Grazing incidence reflectivity of high-Tc superconductors: mm wave technique of conductivity measurements

Non-resonant nondestructive technique has been described for investigation of high-temperature superconductive and relative materials through the measurement of the microwave reflection at grazing incidence. As authors discussed earlier, a reflection coefficient of the electromagnetic wave at grazin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
Hauptverfasser: Gubin, A.I, Cherpak, N.T., Lavrinovich, A.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут радіофізики і електроніки ім. А.Я. Усикова НАН України 2010
Schriftenreihe:Радіофізика та електроніка
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/105803
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Grazing incidence reflectivity of high-Tc superconductors: mm wave technique of conductivity measurements / A.I. Gubin, N.T. Cherpak, A.A. Lavrinovich // Радіофізика та електроніка. — 2010. — Т. 15, № 2. — С. 87-91. — Бібліогр.: 27 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-105803
record_format dspace
spelling irk-123456789-1058032016-09-23T23:05:31Z Grazing incidence reflectivity of high-Tc superconductors: mm wave technique of conductivity measurements Gubin, A.I Cherpak, N.T. Lavrinovich, A.A. Радиофизика твердого тела и плазмы Non-resonant nondestructive technique has been described for investigation of high-temperature superconductive and relative materials through the measurement of the microwave reflection at grazing incidence. As authors discussed earlier, a reflection coefficient of the electromagnetic wave at grazing incidence can be used to determine an absolute complex conductivity over a wide temperature and frequency range. As of now the experimental measurement setup was realized in millimeter wave range using waveguide phase bridge based approach. The conductivity of YBa₂Cu₃O₇₋δ film was measured at temperatures higher than critical. Описан метод неразрушающего микроволнового исследования высокотемпературных сверхпроводников и родственных материалов посредством измерения их коэффициента отражения при скользящих углах падения. Измерения коэффициента отражения при скользящих углах падения электромагнитной волны могут быть использованы для получения абсолютных значений комплексной проводимости образца в широком температурном и частотном диапазонах. Разработана и реализована экспериментальная установка на основе фазового моста в миллиметровом диапазоне длин волн. Измерена проводимость YBa₂Cu₃O₇₋δ-пленок при температурах выше критической. Описано метод неруйнівного мікрохвильового дослідження високотемпературних надпровідників та споріднених матеріалів за допомогою вимірювання їх коефіцієнта відбиття при ковзних кутах падіння. Вимірювання коефіцієнта відбиття при ковзних кутах падіння електромагнітної хвилі можуть застосовуватись для отримання абсолютних значень комплексної провідності зразка в широкому температурному та частотному діапазонах. Розроблено та реалізовано експериментальну установку на базі фазового мосту в міліметровому діапазоні довжин хвиль. Виміряно провідність YBa₂Cu₃O₇₋δ-плівок при температурах вищих за критичну. 2010 Article Grazing incidence reflectivity of high-Tc superconductors: mm wave technique of conductivity measurements / A.I. Gubin, N.T. Cherpak, A.A. Lavrinovich // Радіофізика та електроніка. — 2010. — Т. 15, № 2. — С. 87-91. — Бібліогр.: 27 назв. — англ. 1028-821X http://dspace.nbuv.gov.ua/handle/123456789/105803 537.312.62 en Радіофізика та електроніка Інститут радіофізики і електроніки ім. А.Я. Усикова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Радиофизика твердого тела и плазмы
Радиофизика твердого тела и плазмы
spellingShingle Радиофизика твердого тела и плазмы
Радиофизика твердого тела и плазмы
Gubin, A.I
Cherpak, N.T.
Lavrinovich, A.A.
Grazing incidence reflectivity of high-Tc superconductors: mm wave technique of conductivity measurements
Радіофізика та електроніка
description Non-resonant nondestructive technique has been described for investigation of high-temperature superconductive and relative materials through the measurement of the microwave reflection at grazing incidence. As authors discussed earlier, a reflection coefficient of the electromagnetic wave at grazing incidence can be used to determine an absolute complex conductivity over a wide temperature and frequency range. As of now the experimental measurement setup was realized in millimeter wave range using waveguide phase bridge based approach. The conductivity of YBa₂Cu₃O₇₋δ film was measured at temperatures higher than critical.
format Article
author Gubin, A.I
Cherpak, N.T.
