Granitoids localization in collisional overthrust structures subject to thermal conditions-numerical modeling

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Parphenuk, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут геофізики ім. С.I. Субботіна НАН України 2010
Назва видання:Геофизический журнал
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/102135
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Granitoids localization in collisional overthrust structures subject to thermal conditions-numerical modeling / O. Parphenuk // Геофизический журнал. — 2010. — Т. 32, № 4. — С. 128-129. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-102135
record_format dspace
spelling irk-123456789-1021352016-06-11T03:01:49Z Granitoids localization in collisional overthrust structures subject to thermal conditions-numerical modeling Parphenuk, O. 2010 Article Granitoids localization in collisional overthrust structures subject to thermal conditions-numerical modeling / O. Parphenuk // Геофизический журнал. — 2010. — Т. 32, № 4. — С. 128-129. — Бібліогр.: 8 назв. — англ. 0203-3100 http://dspace.nbuv.gov.ua/handle/123456789/102135 en Геофизический журнал Інститут геофізики ім. С.I. Субботіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
format Article
author Parphenuk, O.
spellingShingle Parphenuk, O.
Granitoids localization in collisional overthrust structures subject to thermal conditions-numerical modeling
Геофизический журнал
author_facet Parphenuk, O.
author_sort Parphenuk, O.
title Granitoids localization in collisional overthrust structures subject to thermal conditions-numerical modeling
title_short Granitoids localization in collisional overthrust structures subject to thermal conditions-numerical modeling
title_full Granitoids localization in collisional overthrust structures subject to thermal conditions-numerical modeling
title_fullStr Granitoids localization in collisional overthrust structures subject to thermal conditions-numerical modeling
title_full_unstemmed Granitoids localization in collisional overthrust structures subject to thermal conditions-numerical modeling
title_sort granitoids localization in collisional overthrust structures subject to thermal conditions-numerical modeling
publisher Інститут геофізики ім. С.I. Субботіна НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/102135
citation_txt Granitoids localization in collisional overthrust structures subject to thermal conditions-numerical modeling / O. Parphenuk // Геофизический журнал. — 2010. — Т. 32, № 4. — С. 128-129. — Бібліогр.: 8 назв. — англ.
series Геофизический журнал
work_keys_str_mv AT parphenuko granitoidslocalizationincollisionaloverthruststructuressubjecttothermalconditionsnumericalmodeling
first_indexed 2025-07-07T11:53:41Z
last_indexed 2025-07-07T11:53:41Z
_version_ 1836988999519961088
fulltext ������� ���� ���� ���� ��1 ������������������ !�"�#$�%&�'�$��(�( Granitoids localization in collisional overthrust structures subject to thermal conditions-numerical modeling O. Parphenuk, 2010 Institute of Physics of the Earth, RAS, Moscow, Russia oparfenuk@mail.ru High temperature metamorphism and widespread granite magmatism are common peculiarities of many ancient continental collision structures. Deeply ero- ded areas of the Archean and Proterozoic continental shields formed in the process of tectonic evolution in- cluding horizontal shortening and collision expose at the surface middle to the lower crust rocks uplifted by overthrusting from the depths of 20—40 km. This phe- nomenon seems to be valid also for modern collision zones. The massive layer of granite melt approximately of 10 km thickness is observed at 10—15 km depth by seismic methods in the resent orogens such as the Himalayas and Caucasus [Rosen, Fedorovsky, 2001]. The Palaeozoic Variscan orogen in Europe is characterized by large volumes of felsic granites in- truded during HT-LP metamorphism and exposed in deeply eroded parts of the Variscan belt (South Bohe- mian Batholit) [Gerdes et al., 2000]. Fundamental features of collision zones reflect the effect of the main tectonic event — horizontal shortening in compression setting, collision of two continental plates accompanied by the thickening of the crust and the surface uplift. Extensive deve- lopment of horizontal and oblique motions of crus- tal plates and blocks leads to the disturbances in the thermal regime, heat flow, the surface and Moho topography. The main petrologic mark of such colli- sion is granite melt generated at different depth’s levels and exposed at the surface as a result of the denudation and uplift. Thermal-kinematic model of continental collision calculates pressure, velocity and temperature fields and includes horizontal shortening, brittle overthrus- ting in the upper crust compensated by the lower crust viscous flow and erosion of the thickened crust. Finite-element 2D modeling is used to examine the thermal and kinematic conditions for high-tempera- ture metamorphism and the depth