3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy
Gespeichert in:
Datum: | 2010 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут геофізики ім. С.I. Субботіна НАН України
2010
|
Schriftenreihe: | Геофизический журнал |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/103099 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | 3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy / P. Tackley, T. Nakagawa, F. Deschamps, J. Connolly // Геофизический журнал. — 2010. — Т. 32, № 4. — С. 182-183. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-103099 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1030992016-06-14T03:04:08Z 3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy Tackley, P. Nakagawa, T. Deschamps, F. Connolly, J. 2010 Article 3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy / P. Tackley, T. Nakagawa, F. Deschamps, J. Connolly // Геофизический журнал. — 2010. — Т. 32, № 4. — С. 182-183. — Бібліогр.: 6 назв. — англ. 0203-3100 http://dspace.nbuv.gov.ua/handle/123456789/103099 en Геофизический журнал Інститут геофізики ім. С.I. Субботіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
format |
Article |
author |
Tackley, P. Nakagawa, T. Deschamps, F. Connolly, J. |
spellingShingle |
Tackley, P. Nakagawa, T. Deschamps, F. Connolly, J. 3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy Геофизический журнал |
author_facet |
Tackley, P. Nakagawa, T. Deschamps, F. Connolly, J. |
author_sort |
Tackley, P. |
title |
3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy |
title_short |
3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy |
title_full |
3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy |
title_fullStr |
3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy |
title_full_unstemmed |
3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy |
title_sort |
3d spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy |
publisher |
Інститут геофізики ім. С.I. Субботіна НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/103099 |
citation_txt |
3D Spherical models of coupled mantle thermo-chemical evolution, plate tectonics, magmatism and core evolution incorporating self-consistently calculated mineralogy / P. Tackley, T. Nakagawa, F. Deschamps, J. Connolly // Геофизический журнал. — 2010. — Т. 32, № 4. — С. 182-183. — Бібліогр.: 6 назв. — англ. |
series |
Геофизический журнал |
work_keys_str_mv |
AT tackleyp 3dsphericalmodelsofcoupledmantlethermochemicalevolutionplatetectonicsmagmatismandcoreevolutionincorporatingselfconsistentlycalculatedmineralogy AT nakagawat 3dsphericalmodelsofcoupledmantlethermochemicalevolutionplatetectonicsmagmatismandcoreevolutionincorporatingselfconsistentlycalculatedmineralogy AT deschampsf 3dsphericalmodelsofcoupledmantlethermochemicalevolutionplatetectonicsmagmatismandcoreevolutionincorporatingselfconsistentlycalculatedmineralogy AT connollyj 3dsphericalmodelsofcoupledmantlethermochemicalevolutionplatetectonicsmagmatismandcoreevolutionincorporatingselfconsistentlycalculatedmineralogy |
first_indexed |
2025-07-07T13:17:19Z |
last_indexed |
2025-07-07T13:17:19Z |
_version_ |
1836994254135623680 |
fulltext |
/#�)-(% '0%.�+,#(� #(%1
�2� ���������
���
����������������������
3D Spherical models of coupled mantle thermo-chemical
evolution, plate tectonics, magmatism and core evolution
incorporating self-consistently calculated mineralogy
P. Tackley1, T. Nakagawa1, F. Deschamps1, J. Connolly2, 2010
1Institute für Geophysik, ETH Zürich, Zürich, Switzerland
ptackley@ethz.ch
2Insitute für Geochemie und Petrologie, ETH Zürich, Zürich, Switzerland
High pressure and temperature experiments and
calculations of the properties of mantle minerals
show that many different mineral phases exist as a
function of pressure, temperature and composition
(e. g., [Irifune, Ringwood, 1987]), and that these
have a first-order influence on properties such as
density, which has a large effect on the dynamics,
and elastic moduli, which influence seismic veloc-
ity. Numerical models of thermo-chemical mantle
convection have typically used a simple approxi-
mation to treat these complex variations in material
properties, such as the extended Boussinesq ap-
proximation. Some numerical models have at-
tempted to implement multiple, composition-depen-
dent phases into thermo-chemical mantle convec-
tion (e. g., [Tackley, Xie, 2004]) and to calculate
seismic anomalies from mantle convection simula-
tions based on polynominal fitting for temperature,
composition and mineral phase [Nakagawa, Tackley,
2006]. However, their linearised treatments are still
approximations and may not adequately represent
properties including effect of composition on phase
transitions. In order to get closer to a realistic min-
eralogy, we calculate composition-dependent min-
eral assemblages and their physical properties us-
ing the code PERPLEX, which minimizes free en-
ergy for a given combination of oxides as a function
of temperature and pressure [Connolly, 2005], and
use this in a numerical model of thermo-chemical
mantle convection in a three-dimensional spherical
Simulation results using three different compositions for basalt and harzburgite, showing (red isosurfaces) hot upwellings
(blue isosurfaces) cold downwellings, (green isosurfaces) subducted crust, (bottom row) slices of compositoin. For full
details see [Nakagawa et al., 2010].