Lavrinovich, A.A.
author_facet Gubin, A.I
Cherpak, N.T.
Lavrinovich, A.A.
author_sort Gubin, A.I
title Grazing incidence reflectivity of high-Tc superconductors: mm wave technique of conductivity measurements
title_short Grazing incidence reflectivity of high-Tc superconductors: mm wave technique of conductivity measurements
title_full Grazing incidence reflectivity of high-Tc superconductors: mm wave technique of conductivity measurements
title_fullStr Grazing incidence reflectivity of high-Tc superconductors: mm wave technique of conductivity measurements
title_full_unstemmed Grazing incidence reflectivity of high-Tc superconductors: mm wave technique of conductivity measurements
title_sort grazing incidence reflectivity of high-tc superconductors: mm wave technique of conductivity measurements
publisher Інститут радіофізики і електроніки ім. А.Я. Усикова НАН України
publishDate 2010
topic_facet Радиофизика твердого тела и плазмы
url http://dspace.nbuv.gov.ua/handle/123456789/105803
citation_txt Grazing incidence reflectivity of high-Tc superconductors: mm wave technique of conductivity measurements / A.I. Gubin, N.T. Cherpak, A.A. Lavrinovich // Радіофізика та електроніка. — 2010. — Т. 15, № 2. — С. 87-91. — Бібліогр.: 27 назв. — англ.
series Радіофізика та електроніка
work_keys_str_mv AT gubinai grazingincidencereflectivityofhightcsuperconductorsmmwavetechniqueofconductivitymeasurements
AT cherpaknt grazingincidencereflectivityofhightcsuperconductorsmmwavetechniqueofconductivitymeasurements
AT lavrinovichaa grazingincidencereflectivityofhightcsuperconductorsmmwavetechniqueofconductivitymeasurements
first_indexed 2025-07-07T17:24:34Z
last_indexed 2025-07-07T17:24:34Z
_version_ 1837009810703253504
fulltext __________ ISSN 1028–821X Радиофизика и электроника, 2010, том 15, № 2, с. 87–91 © ИРЭ НАН Украины, 2010 УДК 537.312.62 GRAZING INCIDENCE REFLECTIVITY OF HIGH-Tc SUPERCONDUCTORS: MM WAVE TECHNIQUE OF CONDUCTIVITY MEASUREMENTS A. I. Gubin, N. T. Cherpak, A. A. Lavrinovich A. Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine 12, Ac. Proskura Str., Kharkov, 61085, Ukraine E-mail: gubin@ire.kharkov.ua Non-resonant nondestructive technique has been described for investigation of high-temperature superconductive and relative ma- terials through the measurement of the microwave reflection at grazing incidence. As authors discussed earlier, a reflection coefficient of the electromagnetic wave at grazing incidence can be used to determine an absolute complex conductivity over a wide temperature and frequen- cy range. As of now the experimental measurement setup was realized in millimeter wave range using waveguide phase bridge based ap- proach. The conductivity of YBa2Cu3O7- film was measured at temperatures higher than critical. Fig. 5. Ref.: 27 titles. Key words: grazing incidence reflectivity, microwave conductivity, superconducting films. Microwave impedance properties study of various materials including high-temperature super- conductors (HTS) plays important role in fundamen- tal physics and engineering. Different techniques are used for the mentioned above investigation. A num- ber of the techniques make use of different resonant structures [1]. The other ones are based on measure- ment of microwave power transmitted through or reflected from HTS sample [1]. The first investiga- tion of conductivity by measurements of signal transmitted through the thin superconducting film in cylindrical waveguide was performed using certain assumptions to obtain complex value by measured real part of the transmission coefficient [2]. The fur- ther investigations was performed without any ap- proximations by measuring of the real parts of trans- mission and reflection coefficients [3, 4]; by measu- ring complex value of the transmission coefficient [5–7] and by measuring of the complex reflected signal [8]. As a form of the non-resonant method, the technique based on short circuit termination in a co- axial cable was also used [9, 10]. The investigation of complex conductivity by non-resonant method is possible over a wide frequency range and allows ob- taining absolute values of imaginary part of complex conductivity (penetration depth) while by the reso- nant methods it is