and timing of crustal melting in the case of rheologically layered lithosphere [Parphenuk et al., 1994; Parphenuk, 2005]. The thermal effects during collision process and postorogenic stage are studied. Calculation of lithospheric temperature field is based on crustal thickening by overthrusting with dip angle of faulting of 15—30 and shortening rate in the range of 0.5—2 cm/y. Total amount of hori- zontal shortening is 100 km. We assumed that ero- sion and concurrent sedimentation begins after an additional crustal portion of a substantial thickness is exposed. The equation of energy conservation is solved for the case of Lagrange coordinates with material time derivative [Turcotte, Shubert, 1985]: iiii HT Dt DT c 2 , where c is specific heat, is density, is the ther- mal conductivity, and H is the heat generation rate. The model consists of three layers: 20 km brittle upper crust (i=1), 20 km ductile lower crust (i=2) and 80 km lithospheric mantle (i=3) with different thermal, kinematic and rheological parameters. The calculations show the possibility of the par- tial melting and granite melt generation subjected to the main thermal parameters of the model — the initial temperature distribution (heat flow higher than 60 mW/m2) and radiogenic heat production. The temperature increase can be fairly significant (up to 250 C) at depths level of 10—30 km confirming the idea of crustal origin of the continental collisional granites. The partial melting (wet granite solidus) starts in the thickened crust in the vicinity of thrust fault and widens in the direction of thrusting and to the lesser depths. Maximum temperature increase along the fault zone is 300 C. 2D collision model confirms the observation of a wide range of PT-conditions over short distances in metamorphic belts [Chamberlain, Karabinos, 1987]. As a result of upward motion along the fault, the additional loading redistribution in the course of ero- sion, and the viscous compensation at the level of the lower crust, PT-histories will be completely differ- ent for the points along the thrust fault. For example, for the convergence and erosion rates of 0.5 and ������������������ !�"�#$�%&�'�$��(�( ��2 )*� ��+,�*-�. ��,������/ �* ��.,�.��.���*������ ����� �� 0.025 cm/y, respectively, maximum erosion level of ~9 km of uplifted crust is reached at 45 Ma after the onset of collision (at postcollisional stage). The material will be transported from a depth of 20 km to a depth of about 5 km while the rocks that were initially located at a depth of 3.5 km will experience a rather complicated PT-evolution. At the postcolli- sional stage (after 20 Ma of shortening) the com- pressional regime is changed by extension with very low velocities. Local effect may result from the frictional hea- ting along the slip zone during the overthrusting. The frictional heat production is proportional to the product of the shear stress across the slip plane, the velocity of obduction and coefficient of friction. The additional heating can rise the temperature by 50—150 C at 10—20 Ma in the vicinity of slip zone in the case of horizontal shortening rate of up to 4 cm/ y and thrust sheet thickness up to 20 km [Brewer, 1981]. This local and moderate additional heating (in comparison with crust thickening effect) is much less in the case of slower thickening. The following set of parameters is critical to initiate crustal melting and granite formation: initial tempera- ture distribution with heat flow density value higher than 60 mW/m2, relatively high radiogenic heat pro- duction, slow crustal thickening (0.5—1 cm/y for 10— 20 Ma) and slow exhumation. The results of the mo- deling confirm other model estimates [England, Th- ompson, 1984; Gerdes et al., 2000]. The research is supported by the Russian Foun- dation for the Basic Research (09—05—01032). References Brewer J. Thermal effects of thrust faulting // Earth Pla- net. Sci. Lett. — 1981. — 56. — P. 233—244. Chamberlain C. P., Karabinos P. Influence of deforma- tion on pressure — temperature paths of meta- morphism // Geology. — 1987. — 15. — P. 42—44. England P., Thompson A. B. Pressure-temperature- time paths of regional metamorphism. Part I: Heat transfer during the evolution of regions of thickened continental crust // J. Petrology. — 1984. — 25. — P. 894—928. Gerdes A., Worner G., Henk A. Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: the Variskan South Bohemian Batholith // J. Geolog. Soc. — 2000. — 157. — P. 577—587. Parphenuk O. I. Thermal regime of collisional over- thrust structures // Izvestiya. Phys. Solid Earth. — 2005. — 41, ��3. — P. 238—240. Parphenuk O. I., Dechoux V., Mareschal J.-C. Finite- element models of evolution for the Kapuskasing structural zone // Can. J. Earth Sci. — 1994. — 31. — P. 1227—1234. Rosen O. M., Fedorovsky V. S. Collisional granitoids and the Earth crust layering. — Moscow: Nauchnyi Mir, 2001. — 188 p. (in Russian). Turcotte D., Shubert J. Geodynamics. — Moscow: Mir, 1985. — I. — 376 p. (in Russian).