Analysis of Fuel Criticality during Severe Accidents
Interest in the analysis of beyond design basis accidents, involving a combination of several failures with fuel damage, has increased throughout the world after the Fukushima accident. Stress tests were performed at NPPs, and development of severe accident management guidelines was started. These a...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Державне підприємство "Державний науково-технічний центр з ядерної та радіаційної безпеки" Держатомрегулювання України та НАН України
2015
|
Назва видання: | Ядерна та радіаційна безпека |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/105013 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Analysis of Fuel Criticality during Severe Accidents / I. Bilodid, J. Duspiva // Ядерна та радіаційна безпека. — 2015. — № 4. — С. 3-8. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-105013 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1050132016-08-06T03:01:33Z Analysis of Fuel Criticality during Severe Accidents Bilodid, I. Duspiva, J. Interest in the analysis of beyond design basis accidents, involving a combination of several failures with fuel damage, has increased throughout the world after the Fukushima accident. Stress tests were performed at NPPs, and development of severe accident management guidelines was started. These activities necessitated calculations to analyze the probability of beyond design basis accidents and assess their initiating events and consequences. One of the aspects in analysis of beyond design basis accidents is to determine the potential for re-criticality during such accidents. The paper provides results of some criticality safety calculations for VVER reactors performed, in particular, by ÚJV Řež and SSTC NRS experts. It is shown how criticality can occur in different severe accident phases. Во всем мире после аварии на АЭС Фукусимы вырос интерес к анализу запроектных аварий: с наложением нескольких отказов, с повреждением топлива. На АЭС были проведены стресс-тесты, начали разрабатываться руководства по управлению тяжелыми авариями. Как следствие такой деятельности, выросла необходимость в проведении расчетных анализов как вероятности возникновения запроектных аварий, так и исследование условий возникновения аварий и их последствий. Одним из аспектов анализа запроектной аварии является определение возможности возникновения критичности в течение аварии. В статье приведены результаты некоторых расчетных анализов безопасности критичности, которые были сделаны или применимы для реакторов ВВЭР. У всьому світі після аварії на АЕС Фукусіми збільшився інтерес до аналізу запроектних аварій з накладанням кількох відмов та з пошкодженням палива. На АЕС проведено стрес-тести, почали розроблятися керівництва з управління важкими аваріями. Внаслідок такої діяльності зросла потреба в проведенні розрахункових аналізів як імовірності виникнення запроектних аварій, так і дослідження умов виникнення аварій та їх наслідків. Одним з аспектів аналізу запроектної аварії є визначення можливості виникнення критичності протягом аварії. У статті наведено результати деяких розрахункових аналізів безпеки критичності для реакторів ВВЕР, зроблених, зокрема спеціалістами ÚJV Řež та ДНТЦ ЯРБ. Показано можливість виникнення критичності на різних стадіях протікання важкої аварії. 2015 Article Analysis of Fuel Criticality during Severe Accidents / I. Bilodid, J. Duspiva // Ядерна та радіаційна безпека. — 2015. — № 4. — С. 3-8. — Бібліогр.: 10 назв. — англ. 2073-6231 http://dspace.nbuv.gov.ua/handle/123456789/105013 621.039.586:621.039.542 en Ядерна та радіаційна безпека Державне підприємство "Державний науково-технічний центр з ядерної та радіаційної безпеки" Держатомрегулювання України та НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Interest in the analysis of beyond design basis accidents, involving a combination of several failures with fuel damage, has increased throughout the world after the Fukushima accident. Stress tests were performed at NPPs, and development of severe accident management guidelines was started. These activities necessitated calculations to analyze the probability of beyond design basis accidents and assess their initiating events and consequences. One of the aspects in analysis of beyond design basis accidents is to determine the potential for re-criticality during such accidents. The paper provides results of some criticality safety calculations for VVER reactors performed, in particular, by ÚJV Řež and SSTC NRS experts. It is shown how criticality can occur in different severe accident phases. |
