Thermal conductivity of the deep Earth’s minerals
Gespeichert in:
Datum: | 2010 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут геофізики ім. С.I. Субботіна НАН України
2010
|
Schriftenreihe: | Геофизический журнал |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/101322 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Thermal conductivity of the deep Earth’s minerals / A. Goncharov // Геофизический журнал. — 2010. — Т. 32, № 4. — С. 50-51. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-101322 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1013222016-06-03T03:01:59Z Thermal conductivity of the deep Earth’s minerals Goncharov, A. 2010 Article Thermal conductivity of the deep Earth’s minerals / A. Goncharov // Геофизический журнал. — 2010. — Т. 32, № 4. — С. 50-51. — Бібліогр.: 6 назв. — англ. 0203-3100 http://dspace.nbuv.gov.ua/handle/123456789/101322 en Геофизический журнал Інститут геофізики ім. С.I. Субботіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
format |
Article |
author |
Goncharov, A. |
spellingShingle |
Goncharov, A. Thermal conductivity of the deep Earth’s minerals Геофизический журнал |
author_facet |
Goncharov, A. |
author_sort |
Goncharov, A. |
title |
Thermal conductivity of the deep Earth’s minerals |
title_short |
Thermal conductivity of the deep Earth’s minerals |
title_full |
Thermal conductivity of the deep Earth’s minerals |
title_fullStr |
Thermal conductivity of the deep Earth’s minerals |
title_full_unstemmed |
Thermal conductivity of the deep Earth’s minerals |
title_sort |
thermal conductivity of the deep earth’s minerals |
publisher |
Інститут геофізики ім. С.I. Субботіна НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/101322 |
citation_txt |
Thermal conductivity of the deep Earth’s minerals / A. Goncharov // Геофизический журнал. — 2010. — Т. 32, № 4. — С. 50-51. — Бібліогр.: 6 назв. — англ. |
series |
Геофизический журнал |
work_keys_str_mv |
AT goncharova thermalconductivityofthedeepearthsminerals |
first_indexed |
2025-07-07T10:44:30Z |
last_indexed |
2025-07-07T10:44:30Z |
_version_ |
1836984640230916096 |
fulltext |
0� ���������
���
����������������������
/#�)-(% '1%.�+,#(� #(%2
Thermal conductivity of the deep Earth’s minerals
A. Goncharov, 2010
Geophysical Laboratory, Carnegie Institution of Washington, Washington, USA
goncharov@gl.ciw.edu
Knowledge of thermal conductivity of the deep
Earth’s materials is critical for understanding of the
Earth’s thermal structure, evolution, and dynamics.
Here we report on direct measurements of the lat-
tice and radiative thermal conductivity of mantle and
core materials under the pressure-temperature (P-
T) conditions approaching those in the Earth’s man-
tle and core by using optical spectroscopy and
pulsed laser techniques in diamond anvil cells (DAC).
We developed and tested a new flash-heating
high-pressure technique to measure thermal diffu-
sivity, which involves time-resolved radiometry com-
bined with a pulsed IR laser source [Beck et al.,
2007]. The results for MgO, NaCl, and KCl obtained
to 32 GPa and 2600 K agree with previous studies
at low pressure and high temperature and enable
tests of models for the combined pressure-tempe-
rature dependence of thermal conductivity. Prelimi-
nary results on the thermal conductivity of magne-
sium silicate perovskite to 125 GPa and 4000 K
and [Goncharov et al., 2010] suggest a larger value
than what was previously estimated, although the
uncertainty is very large. Future accurate experi-
mental measurements of the phonon contribution
to the thermal conductivity of lower mantle materi-
als will require a number of carefully crafted experi-
ments under high pressure and temperature condi-
tions to determine the thermal conductivity of all
the materials used in the DAC. Measurements of
the thermal conductivity of Ar are currently in
progress and they will be presented at the meeting.
To determine the thermal conductivity of Fe and
its temperature dependence at high pressures we
use combined continuous and pulsed laser heating
techniques. A thin plate of Fe is positioned in a
medium (e.g., Ar), laser heating is applied from one
side and the temperature is measured from both
sides of the sample radiometrically. The thermal
conductivity is determined by fitting the results of
finite element calculations to the experimental re-
sults. This work is currently in progress.
Another technique of measurements of the ther-
mal conductivity, time-domain thermoreflectance
(TDTR), has been recently applied for the DAC stu-
dies [Hsieh et al., 2009]. A collaborative study of
the thermal conductivity of MgO single crystal (as a
benchmark sample) at high pressures with a group
of Prof. D. Cahill (University of Illinois) is currently
in progress, and the preliminary results will be re-
ported at the meeting.
