3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
Hauptverfasser: Tackley, P., Nakagawa, T., Deschamps, F., Connolly, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут геофізики ім. С.I. Субботіна НАН України 2010
Schriftenreihe:Геофизический журнал
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/103099
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy / P. Tackley, T. Nakagawa, F. Deschamps, J. Connolly // Геофизический журнал. — 2010. — Т. 32, № 4. — С. 182-183. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-103099
record_format dspace
spelling irk-123456789-1030992016-06-14T03:04:08Z 3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy Tackley, P. Nakagawa, T. Deschamps, F. Connolly, J. 2010 Article 3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy / P. Tackley, T. Nakagawa, F. Deschamps, J. Connolly // Геофизический журнал. — 2010. — Т. 32, № 4. — С. 182-183. — Бібліогр.: 6 назв. — англ. 0203-3100 http://dspace.nbuv.gov.ua/handle/123456789/103099 en Геофизический журнал Інститут геофізики ім. С.I. Субботіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
format Article
author Tackley, P.
Nakagawa, T.
Deschamps, F.
Connolly, J.
spellingShingle Tackley, P.
Nakagawa, T.
Deschamps, F.
Connolly, J.
3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy
Геофизический журнал
author_facet Tackley, P.
Nakagawa, T.
Deschamps, F.
Connolly, J.
author_sort Tackley, P.
title 3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy
title_short 3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy
title_full 3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy
title_fullStr 3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy
title_full_unstemmed 3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy
title_sort 3d spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy
publisher Інститут геофізики ім. С.I. Субботіна НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/103099
citation_txt 3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy / P. Tackley, T. Nakagawa, F. Deschamps, J. Connolly // Геофизический журнал. — 2010. — Т. 32, № 4. — С. 182-183. — Бібліогр.: 6 назв. — англ.
series Геофизический журнал
work_keys_str_mv AT tackleyp 3dsphericalmodelsofcoupledmantlethermochemicalevolutionplatetectonicsmagmatismandcoreevolutionincorporatingselfconsistentlycalculatedmineralogy
AT nakagawat 3dsphericalmodelsofcoupledmantlethermochemicalevolutionplatetectonicsmagmatismandcoreevolutionincorporatingselfconsistentlycalculatedmineralogy
AT deschampsf 3dsphericalmodelsofcoupledmantlethermochemicalevolutionplatetectonicsmagmatismandcoreevolutionincorporatingselfconsistentlycalculatedmineralogy
AT connollyj 3dsphericalmodelsofcoupledmantlethermochemicalevolutionplatetectonicsmagmatismandcoreevolutionincorporatingselfconsistentlycalculatedmineralogy
first_indexed 2025-07-07T13:17:19Z
last_indexed 2025-07-07T13:17:19Z
_version_ 1836994254135623680
fulltext /#�)-(% '0%.�+,#(� #(%1 �2� ��������� ��� ���������������������� 3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy P. Tackley1, T. Nakagawa1, F. Deschamps1, J. Connolly2, 2010 1Institute für Geophysik, ETH Zürich, Zürich, Switzerland ptackley@ethz.ch 2Insitute für Geochemie und Petrologie, ETH Zürich, Zürich, Switzerland High pressure and temperature experiments and calculations of the properties of mantle minerals show that many different mineral phases exist as a function of pressure, temperature and composition (e. g., [Irifune, Ringwood, 1987]), and that these have a first-order influence on properties such as density, which has a large effect on the dynamics, and elastic moduli, which influence seismic veloc- ity. Numerical models of thermo-chemical mantle convection have typically used a simple approxi- mation to treat these complex variations in material properties, such as the extended Boussinesq ap- proximation. Some numerical models have at- tempted to implement multiple, composition-depen- dent phases into thermo-chemical mantle convec- tion (e. g., [Tackley, Xie, 2004]) and to calculate seismic anomalies from mantle convection simula- tions based on polynominal fitting for temperature, composition and mineral phase [Nakagawa, Tackley, 2006]. However, their linearised treatments are still approximations and may not adequately represent properties including effect of composition on phase transitions. In order to get closer to a realistic min- eralogy, we calculate composition-dependent min- eral assemblages and their physical properties us- ing the code PERPLEX, which minimizes free en- ergy for a given combination of oxides as a function of temperature and pressure [Connolly, 2005], and use this in a numerical model of thermo-chemical mantle convection in a three-dimensional spherical Simulation results using three different compositions for basalt and harzburgite, showing (red isosurfaces) hot upwellings (blue isosurfaces) cold downwellings, (green isosurfaces) subducted crust, (bottom row) slices of compositoin. For full details see [Nakagawa et al., 2010]. ��������� ��� ���������������������� �2� ��� ��!"#�$%&'�("�%()�#*+#�' #(&"�&��&,#��-�%()� �)#..'(/ shell, to calculate three-dimensionally-varying physi- cal proporties. In this presentation we compare the results obtained with this new, self-consistently-cal- culated treatment, with results using the old, approxi- mate treatment, focusing particularly on thermo-chemi- cal-phase structures and seismic anomalies in the CMB region and the transition zone [Nakagawa et al., 2009; 2010]. The numerical models treat the evolution of a planet over billions of years, including self-consis- tent plate tectonics arising from plastic yielding, melt- ing-induced differentiation, and a parameterised model of core evolution based on heat extracted by mantle convection. Results indicate while the behaviour is broadly similar between the self-consistent trea- tment and the parameterised treatment, details of the behaviour depend quite sensitively on exact com- positions, particularly in the contents of Al and Na [Nakagawa et al., 2010]. This approach is also being used to study Mars, Venus, Mercury and super- Earths (Figure). Connolly J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic mode- ling and an application to subduction zone decar- bonation // Earth Planet. Sci. Lett. — 2005. — 236. — P. 524—541. Irifune T., Ringwood A. E. Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behaviour of the subducting slab // Earth Planet. Sci. Lett. — 1987. — 86(2—4). — P. 365—376. Nakagawa T., Tackley P. J. Three-dimensional struc- tures and dynamics in the deep mantle: Effects of post-perovskite phase change and deep mantle layering // Geophys. Res. Lett. — 2006. — 33(L12S11). — DOI:10.1029/2006GL025719. Nakagawa T., Tackley P. J., Deschamps F., Connol- ly J. A. D. Incorporating self-consistently calculated mineral physics into thermo-chemical mantle con- vection simulations in a 3D spherical shell and its influence on seismic anomalies in Earth’s mantle // Geochem. Geophys. Geosyst. — 2009. — 10(Q03004). — DOI:10.1029/2008GC002280. Nakagawa T., Tackley P. J., Deschamps F., Connol- ly J. A. D. The influence of MORB and harzburgite composition on thermo-chemical mantle convec- tion in a 3-D spherical shell with self-consistently calculated mineral physics // Earth Planet. Sci. Lett. — 2010. — 296(3—4). — P. 403—412. Xie S., Tackley P. J. Evolution of helium and argon iso- topes in a convecting mantle // Phys. Earth Planet. Int. — 2004. — 146(3—4). — P. 417—439. References