Stop bands in magneto-photonic crystal in millimeter waveband

One-dimensional (1D) magneto-photonic crystal (MPC) with tri-layer cell (vacuum-ferrite-quartz) interfaced with wire medium (WM) was investigated at microwave band. The appearance of two stopbands associated correspondingly with wave interference in the MPC and with ferromagnetic resonance absorptio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2009
1. Verfasser: Khodzitsky, M.K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут радіофізики і електроніки ім. А.Я. Усикова НАН України 2009
Schriftenreihe:Радіофізика та електроніка
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/105746
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Stop bands in magneto-photonic crystal in millimeter waveband / M.K. Khodzitsky // Радіофізика та електроніка. — 2009. — Т. 14, № 2. — С. 177-182. — Бібліогр.: 27 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-105746
record_format dspace
spelling irk-123456789-1057462016-09-08T03:02:42Z Stop bands in magneto-photonic crystal in millimeter waveband Khodzitsky, M.K. Радиофизика твердого тела и плазмы One-dimensional (1D) magneto-photonic crystal (MPC) with tri-layer cell (vacuum-ferrite-quartz) interfaced with wire medium (WM) was investigated at microwave band. The appearance of two stopbands associated correspondingly with wave interference in the MPC and with ferromagnetic resonance absorption in ferrite layer was demonstrated. The occurrence of surface waves for the MPC+WM system in the MPC stop band frequency range was shown theoretically and experimentally. The surface wave peak allows the tuning of its position with applied magnetic field. It was shown that the steepness of the curve describing the dependence of surface wave peak position on magnetic field is less than the steepness of the corresponding curve for the left edge of the MPC stop band. The considered effects will make it possible to develop new magneto tunable microwave devices on basis of magneto-photonic crystals for GHz and THz band. Был исследован одномерный магнитофотонный кристалл (МФК) с трехслойной ячейкой (воздух-ферриткварц), ограниченный проволочной средой в миллиметровом диапазоне длин волн. Показано появление двух зон непропускания, связанных соответственно с интерференцией волн в МФК и с ферромагнитно-резонансным поглощением в ферритовом слое. Показано теоретически и экспериментально появление поверхностных волн для системы МФК + проволочная среда в частотном диапазоне зоны непропускания МФК. Показана возможность управления положением пика пропускания, связанного с поверхностной волной в спектре с помощью магнитного поля. Показано, что крутизна кривой, описывающая зависимость положения пика пропускания, связанного с поверхностной волной от магнитного поля, меньше, чем крутизна кривой, описывающая зависимость положения низкочастотного края зоны непропускания МФК от магнитного поля. Рассматриваемые эффекты позволят разработать новые магнитоуправляемые микроволновые устройства на основе МФК в гигагерцевом и терагерцевом диапазонах. Було досліджено одновимірний магнітофотонний кристал (МФК) із тришаровою коміркою (воздух-ферриткварц) обмежений дротовим середовищем у міліметровому діапазоні довжин хвиль. Показано появу двох зон непропускання зв'язаних відповідно з інтерференцією хвиль у МФК і з ферромагнітно-резонансним поглинанням у ферритовом шарі. Показано теоретично й експериментально появу поверхневих хвиль для системи МФК + дротове середовище у частотному діапазоні зони непропускання МФК. Показано можливість керування положенням піка пропускання пов’язаного з поверхневою хвилею в спектрі за допомогою магнітного поля. Показано, що крутизна кривої, що описує залежність положення піка пропускання, пов’язаного с поверхневою хвилею від магнітного поля, менше, ніж крутизна кривої, що описує залежність положення низькочастотного краю зони непропущення МФК від магнітного поля. Розглянуті ефекти дозволять розробити нові магнітокеровані мікрохвильові пристрої на основі МФК у гигагерцевому і терагерцевому діапазонах. 2009 Article Stop bands in magneto-photonic crystal in millimeter waveband / M.K. Khodzitsky // Радіофізика та електроніка. — 2009. — Т. 14, № 2. — С. 177-182. — Бібліогр.: 27 назв. — англ. 1028-821X http://dspace.nbuv.gov.ua/handle/123456789/105746 539.2.029.64:539.9 en Радіофізика та електроніка Інститут радіофізики і електроніки ім. А.Я. Усикова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Радиофизика твердого тела и плазмы
Радиофизика твердого тела и плазмы
spellingShingle Радиофизика твердого тела и плазмы
Радиофизика твердого тела и плазмы
Khodzitsky, M.K.