format |
Article |
author |
Bilodid, I. Duspiva, J. |
spellingShingle |
Bilodid, I. Duspiva, J. Analysis of Fuel Criticality during Severe Accidents Ядерна та радіаційна безпека |
author_facet |
Bilodid, I. Duspiva, J. |
author_sort |
Bilodid, I. |
title |
Analysis of Fuel Criticality during Severe Accidents |
title_short |
Analysis of Fuel Criticality during Severe Accidents |
title_full |
Analysis of Fuel Criticality during Severe Accidents |
title_fullStr |
Analysis of Fuel Criticality during Severe Accidents |
title_full_unstemmed |
Analysis of Fuel Criticality during Severe Accidents |
title_sort |
analysis of fuel criticality during severe accidents |
publisher |
Державне підприємство "Державний науково-технічний центр з ядерної та радіаційної безпеки" Держатомрегулювання України та НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/105013 |
citation_txt |
Analysis of Fuel Criticality during Severe Accidents / I. Bilodid, J. Duspiva // Ядерна та радіаційна безпека. — 2015. — № 4. — С. 3-8. — Бібліогр.: 10 назв. — англ. |
series |
Ядерна та радіаційна безпека |
work_keys_str_mv |
AT bilodidi analysisoffuelcriticalityduringsevereaccidents AT duspivaj analysisoffuelcriticalityduringsevereaccidents |
first_indexed |
2025-07-07T16:12:12Z |
last_indexed |
2025-07-07T16:12:12Z |
_version_ |
1837005260731711488 |
fulltext |
ISSN 2073-6237. Ядерна та радіаційна безпека 4(68).2015 3
I
n the analyses of beyond design basis accidents with
core meltdown, the issue of potential re-criticality does
not generally arise since core meltdown can occur only
as a result of major core exposure and thus without
sufficient neutron moderation. In case of supply of
emergency cooling water, quite high boron content is assumed
in PWR, so that criticality can be excluded.
There have been numerous experiments on test facilities
around the world since the early 1980s. In particular, they
were performed by Japanese Atomic Energy Research Institute
(JAERI), Forschungszentrum Karlsruhe (FZK), Korea Atomic
Energy Research Institute (KAERI), Hungarian Atomic Energy
Research Institute (AEKI), and many others [1]:
CORA, QUENCH (FZK, KIT);
CODEX (AEKI/KFKI);
ALPHA/MUSE (JAERI);
PHEBUS (IPSN);
PARAMETER (IBRAE).
There were also some computer approaches, primarily for
BWR reactors: [2], [3] and [4].
The Fukushima accident renewed interest in severe accident
analysis, especially in terms of computer modeling [5].
Important in-vessel phenomena
IAEA identifies processes occurring in the core during
a severe accident from different viewpoints [6]:
Thermohydraulics:
Natural circulation of steam and non-condensable gases (to
delay the overall heating of the core), ≤1500 K;
Reflooding of hot, damaged cores (oxidation, hydrogen
production, fission product release and melting), >1500 K;
Oxidation of core materials:
Zircaloy oxidation in steam (protective oxide film), 1500 K —
3000 K;
Oxidation of B4C in steam (hydrogen and methane
production);
Loss of core geometry:
Swelling and rupture of the cladding (release of fission
products), 1000–1500 K;
Liquefaction and relocation of control and structural
materials (segregating from the fuel, increasing the potential for
re-criticality, local blockages), 1500 and 1700 K;
Liquefaction and relocation of zircaloy cladding (reduction
in hydrogen production and heat generation due to oxidation),
2000 — 2200 K;
Liquefaction and slumping of the fuel (formation of large
blockages), < 2870 K;
Relocation of molten pool materials into the lower plenum
Fragmentation of embrittled core materials, < 1500 K,
> 1500 K;
Heating and failure of the lower head (vessel failure);
Other factors:
Impact of alternative core/vessel designs, 1000–1700 K;
Re-criticality, 1500 — 1700 K;
Fission product release and transport.
Thus, while the initial and final states of fuel can be set in
computer modeling, the condition of the core (fuel, internals
and control rods) between these states is determined very
approximately and strongly depends on the performance of
safety systems and personnel actions to mitigate consequences
of the accident. At various stages of the accident, the core
will be cooled down by water. If there is adverse ratio of the
parameters, this can lead to criticality and self-sustaining chain
reaction.
