Impact of tropical cyclones on a baroclinic jet in the ocean
The initial evolution of a baroclinic jet under influence of a barotropic flow induced by the tropical cyclones is considered using a two-layer model and the thin-jet approximation. In spite of antisymmetric structure of the barotropic flow, the jet meander growth due to the barotropic flow advectio...
Gespeichert in:
Datum: | 2013 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Морський гідрофізичний інститут НАН України
2013
|
Schriftenreihe: | Морской гидрофизический журнал |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/105098 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Impact of tropical cyclones on a baroclinic jet in the ocean / G. Sutyrin, I. Ginis // Морской гидрофизический журнал. — 2013. — № 5. — С. 44-50. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-105098 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1050982016-08-07T03:02:29Z Impact of tropical cyclones on a baroclinic jet in the ocean Sutyrin, G. Ginis, I. Анализ результатов наблюдений и методы расчета гидрофизических полей океана The initial evolution of a baroclinic jet under influence of a barotropic flow induced by the tropical cyclones is considered using a two-layer model and the thin-jet approximation. In spite of antisymmetric structure of the barotropic flow, the jet meander growth due to the barotropic flow advection is shown to favor an anticyclonic meander to the right of the storm track. This enhancement of the anticyclonic meander is found to be related to the dispersion properties of frontal waves along the jet described by the thin-jet theory and coupling with deep eddies developing in the lower layer during the jet meandering. У рамках двошарової моделі та в наближенні тонкого струменя розглядається еволюція бароклинного струменя, викликаного баротропною течією, індукованою тропічним циклоном. Показано, що, не дивлячись на антисиметричну структуру баротропної течії, її адвекція призводить до меандрування бароклинного струменя та до зростання головним чином антициклонічного меандру праворуч від штормтрека. Знайдено, що посилення антициклонічного меандру пов'язане з дисперсійними властивостями фронтальних хвиль (які описуються у рамках теорії тонкого струменя) і з взаємодією з глибинними вихорами, які розвиваються в нижньому шарі океану при меандруванні бароклинного струменю. В рамках двухслойной модели и в приближении тонкой струи рассматривается эволюция бароклинной струи, вызванной баротропным течением, индуцированным тропическим циклоном. Показано, что, несмотря на антисимметричную структуру баротропного течения, его адвекция приводит к меандрированию бароклинной струи и к росту главным образом антициклонического меандра справа от штормтрека. Обнаружено, что усиление антициклонического меандра связано с дисперсионными свойствами фронтальных волн (описываемых в рамках теории тонкой струи) и с взаимодействием с глубинными вихрями, развивающимися в нижнем слое океана при меандрировании бароклинной струи. 2013 Article Impact of tropical cyclones on a baroclinic jet in the ocean / G. Sutyrin, I. Ginis // Морской гидрофизический журнал. — 2013. — № 5. — С. 44-50. — Бібліогр.: 19 назв. — англ. 0233-7584 http://dspace.nbuv.gov.ua/handle/123456789/105098 551.465 en Морской гидрофизический журнал Морський гідрофізичний інститут НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Анализ результатов наблюдений и методы расчета гидрофизических полей океана Анализ результатов наблюдений и методы расчета гидрофизических полей океана |
spellingShingle |
Анализ результатов наблюдений и методы расчета гидрофизических полей океана Анализ результатов наблюдений и методы расчета гидрофизических полей океана Sutyrin, G. Ginis, I. Impact of tropical cyclones on a baroclinic jet in the ocean Морской гидрофизический журнал |
description |
The initial evolution of a baroclinic jet under influence of a barotropic flow induced by the tropical cyclones is considered using a two-layer model and the thin-jet approximation. In spite of antisymmetric structure of the barotropic flow, the jet meander growth due to the barotropic flow advection is shown to favor an anticyclonic meander to the right of the storm track. This enhancement of the anticyclonic meander is found to be related to the dispersion properties of frontal waves along the jet described by the thin-jet theory and coupling with deep eddies developing in the lower layer during the jet meandering. |
