Парето-оптимальные решения обратной задачи гравиметрии с неопределенной априорной информацией

Розглянуто теоретичні аспекти розв'язування оберненої нелінійної задачі гравіметрії в умовах невизначеності апріорної інформації. Апріорну інформацію описано за допомогою нечітких множин. Одноцільову геофізичну задачу з невизначеною апріорною інформацією трансформовано в багатокритеріальну зада...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
1. Verfasser: Кишман-Лаванова, Т.Н.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут геофізики ім. С.I. Субботіна НАН України 2015
Schriftenreihe:Геофизический журнал
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/103727
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Парето-оптимальные решения обратной задачи гравиметрии с неопределенной априорной информацией / Т.Н. Кишман-Лаванова // Геофизический журнал. — 2015. — Т. 37, № 5. — С. 93-103. — Бібліогр.: 18 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Розглянуто теоретичні аспекти розв'язування оберненої нелінійної задачі гравіметрії в умовах невизначеності апріорної інформації. Апріорну інформацію описано за допомогою нечітких множин. Одноцільову геофізичну задачу з невизначеною апріорною інформацією трансформовано в багатокритеріальну задачу оптимізації. Одним із критеріїв є функція належності нечіткої множини можливих розв'язків. Розв'язком задачі є множина Парето-оптимальних розв'язків, яку конструйовано в параметричному просторі за допомогою триетапного алгоритму пошуку. Перевагою запропонованого методу є те, що він забезпечує можливість включення широкого інтервалу неймовірнісної апріорної інформації до процедури інверсії та може бути застосований для розв'язування сильно нелінійних задач. Це дає змогу зменшити кількість прямих обчислень задачі вибірковим моделюванням пробних точок у параметричному просторі. Наведено тестовий приклад роботи алгоритму в застосуванні до оберненої задачі гравіметрії для однієї контактної поверхні.