necessary to use fitting proce- dure [11]. Moreover another advantage of the method is the possibility of the investigations in the tempera- ture region close to and higher the superconductor critical temperature, where the resonant methods has pure accuracy [12]. This fact makes the method very useful for investigations of fluctuation conductivity (which is mainly studied in DC and there is only few works in microwave region [13–17]) and pseudogap effects (which is one of challenges in physics of un- conventional superconductivity) [18]. Unfortunately the investigations of the transmitted signal are appli- cable only for thin films of thickness less than a field penetration depth. Although the reflection coefficient for a thick conducting plate (which is normal to a longitudinal axis of the waveguide) is close to unity. It has small changes under large variation of the sample conductivity [2, 3, 8]. It is evident from a simple relation for absolute value R of the reflection coefficient: , 4 1 0Z R R s where Rs is surface resistance of the sample under test and Z0 is characteristic impedance of free space. The relation Rs << Z0 is true for all conductors inclu- ding superconductors. However situation could be improved by us- ing grazing incident p-polarized wave. This fact was recently discovered in the infrared [19] and millime- ter [20] wavebands under free-space and rectangular waveguide conditions accordingly. In this case sensi- tivity of the reflection coefficient to conductivity changes can be increased by order of values and higher [21]. As it is shown by authors, this fact is connected to decreasing of the p-polarized wave re- flection coefficient by the approaching to Brewster angle. The Brewster angle is close to 90 degrees for conducting plate, but it is different for the samples with various conductivity, e. g. for superconductor in normal and superconducting states. As a result, the reflection coefficient sensitivity to conductivity changes rises under grazing incidence angles condi- tions [22]. The report gives a description of experi- mental setup, where the idea of grazing incidence re- flecti-vity technique of conductivity measurement is realized in millimeter wavelength range using wave- guide phase bridge-based approach. The first results of the method application to investigation of HTS materi- als are presented. YBa2Cu3O7- film (Tc  92 K) of 300 nm thickness deposited on 0,3 mm sapphire sub- strate with CeO2 buffer layer was studied. 1. The experimental setup. To realize the grazing incidence of the p-polarized wave on a sam- ple in Ka-band, the special rectangular waveguide section with fundamental mode H10 (fig. 1) was de- mailto:gubin@ire.kharkov.ua A. I. Gubin et al. / Grazing incidence reflectivity… _________________________________________________________________________________________________________________ 88 veloped. The section has been realized by oblique short-circuit termination by the measured sample. The temperature sensor is placed on a top of the sample. An angle of incidence was chosen equal to 80 degrees on the basis of the theoretical study [21, 22]. Temperature sensor Spring Sample Flange Screw Waveguide Pin Fig. 1. Waveguide section The computer-controlled experimental setup (fig. 2) for investigation of temperature dependence of complex reflection coefficient was developed in Ka-band based on phase bridge method [23]. Fig. 2. Schematic diagram of the experimental setup for measure- ment of complex reflection coefficient A magic-Tee 1 splits the signal of micro- wave oscillator in two branches. The first branch, which is a reference, consists of attenuator 1 and phase shifter. The latter devices have been improved to achieve digital control and to obtain data by PC. The second branch, which is a measuring one, in- cludes attenuator 2 and circulator. Attenuator 2 is intended for isolation and a circulator allows decou- pling incident and reflected waves in the waveguide section. Sample under test with a waveguide section is placed in the cryostat which allows to perform measurements in a wide temperature range, namely from liquid nitrogen temperature up to room one. Microwave signal from both branches as a result of combining by