format |
Article |
author |
Sutyrin, G. Ginis, I. |
author_facet |
Sutyrin, G. Ginis, I. |
author_sort |
Sutyrin, G. |
title |
Impact of tropical cyclones on a baroclinic jet in the ocean |
title_short |
Impact of tropical cyclones on a baroclinic jet in the ocean |
title_full |
Impact of tropical cyclones on a baroclinic jet in the ocean |
title_fullStr |
Impact of tropical cyclones on a baroclinic jet in the ocean |
title_full_unstemmed |
Impact of tropical cyclones on a baroclinic jet in the ocean |
title_sort |
impact of tropical cyclones on a baroclinic jet in the ocean |
publisher |
Морський гідрофізичний інститут НАН України |
publishDate |
2013 |
topic_facet |
Анализ результатов наблюдений и методы расчета гидрофизических полей океана |
url |
http://dspace.nbuv.gov.ua/handle/123456789/105098 |
citation_txt |
Impact of tropical cyclones on a baroclinic jet in the ocean / G. Sutyrin, I. Ginis // Морской гидрофизический журнал. — 2013. — № 5. — С. 44-50. — Бібліогр.: 19 назв. — англ. |
series |
Морской гидрофизический журнал |
work_keys_str_mv |
AT sutyring impactoftropicalcyclonesonabaroclinicjetintheocean AT ginisi impactoftropicalcyclonesonabaroclinicjetintheocean |
first_indexed |
2025-07-07T16:19:09Z |
last_indexed |
2025-07-07T16:19:09Z |
_version_ |
1837005694885167104 |
fulltext |
© G. Sutyrin, I. Ginis, 2013
Анализ результатов наблюдений
и методы расчета
гидрофизических полей океана
UDC 551.465
G. Sutyrin, I. Ginis
Impact of tropical cyclones on a baroclinic jet in the ocean
The initial evolution of a baroclinic jet under influence of a barotropic flow induced by the tropi-
cal cyclones is considered using a two-layer model and the thin-jet approximation. In spite of
antisymmetric structure of the barotropic flow, the jet meander growth due to the barotropic flow
advection is shown to favor an anticyclonic meander to the right of the storm track. This enhancement
of the anticyclonic meander is found to be related to the dispersion properties of frontal waves along
the jet described by the thin-jet theory and coupling with deep eddies developing in the lower layer
during the jet meandering.
Keywords: baroclinic jet, tropical cyclone, anticyclonic meander, thin-jet theory.
Introduction
Tropical cyclones (TC) provide the most intense atmospheric forcing to the
ocean generating both barotropic and baroclinic currents. Here the barotropic cur-
rent is defined as a depth-averaged flow. The baroclinic currents are what remain
after substraction of the depth-averaged flow and are associated with the ocean
stratification. J.E. Geisler [1] was the first to reveal distinctively different nature of
the barotropic and baroclinic responses of the ocean to a moving TC because the
barotropic gravity wave speed is much larger than the baroclnic one. Typically, the
TC translation speed (5 m/s) is greater than the baroclinic wave speed and much
smaller than the barotropic wave speed. Therefore, the baroclinic response is char-
acterized by upwelling with oscillating narrow wake behind the TC, formed by
slow propagating, near-inertial baroclinic waves, while fast propagating barotropic
waves produce a broad barotropic flow.
In a deep ocean, the depth-averaged TC-induced currents are essentially weak-
er than the baroclinic currents concentrated in the upper ocean. Due to strong verti-
cal shear, mixing processes and upwelling are able to reduce the surface tempera-
ture by several degrees that was pointed out in pioneering works by A.I.
Felzenbaum with colleagues (e.g., [2]). The TC-induced mixing and decrease of
the ocean temperature was shown to be enhanced to the right from the storm track
due to resonance between inertial oscillations and rotating wind direction during
TC passage [3, 4]. Ocean cooling under TC provides an important negative feed-
back to the TC intensity [5]. Therefore, coupled TC – ocean models are used now
for prediction of TC evolution [6].
ISSN 0233-7584. Мор. гидрофиз. журн., 2013, № 5 44
The most important features of the ocean response to TC with initially hori-
zontally homogeneous ocean conditions which have been widely studied as sum-
marized by A.P. Khain and G.G. Sutyrin [7]. However, when a TC crosses frontal
regions with strong ocean currents such as the Gulf Stream or Kuroshio, the ocean
response is more complicated (e.g., [8 – 11]). Here we focus on a baroclinic jet
meandering forced by a TC using a two-layer model and the thin-jet theory (see
[12] and references therein).
