Dynamic of gas hydrate deposits evolution under subaqueous conditions
Gespeichert in:
Datum: | 2010 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут геофізики ім. С.I. Субботіна НАН України
2010
|
Schriftenreihe: | Геофизический журнал |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/103090 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Dynamic of gas hydrate deposits evolution under subaqueous conditions / E. Suetnova // Геофизический журнал. — 2010. — Т. 32, № 4. — С. 175-176. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-103090 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1030902016-06-14T03:02:19Z Dynamic of gas hydrate deposits evolution under subaqueous conditions Suetnova, E. 2010 Article Dynamic of gas hydrate deposits evolution under subaqueous conditions / E. Suetnova // Геофизический журнал. — 2010. — Т. 32, № 4. — С. 175-176. — Бібліогр.: 4 назв. — англ. 0203-3100 http://dspace.nbuv.gov.ua/handle/123456789/103090 en Геофизический журнал Інститут геофізики ім. С.I. Субботіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
format |
Article |
author |
Suetnova, E. |
spellingShingle |
Suetnova, E. Dynamic of gas hydrate deposits evolution under subaqueous conditions Геофизический журнал |
author_facet |
Suetnova, E. |
author_sort |
Suetnova, E. |
title |
Dynamic of gas hydrate deposits evolution under subaqueous conditions |
title_short |
Dynamic of gas hydrate deposits evolution under subaqueous conditions |
title_full |
Dynamic of gas hydrate deposits evolution under subaqueous conditions |
title_fullStr |
Dynamic of gas hydrate deposits evolution under subaqueous conditions |
title_full_unstemmed |
Dynamic of gas hydrate deposits evolution under subaqueous conditions |
title_sort |
dynamic of gas hydrate deposits evolution under subaqueous conditions |
publisher |
Інститут геофізики ім. С.I. Субботіна НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/103090 |
citation_txt |
Dynamic of gas hydrate deposits evolution under subaqueous conditions / E. Suetnova // Геофизический журнал. — 2010. — Т. 32, № 4. — С. 175-176. — Бібліогр.: 4 назв. — англ. |
series |
Геофизический журнал |
work_keys_str_mv |
AT suetnovae dynamicofgashydratedepositsevolutionundersubaqueousconditions |
first_indexed |
2025-07-07T13:16:39Z |
last_indexed |
2025-07-07T13:16:39Z |
_version_ |
1836994213123719168 |
fulltext |
�������������
�� !"#
$
%&
'(
)�&
�*�* �3�
+,�
�-.�,/�0
��.
���
�1��,
��0.
0�
0���,�
���
�����
��
Dynamic of gas hydrate deposits evolution under
subaqueous conditions
E. Suetnova, 2010
Institute of Physics of the Earth, RAS, Moscow, Russia
elena_suetnova@mail.ru
At present, more than 100 areas of gas hydrate
manifestations in sediments have been revealed by
various geophysical (mainly seismic) methods.
Subsurface filtration is the most powerful process
of gas and fluid transport into hydrate stability zone
to form gas hydrate deposits in sediments [Davie,
Buffet, 2002]. Pressures and temperatures favorable
for the formation and stability of gas hydrates are
widespread in seafloor structures, particularly, at
continental margins, where accumulated sediments
contain appreciable amounts of biological material,
ensuring gas (mainly methane) influx into crustal
fluids. Depths of hydrate stability interval and hy-
drate saturation are different in natural conditions.
These differences were interpreted usually in the
frame of thermal regime peculiarity. Peculiarity of
sediment accumulation processes was not consi-
dered usually, but the sedimentation regime deter-
mined the evolution of porosity, permeability, fluid
pressure and filtration rate in accumulating sedi-
ments [Suetnova, Vasseur, 2000]. Thus, to under-
stand the mechanisms of accumulation and evolu-
tion of hydrate deposits in sediments during geo-
logical history it is necessary to study the complex
geophysical process of porosity, filtration and hyd-
rate accumulation evolution. The author’s recent
results of numerical modeling of gas hydrate accu-
mulation in dependence on geophysical condition
of sedimentation are presented below.