Stop bands in magneto-photonic crystal in millimeter waveband
Радіофізика та електроніка
description One-dimensional (1D) magneto-photonic crystal (MPC) with tri-layer cell (vacuum-ferrite-quartz) interfaced with wire medium (WM) was investigated at microwave band. The appearance of two stopbands associated correspondingly with wave interference in the MPC and with ferromagnetic resonance absorption in ferrite layer was demonstrated. The occurrence of surface waves for the MPC+WM system in the MPC stop band frequency range was shown theoretically and experimentally. The surface wave peak allows the tuning of its position with applied magnetic field. It was shown that the steepness of the curve describing the dependence of surface wave peak position on magnetic field is less than the steepness of the corresponding curve for the left edge of the MPC stop band. The considered effects will make it possible to develop new magneto tunable microwave devices on basis of magneto-photonic crystals for GHz and THz band.
format Article
author Khodzitsky, M.K.
author_facet Khodzitsky, M.K.
author_sort Khodzitsky, M.K.
title Stop bands in magneto-photonic crystal in millimeter waveband
title_short Stop bands in magneto-photonic crystal in millimeter waveband
title_full Stop bands in magneto-photonic crystal in millimeter waveband
title_fullStr Stop bands in magneto-photonic crystal in millimeter waveband
title_full_unstemmed Stop bands in magneto-photonic crystal in millimeter waveband
title_sort stop bands in magneto-photonic crystal in millimeter waveband
publisher Інститут радіофізики і електроніки ім. А.Я. Усикова НАН України
publishDate 2009
topic_facet Радиофизика твердого тела и плазмы
url http://dspace.nbuv.gov.ua/handle/123456789/105746
citation_txt Stop bands in magneto-photonic crystal in millimeter waveband / M.K. Khodzitsky // Радіофізика та електроніка. — 2009. — Т. 14, № 2. — С. 177-182. — Бібліогр.: 27 назв. — англ.
series Радіофізика та електроніка
work_keys_str_mv AT khodzitskymk stopbandsinmagnetophotoniccrystalinmillimeterwaveband
first_indexed 2025-07-07T17:19:32Z
last_indexed 2025-07-07T17:19:32Z
_version_ 1837009494286008320
fulltext __________ ISSN 1028-821X Радиофизика и электроника, том 14, № 2, 2009, с. 177-182 ИРЭ НАН Украины, 2009 РАДИОФИЗИКА ТВЕРДОГО ТЕЛА И ПЛАЗМЫ УДК 539.2.029.64:539.9 STOP BANDS IN MAGNETO-PHOTONIC CRYSTAL IN MILLIMETER WAVEBAND M. K. Khodzitsky A. Usikov Institute of Radiophysics and Electronics of the national Academy of Science of Ukraine 12, Ac. Proscury St., 61085, Kharkov, Ukraine Е-mail: khodzitskiy@yandex.ru One-dimensional (1D) magneto-photonic crystal (MPC) with tri-layer cell (vacuum-ferrite-quartz) interfaced with wire me- dium (WM) was investigated at microwave band. The appearance of two stopbands associated correspondingly with wave interference in the MPC and with ferromagnetic resonance absorption in ferrite layer was demonstrated. The occurrence of surface waves for the MPC+WM system in the MPC stop band frequency range was shown theoretically and experimentally. The surface wave peak allows the tuning of its position with applied magnetic field. It was shown that the steepness of the curve describing the dependence of surface wave peak position on magnetic field is less than the steepness of the corresponding curve for the left edge of the MPC stop band. The considered effects will make it possible to develop new magneto tunable microwave devices on basis of magneto-photonic crystals for GHz and THz band. Figs. 5. Ref.: 27 titles. Key words: magneto-photonic crystal, wire medium, stop band, surface wave, Tamm state, ferromagnetic resonance. During the last decade, structures with peri- odic refraction index (known also as photonic crys- tals (PCs) or photonic band gap materials [1]) have been a subject of experimental and theoretical re- search due to their prominent spectral properties and possibilities of promising applications in microwave and optoelectronics [2–6]. The PCs possess band gaps in which electromagnetic wave propagation is prohibited in any direction. Characteristics of band gap can be described by energy band structure or stop band (forbidden band) in transmission spectrum. Substantially, PCs are artificially made from dielec- tric (organic) or metallic materials for band