magic-Tee 2 is converted in DC volt- age by detector. Thereafter the signal is amplified and converted to digital by the designed interface and passes into PC for further processing. The tempera- ture at the sample surface was determined by a sensor placed in the copper plate (fig. 1) which is on a top of the sample. The changes of the phase shift and losses were recorded by PC simultaneously with the tem- perature changes using interface. The special code was written to control the measurement process. It allows one to detect temper- ature changes of the sample, change positions of both attenuator1 and a phase shifter in a reference branch of the phase bridge in order to achieve compensation of the bridge output signal throughout minimum of the detected signal. At the same time the code allows determining positions of the attenuator and phase shifter in a reference branch and represents tempera- ture dependencies in real time. The minimum detect- able phase shift and attenuation in measuring system were 0.1 degree and 0.03 dB, respectively. 2. Calibration. To obtain absolute values of the complex reflection coefficient the calibration of the setup is needed. It was performed by measuring of samples with known characteristics. The relation of the measured Rm and actual Ra reflection coefficients is determined by [9]: , 1 Sa Ra Dm ER ER ER   where ,RE SE and DE are coefficients specified by imperfections such as losses and reflection in the microwave waveguide transmission line. RE is the reflection tracking which is connected to the losses and phase shift in the transmission line and SE is referred to as the source match. The error coefficient DE is the directivity, which arises from the imperfect nature of the circulator and reflections due to wave- guide connections. Three calibration measurement cycles were performed to obtain temperature depend- ence of the three calibration coefficients by solving system of equations for each temperature point. Bulk copper, titanium and absorber were used as calibra- tion samples. The samples were chosen with different enough but known values of conductivity. Absorber reflection coefficient is close to zero in a whole tem- perature region, which was proven by low standing wave ratio (SWR) of the waveguide section with such sample (less than 1.1). This means that the ab- sorber measured reflection coefficient is equal to calibration coefficient .DE The actual reflection coef- ficient could be obtained by equation:   . DmSR Dm a EREE ER R    Temperature dependence of microwave losses mRL log20 in measurement branch of the phase A. I. Gubin et al. / Grazing incidence reflectivity… _________________________________________________________________________________________________________________ 89 bridge for three calibration samples (▲ – absorber, ■ – titanium, ● – copper) and superconducting YBa2Cu3O7- film (♦) at frequency 39.6 GHz is shown in fig. 3, a. Changes of the losses at S-N tran- sition are equal to about 1.5 dB, which is well meas- urable value (in comparison with normal incidence case [20]). 80 85 90 95 100 5 10 L , d B T, K a) 80 85 90 95 100 0,90 0,95 R T, K b) Fig. 3. Losses of YBa2Cu3O7- superconducting film and three calibration samples dependence on temperature at frequency 39.6 GHz (a) and temperature dependence of the film reflection coefficient (b) Knowing the loss of the copper, absorber and titan samples depending on temperature, it is possible to obtain absolute reflection coefficient of the superconducting film – dielectric substrate struc- ture depending on temperature (fig. 3, b) by solving the abovementioned equations. 