Methods and results. Gas and fluid filtration is
determined by compaction during sediments pill
growing, so, hydrate accumulation depends on
se-dimentation and compaction history of
sediments. Interrelated processes of filtration and
visco-elastic sediment compaction during
sediment column gro-wing are accounted for
system of nonlinear differen-tial equations
supplemented by appropriate boun-dary
conditions [Suetnova, Vasseur, 2000]. The sys-
tem was reduced to a dimensionless form in
order to reveal its characteristic scales
[Barenblatt, 1982].
The dimensionality analysis of parameters and vari-
ables of the system reveals the compaction-related
length L and time T scales characteristic of the prob-
lem considered [Suetnova, Vasseur, 2000].
Thus, the system in the dimensionless form with
these scales contains the dimensionless
characteristic similarity numbers V=V0/ L/T, and
DA��-˛ and, con-sequently, the depth and time
distributions of the dimensionless porosity, the
velocities of the sedi-ment matrix and pore fluid,
and the hydrate con-centration, which are obtained
as solutions of the system of equations, depend on
these similarity numbers. Changes in the values of
permeability, vis-cosity, and sedimentation rate
alter the values of the characteristic similarity
numbers of the com-paction process, controlling
the fluid flow in sedi-ments [Suetnova, Vasseur,
2000]. Therefore, regu-lar patterns of
accumulation of gas hydrates in a growing layer of
sediments depending on their physi-cal and
hydrodynamic properties and sedimenta-tion
rates can be determined as a function of the
similarity numbers of the problem of visco-elastic
compaction. To reveal the dynamic of hydrate ac-
cumulation the set of model calculation were per-
formed using geophysical data on known hydrate
regions. The influences of hydrate saturations on
free pore volume and Damkohler number were ta-
ken into account in the calculations [Suetnova,
2007]. Results of the calculations show that hydrate
accumulation essentially influences on pore fluid fil-
tration process. Calculations of time-dependent evo-
lution of gas hydrate deposits show that the rate of
hydrate accumulation is higher in the case of deve-
loping overpressures compaction than in equilibri-
um compaction process; provided that real sedimen-
tation rate and final sediment thickness and over-
burden pressure are equal in both case, but rheo-
logical and hydrodynamic property are different (Fi-
gure, Table).
�������
���
����� ����
�32 �������������
�� !"#
$
%&
'(
)�&
�*�*
�� �� �������� ���
��
��
��
��
���
�
��
�
�
���
�
��
�
�
���
��
�
�����
�
�
�
�� ��
�� ���� ��
��
� ���� � ��
��
� ��� ��
�
� ��� ��
�
� ���� ��
�
� ��
�
� ��
��
� ����� �����
�� ����� ��
��
� ���� � ��
��
� ��� ��
�
� ��� ��
�
� ���� ��
�
� ��
�
� ��
��
� ���� ����
�� ����� ��
��
� ���� � ��
��
� ��� ��
�
� ��� ��
�
� ���� ��
�
� ��
�
� ��
��
� ���� �����
�
Comparison of hydrate saturation versus distance from sedi-
ment surface, normalized to sediment final thickness, result-
ing after 2 m.years of sedimentation. Number of curve corre-
sponds to the values of parameters, listed at table 1 at the
same lines number.
Conclusions. The results of modeling interrela-
ted processes of sediment compaction, filtration and
hydrate accumulation during geological history of
sediment pile forming gives the theoretical and nu-
merical base to understand the dependence of hyd-
rate accumulation dynamic on mechanical and hy-
drodynamic processes in sediments which deter-
mined it’s dynamic during geological time.
References
Barenblatt G. I. Similarity, Self-Similarity, and Interme-
diate Asymptotics. — Leningrad: Gidrometeoizdat,
1982. — 255 p. (in Russian).
Davie M. K., Buffet B. A. A comparison of methane
sources using numerical model for the hydrate for-
mation. Proceeding of the 4 international confer-
ence of gas hydrate. — Japan: Yokogama, 2002. —
P. 25—30.
Suetnova E. I. Accumulation of Gas Hydrates and
Compaction of Accumulating Sediments: The Inter-
action Problem // Dokl. Akad. Nauk. — 2007. —
415(6). — P. 818—822 (in Russian).
Suetnova E. I., Vasseur G. 1-D modeling rock compac-
tion in sedimentary basin using visco-elastic rhe-
ology // Earth Planet. Sci. Lett. — 2000. — 178. —
P. 373—383.
|