gap elec- tronic control [7–8]. Up to the present, magnetic ma- terials for PCs have not attracted much attention be- cause permeability of magnetic materials in the opti- cal frequency range equals to unity. But for ferrites, yttrium iron garnets, granular magnetic films and other magnetic materials the permeability differs from unity at microwave frequencies because of fer- romagnetic resonance (FMR) [9]. So, ferrites can be exploited for microwave magnetic photonic crystals (MPCs) [10]. The ferrites in saturation state have a tensor permeability tuned by a static magnetic field. Therefore, magnetic materials included in MPCs make it possible to design the magneto-tunable mi- crowave devices on basis of MPCs [11]. Recently, some papers have been devoted to the MPCs investi- gation. Sigalas et al. [12] have studied theoretically the effect of permeability on the photonic band gaps of MPCs. A. Saib et al. [13] have studied experimen- tally magnetic photonic band-gap material based on ferromagnetic nanowires at microwaves. S. Cher- novtsev et al. [14, 15] have experimentally and theo- retically studied the tuning of frequency stop bands for 1D MPC on basis of ferrite in K and Ka frequen- cy band. Jie Xu et al. [16] have experimentally and theoretically investigated the transmission characte- ristics of 2D MPC in X frequency band. However, in all these works, it has not considered the possibility of appearance of two stopbands: the stop band asso- ciated with wave interference in MPC (further let’s call it as MPC stopband) and the stop band associated with resonance absorption in magnetic layer con- nected with FMR (further let’s call it as FMR zone). The origin of the usual PC stop bands is the same as in the solid state periodical lattice, where the diffraction of electron wave on periodical potential make it impossible for electron with certain energy to move through the crystal. If we proceed with this analogy further we can anticipate the existence of some surface waves (SW), (analogous to so named «Tamm states» (TS) in solid state physics) [17] on the interface between the PC and the medium, where electromagnetic wave cannot propagate (ideally con- ducting metals, medium with negative permittivity and permeability, another PC or MPC). The frequen- cy of such surface wave should lie in a forbidden gap of PC. The electromagnetic wave vector is directed along the crystal axis, the field being uniform in transversal direction and do not transfer energy. The surface wave can be detected by studying transmis- sion and reflection spectra of the system – a narrow peak appears in the transmission spectrum together with a dip in the reflection spectrum. These surface waves have been theoretically and experimentally studied by Vinogradov et all. for PC as well as MPC with bi-layered cell in optical frequency range [18–19]. The research of these waves in the micro- wave band has a very short history is started only recently [20, 21]. In this paper we have experimentally studied appearance of two stopbands with various physical origins in the MPC transmission spectrum and occur- М. К. Ходзицкий / Зоны непропускания в магнитофотонном… _________________________________________________________________________________________________________________ 178 rence of the surface waves in these stopbands in mi- crowave band (22–40 GHz). This frequency band displays certain advantage over the optical band be- cause we can experimentally observe the field distri- bution near the PC interface. Experimental results are in good agreement with theoretical results. 1. Theory. Let us consider the finite struc- ture consisting of MPC and WM, loaded in a rectan- gular waveguide (Fig. 1). 1D MPC consisted of tri-layer primitive cells (vacuum-ferrite-quartz). The MPCs is restricted by a rectangular waveguide along the y and x axes. A static magnetic field is applied along the y axis. Fig. 1. Schema of structure consisting of the MPC and WM, loaded in a rectangular waveguide It is well known that the ferrite layers, mag- netized under the external magnetic field have a ten- sor permeability derived from the Landau-Lifshitz equations [22]: . 