3. Results and discussion. Complex con- ductivity (or complex surface impedance) could be obtained by plane wave approach. Full reflection coefficient r from multilayer structure could be cal- culated by using Fresnel equations, Snell’s law and dielectric function by [21, 22]: , 1 2 2020 2 202002 02 i i er er r        where 02 is the total transmission coefficient through the first (i. e. superconducting) layer taking all the reflections into account; t02 and r02 are the Fresnel transmission and reflection coefficients for the se- cond interface; 02 reflection coefficient from the first layer which takes into account the interference which occurs within the film due to the reflection at the last interface; 20 and 02 are introduced analo- gously to 02 and 20;   kd2 p, k  2 /, where is the wavelength, d2 is the substrate thickness and Sp  are the refractive index of the substrate. Reflection coefficient 2 rR  could be recalculated from film permittivity f knowing film thickness, substrate thickness and permittivity (which was taken from [24]), and also angle and frequency of incident wave. Eigen waves in the waveguide including a basic H10-wave are not plane ones but they can be represented as a superposition of the plane waves, so our approximation is hold true at a certain orientation of microwave electric field with regard to plane of the sample under test, i. e. microwave electric field E  must lie in incident plane of guide wave (see fig. 1). The plane wave approach is more useful than electromagnetic analysis in the waveguide due to its simplicity. The exact electromagnetic analysis is complex at angles, higher than 78 degrees due to a large length of the measurement sample at a wave- guide shear comparable to wavelength. Besides the data obtained by plane wave approach and using ex- act electromagnetic analysis are agreed for thin su- perconducting films and bulk samples in both normal and superconducting states up to 78 degrees of inci- dence angles. To obtain complex conductivity from measured sample reflection coefficient it is neces- sary to find relation of complex conductivity and reflection coefficient. It is impossible to solve this problem analytically therefore iteration procedure was used. To check reliability of the measurement ap- proach and calibration procedure the investigation of conductivity of silicon, YBaCuO ceramics at room temperature (which was used only as a test material and does not has as good quality as superconducting film, mentioned above, but is thick) and duralumin samples was performed by two methods. The first one is a given method and the second, i. e. reference, one is a method based on whispering gallery mode sapphire disk resonator with the sample as conduc- ting endplate [25]. The data obtained by both meth- ods conform to each other well within the measure- ment errors (fig. 4). A. I. Gubin et al. / Grazing incidence reflectivity… _________________________________________________________________________________________________________________ 90 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 Cu Ti Si YBaCuO  , S m /m ( g iv en m et h o d ) , Sm/m (QDR Method) Duralumin Fig. 4. Conductivity of the bulk test samples (silicon, ceramics, duralumin) and calibration samples (titanium and copper) obtained by given method and method based on whispering gallery mode resonator. All of the samples were at room temperature The measured dependence of the real part of YBa2Cu3O7- film complex conductivity is shown in fig. 5. The calculated dependence of the conductivity on temperature is shown by solid line. 100 120 140 160 180 1,0 1,5 2,0 2,5     1 m  1 ·1 0 6 T, K Fig. 5. Experimental temperature dependence of YBa2Cu3O7- superconducting film conductivity (points) and calculated results on the basis of linear dependence of the sample resistance in nor- mal state (line) Here linear dependence of the normal state film resistance on temperature and assumption that normal state conductivity at T  Tc is equal to 1.35·10 6 Sm/m were taken into account. There is a good coincidence of the theoretical and experimental results in temperature region higher than 120 K. Ex- perimental and theoretical conductivities at tempera- tures 92…120 K differ and experimental values are higher than theoretical ones. This distinction is obvi- ously connected with fluctuation conductivity phe- nomenon of the superconducting YBCO film [16, 26]. Conclusion. Thus, the possibility to study superconductor impedance properties by measure- ments of reflection coefficient at grazing incidence angles in rectangular waveguide with a sample in- clined at the large angle (more than 80°) in a plane of microwave electric field is shown. The method al- lows performing study of the superconductors and other materials, e. g. CMR substances [27], conduc- tivity of