УДК 621.039.586:621.039.542
I. Bilodid, J. Duspiva
1 State Scientific and Technical Center for Nuclear
and Radiation Safety, Kyiv, Ukraine
2 ÚJV Řež a. s., Husinec, Czech Republic
Analysis of Fuel Criticality
during Severe Accidents
Interest in the analysis of beyond design basis accidents, involving
a combination of several failures with fuel damage, has increased
throughout the world after the Fukushima accident. Stress tests were
performed at NPPs, and development of severe accident management
guidelines was started. These activities necessitated calculations to analyze
the probability of beyond design basis accidents and assess their initiating
events and consequences. One of the aspects in analysis of beyond design
basis accidents is to determine the potential for re-criticality during such
accidents.
The paper provides results of some criticality safety calculations for
VVER reactors performed, in particular, by ÚJV Řež and SSTC NRS experts. It
is shown how criticality can occur in different severe accident phases.
K e y w o r d s: criticality, severe accident, VVER, corium.
Є. І. Білодід, Ж. Дуспіва
Аналіз критичності палива під час важких аварій
У всьому світі після аварії на АЕС Фукусіми збільшився інтерес
до аналізу запроектних аварій з накладанням кількох відмов та з по-
шкодженням палива. На АЕС проведено стрес-тести, почали розро-
блятися керівництва з управління важкими аваріями. Внаслідок такої
діяльності зросла потреба в проведенні розрахункових аналізів
як імовірності виникнення запроектних аварій, так і дослідження умов
виникнення аварій та їх наслідків. Одним з аспектів аналізу запроектної
аварії є визначення можливості виникнення критичності протягом аварії.
У статті наведено результати деяких розрахункових аналізів безпе-
ки критичності для реакторів ВВЕР, зроблених, зокрема спеціалістами
ÚJV Řež та ДНТЦ ЯРБ. Показано можливість виникнення критичності
на різних стадіях протікання важкої аварії.
К л ю ч о в і с л о в а: критичність, важка аварія, ВВЕР, розплав.
© I. Bilodid, J. Duspiva, 2015
4 ISSN 2073-6237. Ядерна та радіаційна безпека 4(68).2015
I. Bilodid, J. Duspiva
Since calculations of fuel criticality during severe accidents
have become of interest only recently, there are few data on the
results obtained.
Criticality under severe accidents
One of the available analyses is calculation of the neutron
multiplication factor in failure of the VVER-1000 core reported
in [7]. As indicated in the report, all calculations of core Keff
for various stages of core damage were performed with the
MCU-REA/1 code (Figure 1).
Figure 1 — various stages of VVER-1000
reactor core failure. Computer model
The parameters of the heterogeneous water-uranium lattice
correspond to its maximum multiplying properties. The results
of Keff calculations for the core that preserves its structure are
presented in Table 1.
Table 1 — Keff of the core for different
types of fuel cladding degradation
Cladding Keff
Normal cladding 1.216
Swelled cladding with mass conservation 1.215
Swelled ZrO2 cladding with area conservation 1.227
Swelled ZrH2 cladding with area conservation 1.264
Then a heterogeneous water-uranium lattice is considered
with parameters corresponding to its maximum multiplying
properties. Two cases of fuel location are considered: fuel
remains in the form of corium particles instead of damaged fuel
elements and fuel moves to the lower plenum (Table 2).
Table 2 – Keff for two cases of fuel location
Number of damaged
fuel assemblies
Fuel remains
in the form of corium
particles
Fuel in the form
of particles moves
to lower plenum
0 1.0831 1.0831
19 1.2369 —
61 1.2643 1.0788
91 — 1.0631
127 1.2860 0.9436
Figure 2 shows the results of Keff calculation for VVER
molten core located on the reactor pressure vessel bottom
depending on the weight of zirconium and iron dissolved in
the corium. The calculations assumed that the melt located on
the bottom of the reactor pressure vessel is a complex multi-
component porous system containing UO2, Zr, and Fe. The
weight of UO2 is taken to be 80 tons.