100 0 0 ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ −= μμ μμ μ a a j j (1) For saturated ferrite with dissipation we have ( ) ;22 2 ωω ωωωωμ − −+ = H MHH (2) ,22 ωω ωωμ − = H M a (3) where αωγω jHH += 0 is the ferromagnetic reso- nance frequency; γ is the gyromagnetic ratio; H0 is the dc magnetic field in ferrite layers; fπω 2= is the circular frequency of the alternating electromagnetic field; α is the damping coefficient of ferrites; SM Mπγω 4= is the characteristic frequency of fer- rite; MS is the ferrite saturation magnetization. Let us consider the propagation of a plane wave through ferrite. The wave vector is normal to the applied static magnetic field H0 (this case is called transverse magnetization), the tensor of effec- tive permeability can reduce to a scalar as [22]: . 22 μ μμμ a eff − = (4) The midgap frequencies of usual MPC stop bands are defined as [23]: C C m cf λ = ; ),(2 qqffvvC dndndnm ++=λ (5) where c is the speed of light; m is the number of MPC stop band; dv, df, dq are thicknesses of vacuum, ferrite and quartz layers correspondingly; nv, nf, nq are refraction indexes of vacuum, ferrite and quartz layers correspondingly which are evaluated as ;1=vn ;effffn με= ,qqn ε= (6) where ,qε fε are the permittivity of quartz and fer- rite layers correspondingly. The MPC is adjacent through the quartz layer to WM. WM represents the arrays of thin copper wires on polystyrene substrate. The metallic wires were structured on a scale much less than the wave- length of radiation. When the wavelength of the inci- dent radiation is much larger than the size and spac- ing of scatterers, the response of the scatterers to the incident fields can be treated by way of the effective medium theory. Therefore, an effective permittivity effε can be used to define the permittivity of the me- dium. Negative permittivity of WM can be achieved at microwave frequencies (permittivity is negative below plasma frequency pω ). The WM effective permittivity and the plasma frequency are given by formula [24]: ;2 2 ω ω εε p hosteff −= , )ln( 2 2 2 2 r aa c p πω = (7) where a is the lattice parameter (the distance between the nearest wires); r is the radius of the wires; hostε – host medium. To obtain the surface wave (analogous to so-called Tamm state) it is necessary that a MPC stop band overlaps the frequency range where effective permittivity of WM has negative sign. The well-known transfer matrix technique [15, 23] was used to find the transmission (reflection) coefficient for periodical MPC structure (Fig. 1). The finite-difference-time-domain method (FDTD) well- described anywhere [25–27] was used to calculate the transmission (reflection) spectra of WM and x z y H0 М. К. Ходзицкий / Зоны непропускания в магнитофотонном… _________________________________________________________________________________________________________________ 179 MPC+WM and to evaluate the field profile of the surface wave as well. 2. Experiment. To carry out the experimen- tal investigations, the MPC and the WM were de- signed and fabricated. The ferrite layer (brand 1SCH4) has complex permittivity of about 0008,01,11 jf +=ε , saturation magnetization of GsM S 382= , damping coefficient of 024,0=α and thickness of )02,05,0( ±=d mm. The quartz layer has permittivity of about 5,4=qε and thickness of )02,01( ±=d mm. The vacuum layer has thickness of )02,05,1( ±=d mm. The MPC has 4 tri-layered cells and interfaced with WM by quartz layer. Ac- cording to equations (5), (6) for given parameters the midgap frequency of the first MPC stop band asso- ciated with wave interference in MPC is about of 28,37 GHz at zero applied magnetic field ).1( =effμ The WM consists of polystyrene substrate (thickness of 2,1 mm, permittivity 53,2=hostε ) with thin cop- per wires on one side. The gap between the polysty- rene substrates is 0,5 mm. The polystyrene substrate has wires with length of 3,3 mm and diameter of 0,15 mm. The distance between two nearest wires is of 1 mm along x axis. The WM has 6 polystyrene substrates with 8, 8, 8, 6, 5, 3 wires accordingly. Ac- cording to equations (7) such WM has negative effec- tive permittivity till plasma frequency of 74,36 GHz. The experimental setup includes mainly the vector network analyzer (VNA), waveguide transmis- sion line, waveguide segment with structure under study and electromagnet controlled by power supply unit (the magnetic field range is about of 0–7000 Oe) [14, 