which changes under different external con- ditions such as temperature, magnetic field, etc. The technique to obtain such HTS characteristics as com- plex conductivity or surface impedance at tempera- ture above Tc using measured complex reflection coefficient, calibrated by absolute values of reflection coefficient of the known materials, has been shown. The applicability of the method to studying the mi- crowave properties of YBa2Cu3O7- superconducting film in normal state and near Tc was demonstrated. Although only the real part of conductivity is mea- sured in the present work, the measurement of the imaginary part is possible as well. It is worthy to note also, that although a given work was performed in single frequency mode, the grazing incidence reflec- tivity technique is frequency broadband one in prin- ciple. For realization of such a broadband approach, the sweep oscillator or frequency synthesizer is nec- essary. 1. Jenkins A. P. Studies of High Temperature Superconductors / A. P. Jenkins, K. S. Kale, D. Dew-Hughes. – 1996. – 17. – P. 179. 2. Glover R. E. Conductivity of superconducting films for photon energies between 0.3 and 40 kTc / R. E. Glover, M. Tinkham // Phys. Rev. – 1957. – 108, N 2. – P. 243–256. 3. Rugheimer N. M. Microwave transmission- and reflection- coefficient ratios of thin superconducting films / N. M. Rugheimer, A. Lehoczky, C. V. Briscoe // Phys. Rev. – 1967. – 154, N 2. – P. 414–421. 4. Lehkoczky S. L. Fluctuation effects in the ac conductivity of thin superconducting films at microwave frequencies / S. L. Le- hkoczky, C. V. Briscoe // Phys. Rev. B. – 1971. – 4, N 11. – P. 3938–3950. 5. Observation of a narrow superconducting transition at 6 GHz in crystals of YBa2Cu3O7 / D. L. Rubin, R. K. Green, J. Gruschus et al. // Phys. Rev. B. – 1988. – 38, N 10. – P. 6538–6542. 6. Millimeter-wave complex-conductivity measurements of Bi-Ca- Sr-Cu-O superconducting thin films / W. Ho, P. J. Hood, P. H. Kobrin et al. // Phys. Rev. B. – 1988. – 38, N 10. – P. 7029–7032. 7. Millimeter-wave complex conductivity of some epitaxial YBa2Cu3O7 films / P. H. Kobrin, W. Ho, W. Hall et al. // Phys. Rev. B. – 1990. – 42, N 10. – P. 6259–6263. 8. Infrared observation of two-fluid superconductivity in YBa2Cu3O7 / D. van der Marel, M. Bauer, E. H. Brandt et al. // Phys. Rev. B. – 1991. – 43, N 10. – P. 8606–8609. 9. Booth J. C. A Broadband Method for the Measurement of the Surface Impedance of Thin Films at Microwave Frequencies / J. C. Booth, D. H. Wu, S. M. Anlage // Rev. Sci. Instrum. – 1994. – 65. – P. 2082. 10. Two techniques for the broadband measurement of surface impedance of high critical temperature superconducting thin films / N. Tosoratti, R. Fastampa, M. Giura et al. // Intern. J. Modern Phys. B. – 2000. – 14. –P. 2926. 11. Microwave surface resistance of epitaxial YBa2Cu3O7 thin films at 18.7 GHz measured by a dielectric resonator technique / N. Klein, U. Dähne, U. Poppe et al. // J. Super- cond. – 1992. – 5. – P. 195. 12. Bhasin K. B. Determination of sutface resistance and magnetic penetration depth of superconducting YBa2Cu3O7 thin films by microwave power transmission measurements / K. B. Bhasin, A. I. Gubin et al. / Grazing incidence reflectivity… _________________________________________________________________________________________________________________ 91 J. D. Warner // IEEE Trans. Magn. – 1991. – MAG-27, N 2. – P. 1284–1287. 13. Fluctuation effects in the microwave conductivity of cuprate superconductors / J. R. Waldram, D. M. Broun, D. C. Morgan et al. // Phys. Rev. B. – 1999. –59. – P. 1528–1537. 14. Excess conductivity of overdoped Bi2Sr2CaCu2O8+x crystals well above Tc / E. Silva, S. Sarti, R. Fastampa, M. Giura // Phys. Rev. B. – 2001. – 64, N 14. – P. 144508–144517. 15. Silva E. Frequency-dependent fluctuational conductivity above Tc in anisotropic superconductors: effects of a short wavelength cutoff / E. Silva // Eur. Phys. J. B. – 2004. – 37. – P. 277–289. 16. Microwave fluctuational conductivity in YBa2Cu3O7- / E. Silva, R. Marcon, S. Sarti et al. // Eur. Phys. J. B. – 2002. –27. – P. 497–506. 17. Wu P. H. Calculations of the microwave conductivity of high-Tc superconducting thin films from power transmission measurements / P. H. Wu, Q. Min // J. Appl. Phys. – 1992. – 71, N 11. – P. 5550–5553. 