As seen from the results presented in [7], the use of pure
(non-borated) water for cooling may cause criticality at all
stages of a beyond design basis accident with core melt.
Figure 2 — Keff of VVER molten core located on the
bottom of the reactor pressure vessel depending on the
weight of zirconium and iron dissolved in the corium
Another analysis presented in [8] and continued in [9]
concerns BWR reactor fuel.
For conservative results, the spherical arrangement of the
corium was chosen so as to achieve the lowest leakage of neutrons
and critical mass. The holes within the corium were assumed
to be completely filled with pure water (density = 1.0 g/cm3) to
promote critical moderation conditions. The geometrical model
of the holes was set to have the body-centered cubic (BCC)
structure to reproduce irregular placement at the beginning of
the accident.
The total amount of corium was determined by changing the
interval (D) between the poles, i.e. related to packing ratio, and
the radius (R) of the whole corium shape.
Figure 3 shows a conceptual geometric model for MCNP
criticality calculation.
These results are presented in the paper because this
computer model may be applied to any reactor type; only the
fuel type (uranium or MOX) and enrichment are relevant.
It was confirmed that the reactor corium resulting from 548
General Electric fuel assemblies has hardly the potential for re-
criticality (Table 3). This is because Gd2O3 serves as an efficient
and very strong neutron absorber in the fuel, even though
pure water was filled in the containment vessel as a neutron
moderator.
In case Gd2O3 is not included in the corium, the results
showed the supercritical condition in the range from
1.04671±0.00195 to 1.37803±0.00147 despite a little amount of
the corium (Table 4). It was also found out that criticality
varied regardless of increase in the total amount of the corium
changing with the packing ratio while the radius ‘R’ was
constant.
Therefore, it is assumed that re-criticality of the reactor
corium would be possible if there is no neutron absorber.
ISSN 2073-6237. Ядерна та радіаційна безпека 4(68).2015 5
Analysis of Fuel Criticality during Severe Accidents
Figure 3 — conceptual model for criticality calculation from [8]
Table 3 — Keff for reactor corium including Gd2O3
Packing ratio of corium [%]
Radius of whole corium shape (R)
50 cm 100 cm 150 cm
10 0.23462 0.25749 0.26275
30 0.34651 0.38308 0.39488
50 0.45089 0.51087 0.52625
60 0.49758 0.57373 0.59486
Table 4 — Keff for reactor corium not including Gd2O3
Packing ratio of corium [%] Radius of whole corium shape (R)
50 cm 100 cm 150 cm
10 1.05990 1.17743 1.20648
30 1.20503 1.34165 1.37803
50 1.11952 1.25780 1.29668
60 1.04671 1.18205 1.22068
In [9] a slightly different computer model is used. Molten
rods, elements of fuel assemblies and internals were considered
(Figure 4). The criticality coefficient Keff depending on the
radius of the molten fuel is given in Figure 5.
Figure 4 — conceptual model for criticality calculation from [9]
However, the critical mass was achieved with UO2 of about
80 kg. The minimum amount exceeding the critical value of
Keff = 0.95 was approximately 60 kg. The total amount of uranium
loaded in the core should be considered. The mass of uranium
per GE 7 × 7 fuel assembly is slightly higher than 200 kg and
1/3 molten fuel can sufficiently result in re-criticality. In addition,
the real reactor core is loaded with 500–800 fuel assemblies.
The critical mass is attributable to Keff = 1.11619 ± 0.00148
despite fuel degradation of 0.2%. Therefore, a small amount of
corium, such as localized or lumped-mass corium, has a high
potential for re-criticality and should be significantly addressed
in the core criticality analysis for severe accidents.
Figure 5 — variation of effective multiplication
factor (Keff) with increase in corium radius
The corium under the accident scenarios represented very
high Keff values (up to 1.4). Hence, supply of non-borated water
into the layer-separated configuration can lead to relatively
high chain reactions through enhanced moderation. Excessive
borated water also results in positive reactivity. In addition, the
prior verification of the boron quantity needed for criticality
control is important to secure the supply in advance and to
minimize the dilution time of boron.
The ÚJV approach [10] is based on the assumption that
water in IO and all ECCs (active and passive) is borated.