15]. The composite structure was loaded in a rectangular waveguide segment with cross-section of 7,2×3,4 mm2. The segment with structure under study was placed between poles of electromagnet where a uniform static magnetic field was provided. An EM wave propagates along the z axis with an electric field along the y axis and magnetic field along the x axis (Fig. 1). The static magnetic field was applied normally to alternating magnetic field. The transmission spectra were automatically meas- ured by the VNA in the frequency range of 22–40 GHz. 3. Results and discussions. Let’s consider transmission spectra for various structures namely: for MPC; for WM; for MPC+WM. The transmission spectra of the MPC have been measured and calculated using transfer matrix technique [15, 23] and effective permeability has been calculated using the equation (4). The results are shown in Fig. 2, a–c. For small applied magnetic field: )1,0()Re( ∈effμ the transmission spectra of the MPC have a shape of smooth upturned dome and represent stop-band associated with Bragg interfe- rence in periodical MPC (MPC stop band). The bot- tom value of stop-bands depth (the difference be- tween transmission coefficient in pass-band and one in stop-band) equals approximately to –40 dB. As the magnetic field increases the position of stop band edges shifts weakly to higher frequencies. The simu- lation corroborates the experimental results, though with some discrepancy, associated with an error in the simulation parameters choice: the module of transmission coefficient is defined by imaginary part of both constitutive parameters ),( με of each MPC layer while the positions of MPC stop-band edges are defined by real part of parameters. 30 40 50 60 35 30 25 20 15 10 5 0 e1 e3 e2 t3 t2Tr an sm is si on , d B Frequency, GHz t1 – – – – – – MPC stop band MPC stop band MPC pass band – a) 30 40 50 60 10 0 10 20 MPC Frequency, GHz Tr an sm is si on , d B ferrite 30 40 50 60 60 40 20 0 – – – FMR zone MPC stop band Pe rm ea bi lit y FMR – 1 2 c) Fig. 2. Transmission spectrum of the MPC for various applied magnetic fields at Re( μeff ) ∈ (0,1), theory: t1 – H = 1130 Oe, t2 – H = 2290 Oe, t3 – H = 3370 Oe; experiment: e1 – H = 1130 Oe, e2 – H = 2290 Oe, e3 – H = 3370 Oe (a); frequency dispersion of effective permeability of ferrite at H = 6840 Oe (b); experimental (black line) and simulated (grey line) transmission spectrum of the MPC for H=6840 Oe at Re( μeff ) ∈ (–6,8) correspondingly (c) For large magnetic field (H = 6840 Oe) the permeability becomes negative )8,6()Re( −∈effμ in the investigated frequency range. The depth of expe- rimental MPC transmission spectrum drops down to –70 dB see Fig. 2, c. The frequency position of the valley coincides with ferromagnetic resonance fre- b) М. К. Ходзицкий / Зоны непропускания в магнитофотонном… _________________________________________________________________________________________________________________ 180 quency. We can conclude that a new absorption process connected with FMR in ferrite was engaged. Hence we have two deep valleys and correspondingly two stop-bands with various origins. The first band (the FMR zone) in the range from 23 to 31 GHz cor- responds to the FMR absorption (Fig. 2, b). In this frequency range the real part of effective permeabili- ty of the ferrite is negative and imaginary part is dif- ferent from zero, therefore electromagnetic wave can not propagate in ferrite. The position of mid-gap fre- quency in this band is defined by ferromagnetic re- sonance frequency and varies linearly with the static magnetic field. The second band (MPC stop band) in the range from 31 to 41 GHz corresponds to known Bragg interference in MPC. In this frequency range the electromagnetic power is not absorbed. The posi- tion of mid-gap frequency in this band is defined by the equation (5) and remains almost unchanged at variations of the magnetic field. This behavior is due to small variation (from 0 to 1 at 32 GHz) of the ef- fective magnetic permeability throughout the whole interval of static magnetic field change (0–7000 Oe). Next we consider the transmission spectra for the WM (experimental (solid line) and simulated (dash line)) (Fig. 3, a). 