���������
���
���������������������� �2�
��� ��!"#�$%&'�("�%()�#*+#�' #(&"�&��&,#��-�%()� �)#..'(/
shell, to calculate three-dimensionally-varying physi-
cal proporties. In this presentation we compare the
results obtained with this new, self-consistently-cal-
culated treatment, with results using the old, approxi-
mate treatment, focusing particularly on thermo-chemi-
cal-phase structures and seismic anomalies in the
CMB region and the transition zone [Nakagawa et al.,
2009; 2010]. The numerical models treat the evolution
of a planet over billions of years, including self-consis-
tent plate tectonics arising from plastic yielding, melt-
ing-induced differentiation, and a parameterised model
of core evolution based on heat extracted by mantle
convection. Results indicate while the behaviour is
broadly similar between the self-consistent trea-
tment and the parameterised treatment, details of
the behaviour depend quite sensitively on exact com-
positions, particularly in the contents of Al and Na
[Nakagawa et al., 2010]. This approach is also being
used to study Mars, Venus, Mercury and super-
Earths (Figure).
Connolly J. A. D. Computation of phase equilibria by
linear programming: a tool for geodynamic mode-
ling and an application to subduction zone decar-
bonation // Earth Planet. Sci. Lett. — 2005. — 236.
— P. 524—541.
Irifune T., Ringwood A. E. Phase transformations in a
harzburgite composition to 26 GPa: implications
for dynamical behaviour of the subducting slab //
Earth Planet. Sci. Lett. — 1987. — 86(2—4). —
P. 365—376.
Nakagawa T., Tackley P. J. Three-dimensional struc-
tures and dynamics in the deep mantle: Effects of
post-perovskite phase change and deep mantle
layering // Geophys. Res. Lett. — 2006. —
33(L12S11). — DOI:10.1029/2006GL025719.
Nakagawa T., Tackley P. J., Deschamps F., Connol-
ly J. A. D. Incorporating self-consistently calculated
mineral physics into thermo-chemical mantle con-
vection simulations in a 3D spherical shell and its
influence on seismic anomalies in Earth’s mantle
// Geochem. Geophys. Geosyst. — 2009. —
10(Q03004). — DOI:10.1029/2008GC002280.
Nakagawa T., Tackley P. J., Deschamps F., Connol-
ly J. A. D. The influence of MORB and harzburgite
composition on thermo-chemical mantle convec-
tion in a 3-D spherical shell with self-consistently
calculated mineral physics // Earth Planet. Sci. Lett.
— 2010. — 296(3—4). — P. 403—412.
Xie S., Tackley P. J. Evolution of helium and argon iso-
topes in a convecting mantle // Phys. Earth Planet.
Int. — 2004. — 146(3—4). — P. 417—439.
References
|