Formulation of the problem
Let’s consider a TC uniformly moving in y-direction at the speed hU over a
stratified ocean with a baroclinc jet flowing in the x-direction at the f-plane. As
shown by I. Ginis and G. Sutyrin [13] for initially horizontally homogeneous
ocean, the depth-averaged TC-induced flow behind the storm is antisymmetric,
being positive to the right from the storm track (in the direction of TC motion) and
negative to the left. It can be characterized by the depth-averaged velocity maxi-
mum, mv and its distance from the storm track, mx :
h
L
m UH
Lav
00
1 ρ
τ
= , Laxm 2= , (1)
where the characteristic TC scale L is defined as the radius where the wind stress
torque dR reaches its maximum, Lτ is the wind stress at this radius, 0H is the
ocean depth, 0ρ is the ocean density. It was found for several typical radial distri-
butions of the wind stress in TC [14] that the coefficient 1a ranges between 2 and
π , and 2a ranges between 0.65 and 1. Here we prescribe the typical cross-track
distribution of the depth-averaged velocity as (thin line in Fig. 3)
.
22
1exp 2
2
−=
mmm x
x
x
x
v
V (2)
Evolution of an initially straight baroclinic jet is considered under influence of such
barotropic ocean flow.
Numerical simulations using a two-layer model
For numerical simulations we use the two-layer intermediate geostrophic mod-
el [15]. The initial setup includes an upper-layer jet without meanders plus the
barotropic flow (2) in both layers over a flat bottom. The baroclinc jet in the upper
layer is initialized by the potential vorticity jump at y = 0 along the x-axis. Choos-
ing mx as the spatial scale and mv as the velocity scale, the flow evolution depends
on three nondimensional parameters: the jet intensity, mu / mv , the jet width,
md xR / , and the depth ratio 0/ HH , where mu is the maximum jet velocity, dR is
the baroclinic radius of deformation, H is the upper layer depth.
Typical results for ,8/ =mm vu ,2/1/ =md xR 6/1/ 0 =HH are shown in
Fig. 1 for mm vxt /= and in Fig. 2 for mm vxt /2= . It can be seen that in spite of
ISSN 0233-7584. Мор. гидрофиз. журн., 2013, № 5 45
antisymmetric structure of the barotropic flow (2), the jet meander growth due to
the barotropic flow advection favors an anticyclonic meander to the right of the
storm track in qualitative agreement with numerical simulations by S. Lee [11]. To
evaluate physical mechanisms behind this effect we use a thin-jet theory.
F i g. 1. The mid-jet path (thick line) superimposed by the stream function in the lower layer (dash
line shows positive (anticyclonic) deep eddies) of the two-layer model for t = xm/vm; solution (11) –
(13) is shown by a thin line
F i g. 2. The mid-jet path (thick line) superimposed by the stream function in the lower layer (dash
lines show positive (anticyclonic) deep eddies) of the two-layer model for t = 2xm/vm; solution (11) –
(13) is shown by a thin line
ISSN 0233-7584. Мор. гидрофиз. журн., 2013, № 5 46
Application of a thin-jet theory
In works [16, 17] the authors investigated meandering of thin ocean jets using
a reduced-gravity shallow water model (valid for small depth ratio) by expanding
the governing equations in terms of a small parameter, the radius of deformation
multiplied by the meander curvature. In the leading approximation, the mid-jet
path: at the f-plane can be described by a self-contained set of equations:
,),(,),( jetjet YXU
t
XYXV
t
Y
=
∂
∂
=
∂
∂ (3)
s
KaU
s
YV
s
X
∂
∂
=
∂
∂
−
∂
∂
jetjet , (4)
1
22
=
∂
∂
+
∂
∂
s
Y
s
X , 2
2
2
2
s
X
s
Y
s
Y
s
XK
∂
∂
∂
∂
−
∂
∂
∂
∂
= , (5)
where the jet velocity (U, V) is defined by (3), X and Y are Cartesian coordinates of
the jet, s is the distance along the jet, K is the curvature, t is the time, and the coef-
ficient a is defined by the cross-jet structure
dn
dn
dhh
hhf
ga
2
21
2
2
)(
−
′
= ∫ , (6)
where g′ is the reduced gravity, h is the layer thickness, h1 and h2 are the thickness
values at both sides far from the jet, n is the cross-jet coordinate.
Equation (4) indicates that the normal velocity of the baroclinic jet segment is
proportional to the rate of change of centrifugal force along the path (∂K/∂s). Intro-
ducing the local azimuth of the jet, so that
,,)sin(),cos(
s
K
s
Y
s
X
∂
∂
==
∂
∂
=
∂
∂ θθθ (7)
from equations (3) – (6) a single equation can be obtained:
.)(
2 0
2
2
2
s
tc
s
a
s
a
t ∂
∂
+
∂
∂
+
∂
∂
=
∂
∂ θθθθ (8)
The function )(0 tc is determined by the boundary conditions at the inflow
and /or by the initial condition. For an initial value problem in an unbounded do-
main when a localized perturbation of the jet is considered, this equation can be
further transformed into the modified Korteweg – de Vries (mKdV) equation for
the curvature. The mKdV equation is known to describe a variety of long, nonline-
ar waves, where the dispersive and nonlinear terms (the first and second terms in
equation (8)) balance. The envelope solitary wave, or «breather», is particularly
interesting as it describes a transformation of cyclonic meanders into anticyclonic
ones and vise versa inside a breather [18].