25 30 35 40 80 60 40 Tr an sm is si on , d B Frequency, GHz WM – – Cutoff waveguide frequency 1 2 – a) 25 30 35 40 8 6 4 2 0 – – –W M p er m itt iv ity Frequency, GHz – b) Fig. 3. Transmission spectrum of the wire medium: 1 – experi- ment; 2 – simulation (a); frequency dispersion of effective wire medium permittivity for following parameters: a = 1 mm; r = 0,075 mm; εhost = 2,53 (polystyren) (b) The deep valley with the bottom level of the order of –70 dB shows the frequency band where the electromagnetic wave can not propagate through the WM. Naturally this is connected with negative effec- tive permittivity of the WM. The experimental and theoretical curve coincide well within 21–28 GHz. Within higher frequency range (28–40 GHz) the dis- crepancy between experimental and simulated trans- mission spectra is associated with the shortcomings of calculation method and wire spacing inaccuracy in the experiment. The effective permittivity of WM is negative in the frequency range under study (21–40 GHz) see in Fig. 3, b. It was shown in [18] that at interface be- tween MPC and medium with negative permittivity surface wave could exist. To study surface wave we use the composite system MPC+WM in the frequen- cy band where effective permittivity of the WM is negative. The surface wave appears as a sharp peak in the transmission (reflection) spectra in the MPC stop-band and is detected experimentally (Fig. 4, a). 15 20 25 30 35 40 15 0 15 Pe rm ea bi lit y R ef le ct io n Frequency, GHz 3 0,0 0,5 1,0 ferrite 2 0,5 1,0 MPC MPC stop band FMR zone SW peak in FMR zone SW peak in MPC stop band MPC+TWS1 – a) 20 10 0 10 1 0 1 1 0 1 –– Ey z, mm WM b) 4 3 2 MPC Ey 1 – – c) Fig. 4. 1 – Simulation of reflection spectrum of the MPC+WM at H = 4560 Oe, 2 – Simulation of reflection spectrum of the MPC at H = 4560 Oe, 3 – Frequency dependence of permeability of ferrite at H = 4560 Oe (a); Calculated Ey field profile along z axis of the SW peak in MPC stopband at f = 27,04 GHz (b) and SW peak in FMR zone at f = 23,31 GHz (c) for MPC+WM case at H = 4560 Oe (1 – ferrite, 2 – quartz, 3 – vaccum, 4 – polystyrene with wires) М. К. Ходзицкий / Зоны непропускания в магнитофотонном… _________________________________________________________________________________________________________________ 181 It worth noting here that we detected one more peak in the FMR zone as well. This peak may correspond also to surface wave (SW). The calculated Ey field profiles along z axis of both surface waves are shown in Fig. 4, b, c at H = 4560 Oe. The reflec- tion spectrum of the MPC+WM structure with sur- face waves in the MPC and FMR stop bands at mag- netic field of 4560 Oe are shown in the Fig. 4, a. To study the «three layer» MPC it is necessary to derive the corresponding dispersion equation for this periodical structure and calculate the frequency posi- tion of the surface wave peak. As can be seen from the Fig. 4, a the little quasi-pass band occurs between the MPC and FMR stop band. Indeed it’s the strongly changed at the left edge of MPC band due to close neighborhood to the FMR absorption band. To demonstrate the possibility of magnetic field to tune of SW peak position, the corresponding experiment and calculation were carried out. The experimental and simulated evolution of the SW peak position in the MPC stop band with variation of the magnetic field are shown in the Fig. 5. 0 2000 4000 6000 25 30 35 40 3 1 left edge M PC st op b an d Fr eq ue nc y, G H z Magnetic field, Oe right edge SW peak 2 a) 2000 4000 6000 25 30 35 40 1 2 3 left edge right edge SW peak Magnetic field, Oe Fr eq ue nc y, G H z M PC st op b an d b) Fig. 5. Experimental frequency dependence of MPC stop band edges (1, 2) and surface wave peak (3) position on applied magne- tic field (a); calculated frequency dependence of MPC stop band edges (1, 2) and surface wave peak (3) position on the magnetic field (b) Experimental results are in good agreement with the results of simulation. The tuning of SW peak position is about 1 GHz on 3 kOe. It should be noted, the calculated frequency dependence of surface wave peak position on magnetic field is shown in the Fig. 5, b only for corresponding experimental data. It should be noted that the steepness of the curve describ- ing the dependence of the SW peak position in change on magnetic field ( =∂∂ expHfSW 0,42 GHz/kOe, 7,0=∂∂ theorySW Hf GHz/kOe) is less than