Moreover, regardless of the initiating event, water boiling
results in increase in boric acid concentration in the remaining
water and the formation of crystals on fuel rod surface. The
behavior of boric acid crystals is of key importance, but has
not been well investigated for severe accident conditions.
However, the behavior of boric acid crystals and/or oxides
will determine the remaining content of boron in debris or
corium.
An example of analysis is shown below. This scenario
assumed complete melting of all absorbing elements and
damage of all fuel assemblies. The melt gets to the reactor
pressure vessel bottom, and debris of the damaged fuel
assemblies accumulate on top of the melt. Uranium has 4.6 %
enrichment.
The melt and debris are surrounded by walls of the reactor
pressure vessel (14.9 cm in thickness). There is a water layer (25 cm)
above (Figure 6). There is vacuum at the ultimate boundary.
The calculation was conducted using the MCNP code (Table 5).
6 ISSN 2073-6237. Ядерна та радіаційна безпека 4(68).2015
I. Bilodid, J. Duspiva
1 — molten homogeneous mixture of
stainless steel and boron stainless steel
(1.8 wt.%);
2 — debris from fuel assemblies and shrouds;
3 — water;
4 — RPV wall
Figure 6 — conceptual model
for criticality calculation
Table 5 — Values of Keff versus density factor (df)
df Keff σ(%) df Keff σ(%)
1.0 0.66505 0.02 2.0 1.40669 0.01
1.1 0.85588 0.01 2.1 1.41232 0.01
1.18 0.98054 0.01 2.15 1.41346 0.01
1.19 0.99389 0.01 2.2 1.41368 0.01
1.194 0.99980 0.01 2.25 1.41350 0.01
1.195 1.00066 0.02 2.3 1.41190 0.01
1.2 1.00761 0.01 2.4 1.40691 0.01
1.3 1.12306 0.01 2.5 1.39951 0.01
1.4 1.20808 0.01 3.0 1.33443 0.01
1.5 1.27201 0.01 — — —
The density factor characterizes the content of water in
debris. As is seen from the previous table, the maximum Keff
corresponds to the density factor of ~2.2 and is equal to ≈1.4.
SSTC experts, as part of their trial calculations, also carried
out analysis of fuel melting during a severe accident.
One such case was criticality analysis of molten core for
the research reactor VVR-M, consisting of 210 fuel assemblies
VVR-M2 with an enrichment of 19.7%. The computer model
(Figure 7) is a cylinder composed of 210 fuel assemblies and
surrounded by non-borated water with normal density (1 g/cm3).
The temperature of the system was 20 °C. The boundary
conditions were set to vacuum. The multiplying properties of
the system with changing ratio between the cylinder radius and
height calculated with the SCALE code package are shown in
Figure 8.
Figure 8 – criticality of molten core, for
210 VVR-M2 fuel assemblies
As seen from the results, the system having the molten core
and surrounded by water is deeply subcritical.
Calculations for the case of fuel leakage from the fuel
assemblies of TVSA type (4.45%/3.6% excluding burnable
absorber) to the bottom of the reactor pool were also performed.
Below are results of calculations performed to determine the
critical weight and the size of the fuel-containing mass.
For this purpose, the fuel mass was assumed to be in
the shape characterized by the lowest leakage of neutrons:
a sphere surrounded by non-borated water with normal density
(Figure 9). For the simplest determination of the critical
dimensions of the molten fuel, such a model is acceptable. The
water content in the fuel sphere ranged from 0 to 90 vol.% to
examine the influence of fuel mass porosity and water ingress
on multiplication properties (Figure 10).
Figure 9 – model for criticality calculation
As shown by the calculations, the minimum weight of
uranium that can lead to criticality in the total absence of any
absorber and with optimum water-uranium ratio is 61 kg in the
case of 4.4% enriched UO2 fuel.
Results of similar calculations, but taking into account
uniformly mixed claddings with fuel, are shown in Figure
11. The minimum weight obtained in this case was 70 kg of
uranium.