ISSN 0233-7584. Мор. гидрофиз. журн., 2013, № 5 47
Taking into account motion in active lower layer when the depth ratio is not
too small, the velocity in the lower layer has to be included into equations (3):
.),(,),( jetjet y
pYXU
t
X
x
pYXV
t
Y
∂
∂
−=
∂
∂
∂
∂
+=
∂
∂ (9)
Here p is the geostrophic stream function in the lower layer. Developing meanders
at the initial stage can be interpreted using the formulation (4), (5) and (9) where p
is defined initially by the TC-induced velocity (2). When the meander amplitude |Y|
remains small, a linearized version of (4), (5) can be considered assuming X ~ s:
.)(2
2
sV
s
Ya
t
Y
+
∂
∂
=
∂
∂ (10)
Its solution can be found by Fourier transforms to describe forcing of dispersing
meanders:
,)exp(),(
2
1),( dkikstkYtsY ∫=
π
(11)
,)(]e1[
ω
ω
i
kVY ti
−−= ,2ak=ω (12)
dsikssVtkV )exp()(),( −= ∫
, (13)
here hat denotes Fourier transforms, k is the wavenumber, ω is the frequency and i
is the imaginary unit. In order to illustrate the asymmetry in developing meanders,
we consider Taylor expansion in time. The first two orders show the meander
growth proportionally to TC- induced velocity and modification of meanders due
to dispersive effects
...
2
)(~ 2
22
++
ds
VdatstVY . (14)
Fig. 3 shows mvV / according to equation (2) in comparison with the second
term (dotted line) normalized by its extremum value to illustrate that the
anticylonic meander growth is enhanced while the cyclonic meander growth is re-
duced due to the dispersion properties of frontal waves along the jet.
The linearized solution (11) – (13) agrees well with the numerical solution
during an initial period up to mm vxt /= (Fig. 1). Advection of the jet by deep ed-
dies coupled with meandering jet due to well-known baroclinic instability mecha-
nism becomes noticeable in further enhancement of anticyclonic meander (Fig. 2).
This kind of vertical coupling during growth of baroclinic meanders has been wide-
ly investigated (see, e.g., [19] and references therein).
ISSN 0233-7584. Мор. гидрофиз. журн., 2013, № 5 48
F i g. 3. TC-induced barotropic velocity (2) (thin line) and the normalized dispersive term in equation
(14) (dotted line)
Discussion and summary
The initial evolution of a baroclinic jet under influence of the TC-induced
barotropic flow is considered using a two-layer model and the thin-jet approxima-
tion. In spite of antisymmetric structure of the barotropic flow, the jet meander
growth due to the barotropic flow advection is shown to favor an anticyclonic me-
ander to the right of the storm track in qualitative agreement with numerical simu-
lations by S. Lee [11]. This enhancement of anticyclonic meander is found to be
related to the dispersion properties of frontal waves along the jet described by the
thin-jet theory during the initial stage. In order to consider further amplification of
meander growth, the effects of vertical coupling have to be taken into account, e.g.,
using a two-layer model with both active layers as illustrated in Fig. 2.
Acknowledgements This study was supported by the NSF grant OCE 1027573.
REFERENCES
1. Geisler J.E. Linear theory of the response of a two layer-ocean to moving hurricane //
Geophys. Fluid Dyn. – 1970. – 1. – P. 249 – 272.
2. Arseniev S.A., Sutyrin G.G., Felzenbaum A.I. On the response of the stratified ocean to a ty-
phoon // Dokl. AN SSSR. Earth Sci. – 1976. – 231, № 3. – P. 567 – 570.
3. Price J.F. Upper ocean response to a hurricane // J. Phys. Oceanogr. – 1981. – 11. – P. 153 –
175.
4. Sutyrin G.G. The effect of tropical cyclones on the ocean // Dokl. AN SSSR. Earth Sci. –
1981. – 257. – P. 213 – 216.
5. Sutyrin G.G., Khain A.P. Interaction of the ocean and atmosphere in the region of translating
tropical cyclone // Ibid. – 1979. – 249. – P. 211 – 213.