the cor- responding steepness of the left edge of the MPC stop band ( 39,1=∂∂ theoryLeftedge Hf GHz/kOe). The range of magnetic field is 1880–3370 Oe. Such beha- vior can be explained by the strong dependence of SW peak position on the impedance of bounding medium which is not sensitive in the case of wire media without magnetic inclusions to the applied magnetic field. Conclusions. The transmission and reflec- tion spectra of one-dimensional MPC with tri-layer cell interfaced with WM were investigated at micro- wave band. The appearance of two stopbands: stopband connected with wave interference in MPC and one connected with ferromagnetic resonance absorption in ferrite layer was demonstrated. For MPC+WM structure it is shown expe- rimentally and theoretically the occurrence of surface waves (analogous to «Tamm states») in the frequen- cy range corresponding to the MPC stop band. The tuning of the surface wave peak posi- tion by magnetic field was demonstrated. The steep- ness of the curve describing the dependence of the surface wave peak position on the magnetic field is less than the corresponding steepness of the left edge of MPC stop band. The studied effects make it possible to de- sign the new magnetotunable devices on basis of MPCs for GHz and THz bands. I acknowledge helpful discussions with Prof. S. I. Tarapov and D. P. Belozorov. This work was supported by the STCU Project No. 4912 and the Grant of the President of Ukraine for young scien- tists. 1. Yablonovitch E. Inhibited Spontaneous Emission in Solid- State Physics and Electronics // Phys. Rev. Lett. – 1987. – 58, No. 20. – P. 2059–2062. 2. Radistic V., Qian Y. X., Coccioli R. et al. Novel 2-D photonic bandgap structure for microstrip lines // IEEE Microwave Guided Wave Lett. – 1998. – 8, No. 1. – P. 69–71. 3. Yun T. Y., Chang K. Uniplanar one-dimensional photonic- bandgap structures and resonators // IEEE Trans Microwave Theory and Techniques. – 2001. – 49, No. 3. – P. 549–553. 4. Th’evenot M., Reineix A. Directive photonic-bandgap antennas // IEEE Trans Microwave Theory and Techniques. – 1999. – 47, No. 11. – P. 2115–2122. М. К. Ходзицкий / Зоны непропускания в магнитофотонном… _________________________________________________________________________________________________________________ 182 5. Colburn J. S., Rahmat-Samii Y. Patch antennas on externally perforated high dielectric constant substrates // IEEE Trans. Antennas Propagat. – 1999. – 47, No. 12. – P. 1785–1794. 6. Lourtioz J.-M., de Lustrac A. Metallic photonic crystals // C. R. Phys. – 2002. – 3, No. 1. – P. 79–88. 7. Yun Tae-Yeoul, Chang Kai. An electronically tunable photonic bandgap resonator controlled bypiezoelectric transducer // Proc. of IEEE MTT-S International Microwave Symposium. – 2000. – 3. – P. 1445–1447. 8. Chen Hou-Tong, Hong Lu, Azad A., Averitt R. et al. Electronic control of extraordinary terahertz transmission through sub- wavelength metal hole arrays // Optics Express. – 2008. – 16, No. 11. – P. 7641–7648. 9. Kittel C. Introduction to Solid State Physics. – N. Y.: Wi- ley & Sons, 1994. – 646 p. 10. Lyubchanskii I. L. et al. Magnetic photonic crystals // J. Phys. D: Appl. Phys. – 2003. – 36, No. 18. – P. R277–R287. 11. Kee C., Park I., Lim H. et al. Microwave photonic crystal multiplexer and its applications // Curr. Appl. Phys. – 2001. – 1, No. 1. – P. 84–87. 12. Sigalas M. M., Soukoulis C. M., Biswas R. et al. The effect of the magnetic permeability on photonic band gaps // Phys. Rev. B. – 1997. – 56, No. 3. – P. 959–962. 13. Saib A., Vanhoenacker-Janvier D., Huynen I. Magnetic pho- tonic band-gap material at microwave frequencies based on ferromagnetic nanowires // Appl. Phys. Letters. – 2003. – 83, No. 12. – P. 2378–2380. 14. Chernovtsev S. V., Pavlov A. I., Tarapov S. I. Simulation of magnetically controllable photonic bandgap structures // Proc. of SPIE Photonic North. – 2007. – P. 67961A–1–67961A-11. 15. Chernovtsev S. V., Tarapov S. I., Belozorov D. P. Magnetical- ly controllable 1D magnetophotonic crystal in millimeter wa- velength band // J. Phys. D: Appl. Phys. – 2007. – 40, No. 2. – P. 295–299. 16. Jie Xu, Rui-xin Wu, Ping Chen, Yue Shi. Transmission charac- teristics of two-dimensional magnetized magnetic photonic crystals // J. Phys. D: Appl. Phys. – 2007. – 40, No. 4. – P. 960–963. 