarus Patent 4154, Published Dec. 30, 2001. [Пàòåíò �Б 4154, Сïîñîб ïîëóчåíèÿ ïëåíîê бîðîфîñфîðîñèëèêàò- íîãî ñòåêëà. 30.12.2001ã.] Дата поступления рукописи в редакциþ 09.08 2014 г.