6. Ginis I. Tropical cyclone-ocean interactions // Atmosphere-Ocean Interactions / Ed. W.
Perrie. – WIT Press, 2002. – 312 p.
7. Khain A.P., Sutyrin G.G. Tropical Cyclones and their Interaction with the Ocean. – Lenin-
grad: Gidrometeoizdat, 1983. – 272 p.
8. Ichiye T. Response of a two-layer ocean with a baroclinic current to a moving storm. Part I //
J. Oceanogr. Soc. Japan. – 1977. – 33. – P. 151 – 160.
ISSN 0233-7584. Мор. гидрофиз. журн., 2013, № 5 49
9. Ichiye T. Response of a two-layer ocean with a baroclinic current to a moving storm. Part II //
Ibid. – 1977. – 33. – P. 169 – 182.
10. Horton C.W. Surface front displacement in the Gulf Stream by Hurricane / Tropical Storm
Dennis // J. Geophys. Res. – 1984. – 89, № C2. – P. 2005 – 2012.
11. Lee S. Tropical cyclone-ocean interaction in oceanic frontal regions / PhD thesis. – University
of Rhode Island, 2011. – 136 p.
12. Flierl G.R. Thin jet and contour dynamics models of Gulf Stream meandering // Dyn. Atmos.
Oceans. – 1999. – 29. – P. 189 – 215.
13. Ginis I., Sutyrin G. Hurricane-generated depth-averaged currents and sea surface elevation //
J. Phys. Oceanogr. – 1995. – 25. – P. 1218 – 1242.
14. Holland G.J. An analytic model of the wind and pressure profiles in hurricanes // Mon. Wea.
Rev. – 1980. – 108. – P. 1212 – 1218.
15. Sutyrin G., Rowe D., Rothstein L., Ginis I. Baroclinic-eddy interactions with continental
slopes and shelves // J. Phys. Oceanogr. – 2003. – 33. – P. 283 – 291.
16. Nycander J., Dritschel D.G., Sutyrin G.G. The dynamics of long frontal waves in the shallow
water equations // Phys. Fluids. – 1993. – A5. – P. 1089 – 1091.
17. Cushman-Roisin B., Pratt L., Ralph E. A general theory for equivalent barotropic thin jets //
J. Phys. Oceanogr. – 1993. – 23. – P. 91 – 103.
18. Ralph E.A., Pratt L. Predicting eddy detachment for an equivalent barotropic thin jet //
J. Nonlin. Sci. – 1994. – 4. – P. 355 – 374.
19. Greene A.D., Watts D.R., Sutyrin G.G. et al. Evidence of vertical coupling between the
Kuroshio extension and topographically controlled deep eddies // J. Mar. Res. – 2012. – 70. –
P. 719 – 747.
Graduate School of Oceanography Received July 10, 2012
University of Rhode Island
Narragansett,
RI USA
АНОТАЦІЯ У рамках двошарової моделі та в наближенні тонкого струменя розглядається
еволюція бароклинного струменя, викликаного баротропною течією, індукованою тропічним
циклоном. Показано, що, не дивлячись на антисиметричну структуру баротропної течії, її
адвекція призводить до меандрування бароклинного струменя та до зростання головним чином
антициклонічного меандру праворуч від штормтрека. Знайдено, що посилення антициклоніч-
ного меандру пов'язане з дисперсійними властивостями фронтальних хвиль (які описуються у
рамках теорії тонкого струменя) і з взаємодією з глибинними вихорами, які розвиваються в
нижньому шарі океану при меандруванні бароклинного струменю.
Ключові слова: бароклинний струмінь, тропічний циклон, антициклонічний меандр, тео-
рія тонкого струменя.
АННОТАЦИЯ В рамках двухслойной модели и в приближении тонкой струи рассматривается
эволюция бароклинной струи, вызванной баротропным течением, индуцированным тропиче-
ским циклоном. Показано, что, несмотря на антисимметричную структуру баротропного тече-
ния, его адвекция приводит к меандрированию бароклинной струи и к росту главным образом
антициклонического меандра справа от штормтрека. Обнаружено, что усиление антициклони-
ческого меандра связано с дисперсионными свойствами фронтальных волн (описываемых в
рамках теории тонкой струи) и с взаимодействием с глубинными вихрями, развивающимися в
нижнем слое океана при меандрировании бароклинной струи.
Ключевые слова: бароклинная струя, тропический циклон, антициклонический меандр,
теория тонкой струи.
ISSN 0233-7584. Мор. гидрофиз. журн., 2013, № 5 50
|