17. Tamm I. Y. On a Possible Manner of Electron Binding to Crystal Surfaces // Phys. Z. Sowjetunion. – 1932. – 1. – P. 733–746. 18. Vinogradov A. P., Dorofeenko A. V., Erokhin S. G. et al. Sur- face state peculiarities in one-dimensional photonic crystal in- terfaces // Phys. Review B. – 2006. – 74, No. 4. – P. 045128– 045136. 19. Merzlikin A. M., Vinogradov A. P., Dorofeenko A. V. et al. Controllable Tamm states in magnetophotonic crystal // Phy- sica B: Condensed Matter. – 2007. – 394, No. 2. – P. 277–280. 20. Khodzitskiy M. K. Spatial field localization in mirror – reflected magnetophotonic crystal with tri-layer cell // Proc. of Int. conf. Days of Diffraction. – 2008. – P. 83. 21. Khodzitskiy M. K., Tarapov S. I. Spectra for 1D magneto- photonic crystal with tri-layer cell interfaced with metallic structures at microwave band // Proc. of 12th Int. conf. MMET. – 2008. – P. 524–526. 22. Gurevich A.G., Melkov G.A. Magnetization Oscillations and waves. – New York: CRC Press, 1996. – 445 p. 23. Born M., Wolf E. Principles of Optics. – Cambridge: Universi- ty Press, 2002. – 986 p. 24. Pendry J. B., Holden A. J., Robbins D. J., Stewart W. J. Low frequency plasmons in thin-wire structures // J. Phys.: Con- densed Matter. – 1998. – 10, No. 22. – P. 4785–4809. 25. Miller E. K. Time-Domain modeling in electromagnetics // IEEE J. of El. Waves and Applications. – 1994. – 8, No. 9/10. – P. 1125–1172. 26. Taflove A. Computational Electrodynamics: The Finite- Difference Time-Domain Method. – Boston: Artech House, 1995. – 599 p. 27. Miller E. K., Poggio A. J., Burke G. J. An Integro-Differential Equation Technique for the Time-Domain Analysis of Thin Wire Structures // Journ. of Computational Physics. – 1973. – 12. – P. 24–48. ЗОНЫ НЕПРОПУСКАНИЯ В МАГНИТОФОТОННОМ КРИСТАЛЛЕ В МИЛЛИМЕТРОВОМ ДИАПАЗОНЕ ДЛИН ВОЛН М. К. Ходзицкий Был исследован одномерный магнитофотонный кристалл (МФК) с трехслойной ячейкой (воздух-феррит- кварц), ограниченный проволочной средой в миллиметровом диапазоне длин волн. Показано появление двух зон непро- пускания, связанных соответственно с интерференцией волн в МФК и с ферромагнитно-резонансным поглощением в ферритовом слое. Показано теоретически и эксперименталь- но появление поверхностных волн для системы МФК + проволочная среда в частотном диапазоне зоны непро- пускания МФК. Показана возможность управления положе- нием пика пропускания, связанного с поверхностной волной в спектре с помощью магнитного поля. Показано, что крутизна кривой, описывающая зависимость положения пика пропус- кания, связанного с поверхностной волной от магнитного поля, меньше, чем крутизна кривой, описывающая зависи- мость положения низкочастотного края зоны непропускания МФК от магнитного поля. Рассматриваемые эффекты позво- лят разработать новые магнитоуправляемые микроволновые устройства на основе МФК в гигагерцевом и терагерцевом диапазонах. Ключевые слова: магнитофотонный кристалл, проволочная среда, зона непропускания, поверхностная волна, Таммовское состояние, ферромагнитный резонанс. ЗОНИ НЕПРОПУСКАННЯ В МАГНІТОФОТОННОМУ КРИСТАЛІ В МІЛІМЕТРОВОМУ ДІАПАЗОНІ ДОВЖИН ХВИЛЬ М. К. Ходзицький Було досліджено одновимірний магнітофотонний кристал (МФК) із тришаровою коміркою (воздух-феррит- кварц) обмежений дротовим середовищем у міліметровому діапазоні довжин хвиль. Показано появу двох зон непропу- скання зв'язаних відповідно з інтерференцією хвиль у МФК і з ферромагнітно-резонансним поглинанням у ферритовом шарі. Показано теоретично й експериментально появу поверхневих хвиль для системи МФК + дротове середовище у частотному діапазоні зони непропускання МФК. Показано можливість керування положенням піка пропускання пов’язаного з повер- хневою хвилею в спектрі за допомогою магнітного поля. По- казано, що крутизна кривої, що описує залежність положення піка пропускання, пов’язаного с поверхневою хвилею від магнітного поля, менше, ніж крутизна кривої, що описує за- лежність положення низькочастотного краю зони непропу- щення МФК від магнітного поля. Розглянуті ефекти дозволять розробити нові магнітокеровані мікрохвильові пристрої на основі МФК у гигагерцевому і терагерцевому діапазонах. Ключові слова: магнітофотонный кристал, дротове середовище, зона непропускання, поверхнева хвиля, Там- мовський стан, феромагнітний резонанс. Рукопись поступила 7 мая 2009 г.