We will also present optical absorption data for
lower mantle minerals to assess the effect of com-
position (including iron oxidation state), structure,
temperture, and iron spin state on radiative heat
transfer. The ultimate goal is to determine through
these measurements the radiative thermal conduc-
���������
���
���������������������� 0�
��� ��!"#�$%&'�("�%()�#*+#�' #(&"�&��&,#��-�%()� �)#..'(/
tivity of the Earth’s lower mantle. Optical absorp-
tion spectra have been measured at pressures up
to 133 GPa for major mantle minerals, including fer-
ropericlase (Mg, Fe)O, silicate perovskite
(Mg0.9Fe0.1)SiO3, and postperovskite Mg(1 x)FexSiO3
(x=0,1 0,3). We find that optical absorption spectra
of lower mantle minerals depend on composition
(including iron oxidation state), structure, and iron
spin state. We find that the presence of ferric iron
in perovskite and ferropericlase strongly affects the
optical properties, while the effect of the spin pa-
iring transition may be more secondary [Goncharov
et al., 2006; 2008; 2009; 2010]. We also show that
post-perovskite exhibits larger than perovskite opti-
cal absorption in the near infrared and visible spec-
tral ranges which may have a profound effect on the
dynamics the lowermost mantle. Absorption spec-
tra of ferropericlase up to 800 K and 60 GPa show
minimal temperature dependence.
The estimated pressure-dependent radiative con-
ductivity, krad, from these data is 2—5 times lower
than previously inferred from model extrapolations
[Goncharov et al., 2009], with implications for the
evolution of the mantle such as generation and sta-
bility of thermo-chemical plumes in the lower man-
tle. Further work is required for an accurate assess-
ment of the radiative component of the thermal con-
ductivity of lower mantle minerals, including the
study of compositional and structural properties, as
well as the iron spin state. These include (but are
not limited to) study of mantle minerals with com-
positions more realistic for the Earth’s interior (e.g.,
containing Al).
I would like to acknowledge the following individu-
als for their contributions to this project: V. V. Struzhkin,
D. A. Dalton, M. Wong, J. Ojwang, P. Beck, S. Jacob-
sen, S.-M. Thomas, J. Montoya, S. Kharlamova,
B. Haugen, A. Savello, B. Militzer, R. Hemley,
H. K. Mao, R. Kundargi, P. Lazor, Z. Konopkova, J. Sie-
bert, J. Badro, D. Antonangeli, F. J. Ryerson, W. Mao,
W.-P. Hsieh, D. G. Cahill. I acknowledge support from
NSF EAR 0711358 and 0738873, Carnegie Institution
of Washington, DOE/BES, DOE/ NNSA (CDAC), and
the W. M. Keck Foundation. I wish to thank C. Arac-
ne for her help in the thinning and cutting of the ferro-
periclase samples.
References
Beck P., Goncharov A. F., Struzhkin V. V., Militzer B.,
Mao H. K., Hemley R. J. Measurement of thermal
diffusivity at high pressure using a transient hea-
ting technique // Appl. Phys. Lett.�— ����.���91. —
P. 181914.
Goncharov A. F., Struzhkin V. V., Jacobsen S. D.
Reduced radiative conductivity of low-spin (Mg,Fe)O
in the lower mantle // Science. — 2006. — 312. —
P. 1205—1208.
Goncharov A. F., Haugen B. D., Struzhkin V. V.,
Beck P., Jacobsen S. D. Radiative conductivity and
Oxidation State of Iron in the Earth's Lower Mantle //
Nature. — 2008. — 456. — P. 231—234.
Goncharov A. F., Beck P., Struzhkin V. V., Hau-
gen B. D., Jacobsen S. D. Thermal conductivity of
lower mantle minerals // Phys. Earth Planet. Int. —
2009. — 174. — P. 24—32.
Goncharov A. F., Struzhkin V. V., Montoya J., Khar-
lamova S., Kundargi R., Siebert J., Badro J., An-
tonangeli D., Ryerson F. J., Mao W. Effect of
Composition, Structure, and Spin State on the Ther-
mal Conductivity of the Earth’s Lower Mantle // Phys.
Earth Planet. Int. — 2010. — 180. — P. 148—153.
Hsieh W.-P., Chen B., Li J., Keblinski P., Cahill D. G.
Pressure-tuning of the thermal conductivity of a laye-
red crystal, muscovite // Phys. Rev. — 2009. — 80.
— P. 180302(R).
|