18. Detection of the Unusual Magnetic Orders in the Pseudogap Region of a High-Temperature Superconducting YBa2Cu3O6.6 Crystal by Muon-Spin Relaxation / J. E. Sonier, V. Pacradoumi, S. A. Sabok-Sayr et al. // Phys. Rev. Lett. – 2009. –103. – P. 167002 19. Grazing incidence infrared reflectivity of La1.85Sr0.15CuO4 and NbN / H. S. Somal, B. J. Feenstra, J. Schützmann et al. // Phys. Rev. Lett. – 1996. – 76, N 9. – P. 1525–1528. 20. Gubin A. I. Microwave reflection from HTS samples in waveguide E-structure / A. I. Gubin, A. A. Lavrinovich, N. T. Cherpak // Tech. Phys. Lett. – 2001. – 55. – P. 336–337. 21. Feenstra B. J. Low Energy Electrodynamics of High Tc Superconductors: Proefschrift / B. J. Feenstra; University of Groningen. – Groningen, 1997. – 162 p. 22. Cherpak N. T. Microwave Reflectivity of HTS Film – Dielectric Substrate Structure at Arbitrary Incidence Angles, Telecommunications and Radio Engineering / N. T. Cherpak, A. I. Gubin, A. A. Lavrinovich // Telecommunications and Radio Engineering. – 2001. – 55, N 3. – P. 81–89. 23. Gubin A. I. Grazing Incidence Reflectivity Technique of HTS and Related Materials Microwave Characterization / A. I. Gu- bin, A. A. Lavrinovich, N. T. Cherpak // Proc. of 16-th Intern. Crimean Conf. “Microwave & Telecommunication Tecno- logy”. – Sebastopol, 2006. – P. 782–783. 24. Hein M. High-temperature Superconductor Thin Films at Microwave Frequencies. / M. Hein. – 1999. – 396 p. 25. Accurate microwave technique of surface resistance measurement of large-area HTS films using sapphire quasi- optical resonator / N. Cherpak, A. Barannik, Yu. Filipov et al. // IEEE Trans. on Appl. Supercond. – 2003. – 13. – P. 3570–3573. 26. Temperature dependence of the microwave conductivity of a YBCuO film in the normal state / A. I. Gubin, N. T. Cherpak, A. A. Lavrinovich, K. V. Oganisian // Low Temp. Phys. – 2007. – 33. – P. 818–820. 27. Belevtsev B. I. Direct-current transport properties of and microwave absorption in a bulk ceramic sample and a film of La0.5Sr0.5CoO3−δ: magnetic inhomogeneity effects / B. I. Belevtsev, N. T. Cherpak, I. N. Chukanova et al. // J. Phys.: Condens. Matter. – 2002. – 14. – P. 2591–2603. МЕТОД ИССЛЕДОВАНИЯ ПРОВОДИМОСТИ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДНИКОВ ПРИ ПОМОЩИ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ ВОЛНЫ ПРИ СКОЛЬЗЯЩИХ УГЛАХ ПАДЕНИЯ В МИЛЛИМЕТРОВОМ ДИАПАЗОНЕ А. И. Губин, Н. Т. Черпак, A. A. Лавринович Описан метод неразрушающего микроволнового исследования высокотемпературных сверхпроводников и родственных материалов посредством измерения их коэффи- циента отражения при скользящих углах падения. Измерения коэффициента отражения при скользящих углах падения электромагнитной волны могут быть использованы для полу- чения абсолютных значений комплексной проводимости об- разца в широком температурном и частотном диапазонах. Разработана и реализована экспериментальная установка на основе фазового моста в миллиметровом диапазоне длин волн. Измерена проводимость YBa2Cu3O7--пленок при темпе- ратурах выше критической. Ключевые слова: коэффициент отражения при скользящих углах падения, микроволновая проводимость, сверхпроводящие пленки. МЕТОД ДОСЛІДЖЕННЯ ПРОВІДНОСТІ ВИСОКОТЕМПЕРАТУРНИХ НАДПРОВІДНИКІВ ЗА ДОПОМОГОЮ ВИМІРЮВАННЯ КОЕФІЦІЄНТА ВІДБИТТЯ ХВИЛІ ПРИ КОВЗНИХ КУТАХ ПАДІННЯ У МІЛІМЕТРОВОМУ ДІАПАЗОНІ О. І. Губін, М. T. Черпак, О. A. Лавринович Описано метод неруйнівного мікрохвильового до- слідження високотемпературних надпровідників та спорідне- них матеріалів за допомогою вимірювання їх коефіцієнта відбиття при ковзних кутах падіння. Вимірювання коефіцієнта відбиття при ковзних кутах падіння електромагнітної хвилі можуть застосовуватись для отримання абсолютних значень комплексної провідності зразка в широкому температурному та частотному діапазонах. Розроблено та реалізовано експе- риментальну установку на базі фазового мосту в міліметрово- му діапазоні довжин хвиль. Виміряно провідність YBa2Cu3O7-- плівок при температурах вищих за критичну. Ключові слова: коефіцієнт відбиття при ковзних кутах падіння, мікрохвильова провідність, надпровідні плівки. Рукопись поступила 14 января 2010 г. Печатается в авторской редакции.