Figure 7 — VVR-M2
fuel assembly (left)
and schematic molten
core model (right)
ISSN 2073-6237. Ядерна та радіаційна безпека 4(68).2015 7
Analysis of Fuel Criticality during Severe Accidents
Figure 10 – criticality of fuel in water
Figure 11 — criticality of fuel and claddings in water
8 ISSN 2073-6237. Ядерна та радіаційна безпека 4(68).2015
I. Bilodid, J. Duspiva
Conclusions
As shown in the paper, the critical mass for typical VVER
fuel (enriched to 4.4%) is not so great, about 60-70 kg of
uranium, corresponding to 70-80 kg of UO2 fuel.
Hence, it is theoretically possible that fuel-containing
masses can reach critical condition in destruction of the reactor
core. However, the main condition for achieving the criticality
is the presence of water in and around the fuel-containing mass,
which can be supplied by safety systems or personnel actions to
retain the melt inside the reactor vessel and ensure its cooling.
Therefore, in the criticality analysis for severe accidents, it is
important to take into account the following factors:
1. Boiling process
2. Boric acid behavior
3. Core degradation progress, relocation of fuel mass
4. Water injection conditions.
In the above regard, it is currently difficult to analyze the
course of a severe accident in terms of the criticality analysis.
The degree of conservatism and representativeness of any
computer model will depend on various factors and accident
progress.
A severe accident initiated in the spent fuel pool has some
risk of criticality due to possible injection of non-borated water
and further analysis is needed. Nevertheless, it proceeds much
more slowly than in the reactor. Moreover, in most spent fuel
pools, there are compact storage racks made of borated steel.
All this reduces the possibility of reaching the criticality, but
leads to other problems such as generation of hydrogen and
other gases due to the interaction of the fuel assembly elements
and storage rack structures with water at elevated temperatures.
References
1. NEA/CSNI/R(2000)21. In-Vessel Core Degradation Code
Validation Matrix Update 1996–1999.
2. Scott, W. B., Harrison, D. G., Libby, R. A., Tokarz, R. D.,
Wooton, R. D., Denning, R. S., Tayloe Jr., R. W. (1990), “Recriticality
in a BWR Following a Core Damage Event”, NUREG/CR-5653,
PNL-7476, Washington, DC — NRC.
3. Hцjerup, F., Miettinen, J., Nilsson, L., Puska, E. K., Sjцvall, H.,
Anttila, M., Lindholm, I. (1997), “On Recriticality during Reflooding
of a Degraded Boiling Water Reactor Core”, NKS/RAK-2(97)TR-A3.
Informationsservice, Risш.
4. Frid, W., Hцjerup, F., Lindholm, I., Miettinen, J., Nilsson, L.,
Puska, E. K., Sjцvall, H., “Severe Accident Recriticality Analyses
(SARA)”. SKI Report 99:32.
5. Muhammad Hashim, Yang Ming, Azkar Saeed Ahmed (2013),
“Review of Severe Accident Phenomena in LWR and Related Severe
Accident Analysis Codes”. Research Journal of Applied Sciences,
Engineering and Technology 5(12): 3320–3335.
6. Safety Reports Series No. 56. Approaches and tools for severe
accident analysis for nuclear power plants. IAEA, 2008.
7. Artamonov, N. V., Sidorov, A. S., “Change of Multiplying
Properties of VVER-1000 in Beyond Design-Basis Accidents with Core
Melt”. (Rus)
8. Hae Sun Jeong, Eun Hyun Ryu, Jin Ho Song, Kwang Soon Ha,
Yong Mann Song, (2012), “Evaluation of Possibility for Reactor Corium
Re-criticality in Fukushima NPP Accident”, Proc. of Transactions
of the Korean Nuclear Society Spring Meeting. Jeju, Korea, May 17–18.
9. Hae Sun Jeong, Chang Je Park, Kwang Soon Ha, (2014) “Analysis
on Criticality Properties and Control Strategies after Reflooding
of a Damaged Reactor Core”, Annals of Nuclear Energy 69, pp. 65–73.
10. Jiřн Duspiva, “Corium Localization Using In-Vessel Retention
Strategy with External Reactor Vessel Cooling”.
Отримано 15.10.2015.
|