On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives

For a formal power series the conditions on the Gelfond-Leont'ev derivatives are found, under which the series represents a function, analytic in the disk {z : |z| < R}, 0 < R ≤ +∞.

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Sheremeta, M.M., Volokh, O.A.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2007
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106448
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives / M.M. Sheremeta, O.A. Volokh // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 241-252. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-106448
record_format dspace
spelling irk-123456789-1064482016-09-29T03:02:18Z On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives Sheremeta, M.M. Volokh, O.A. For a formal power series the conditions on the Gelfond-Leont'ev derivatives are found, under which the series represents a function, analytic in the disk {z : |z| < R}, 0 < R ≤ +∞. 2007 Article On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives / M.M. Sheremeta, O.A. Volokh // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 241-252. — Бібліогр.: 3 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106448 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For a formal power series the conditions on the Gelfond-Leont'ev derivatives are found, under which the series represents a function, analytic in the disk {z : |z| < R}, 0 < R ≤ +∞.
format Article
author Sheremeta, M.M.
Volokh, O.A.
spellingShingle Sheremeta, M.M.
Volokh, O.A.
On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives
Журнал математической физики, анализа, геометрии
author_facet Sheremeta, M.M.
Volokh, O.A.
author_sort Sheremeta, M.M.
title On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives
title_short On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives
title_full On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives
title_fullStr On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives
title_full_unstemmed On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives
title_sort on a convergence of formal power series under a special condition on the gelfond-leont'ev derivatives
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/106448
citation_txt On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives / M.M. Sheremeta, O.A. Volokh // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 241-252. — Бібліогр.: 3 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT sheremetamm onaconvergenceofformalpowerseriesunderaspecialconditiononthegelfondleontevderivatives
AT volokhoa onaconvergenceofformalpowerseriesunderaspecialconditiononthegelfondleontevderivatives
first_indexed 2025-07-07T18:30:24Z
last_indexed 2025-07-07T18:30:24Z
_version_ 1837013951868567552
fulltext Journal of Mathematical Physics, Analysis, Geometry 2007, vol. 3, No. 2, pp. 241�252 On a Convergence of Formal Power Series Under a Special Condition on the Gelfond�Leont'ev Derivatives M.M. Sheremeta and O.A. Volokh Department of Mechanics and Mathematics, Ivan Franko Lviv National University 1 Universitetska Str., Lviv, 7900, Ukraine E-mail:tftj@franko.lviv.ua Received February 12, 2004, revised December 28, 2006 For a formal power series the conditions on the Gelfond-Leont'ev deriva- tives are found, under which the series represents a function, analytic in the disk fz : jzj < Rg, 0 < R � +1. Key words: formal power series, Gelfond-Leont'ev derivatives, analytic function. Mathematics Subject Classi�cation 2000: 30D50, 30D99. 1. Introduction Let (fk) 1 k=0 be an arbitrary sequence of complex numbers. For 0 < R � 1 by A(R) we denote the class of analytic functions f(z) = 1X k=0 fkz k; (1) in the disk fz : jzj < Rg. The denotement f 2 A(0) means further that either f 2 A(R) for some R > 0 or the series (1) converges only at the point z = 0, i.e., A(0) is a class of formal power series. Clearly, A(R2) � A(R1) for all 0 � R1 � R2 � 1. We say that f 2 A+(R) if f 2 A(R) and fk > 0 for all k � 0. For f 2 A(0) and l(z) = 1P k=0 lkz k 2 A+(0) the formal power series Dn l f(z) = 1X k=0 lk lk+n fk+nz k (2) is called [1�2] the Gelfond�Leont'ev derivative of the order n. If l(z) = ez, that is lk = 1=k!, then Dn l f(z) = f (n)(z) is a usual derivative of the order n. We can assume that l0 = 1. c M.M. Sheremeta and O.A. Volokh, 2007 M.M. Sheremeta and O.A. Volokh As in [2], let � be a class of all positive sequences � = (�k) with �1 � 1, and let �� = f� 2 � : ln�k � ak for every k 2 N and some a 2 [0;+1)}. We say that f 2 A�(0) if f 2 A(0) and jfkj � �kjf1j for all k � 1. Finally, let N be a class of increasing sequences (np) of nonnegative integers, n0 = 0. Studying of conditions on the Gelfond�Leont'ev derivatives, under which series (1) represents an entire function, was started in [2]. In particular, the following theorems are proved. Theorem A. Let (np) 2 N . In order that for every � 2 �, f 2 A(0) and l 2 A+(1) the condition (8p 2 Z+)fDnp l f 2 A�(0)g implies f 2 A(1), it is necessary and su�cient that lim p!+1 (np+1 � np) <1. Theorem B. Let (np) 2 N , l 2 A+(1) and the sequence (lk�1lk+1=l 2 k) be nondecreasing. In order that for every � 2 �� and f 2 A(0) the condition (8p 2 Z+)fDnp l f 2 A�(0)g implies f 2 A(1), it is necessary and su�cient that lim p!+1 1 np + 1 8< :ln 1 lnp+1 � pX j=1 ln 1 lnj�nj�1+1 9= ; = +1: (3) A problem on �nding conditions on l 2 A+(0), � 2 � and (np) 2 N , un- der which the condition (8p 2 Z+)fDnp l f 2 A�(0)g implies f 2 A(R), R > 0, is natural. In [3] the following analog of Th. A is proved. Theorem C. Let (np) 2 N and let R[f ] and R[l] be the radii of developments into power series of f and l. The condition lim p!1 (np+1 � np) < +1 is necessary and su�cient in order that for every � 2 �, f 2 A(0) and l 2 A+(0) the condition (8p 2 Z+)fDnp l f 2 A�(0)g implies the inequality R[f ] � PR[l] with some constant P > 0. The main result of this paper is the following analog of Th. B. Theorem 1. Let (np) 2 N . In order that for every f 2 A(0), l 2 A+(0) and � 2 � such that the sequence (lk�1lk+1=l 2 k) is nondecreasing and �k�1�k+1=� 2 k � 1, k � 2, the condition (8p 2 Z+)fDnp l f 2 A�(0)g implies f 2 A(R), it is necessary and su�cient that lim p!+1 1 np + 1 8< :ln 1 lnp+1 � p ln l1 � pX j=1 ln �nj�nj�1+1 lnj�nj�1+1 9= ; � ln R: (4) None of the conditions on � 2 � and l 2 A+(0) in Th. 1 can be dropped in general. 242 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 2 On a Convergence of Formal Power Series... 2. Proof of Theorem 1 In [2] the following lemma is proved. Lemma 1. If � 2 �, (np) 2 N , f 2 A(0), l 2 A+(0) and D np l f 2 A�(0) for all p 2 Z+ then jfnp+kj � jf1jlp1lnp+k �k lk pY j=1 �nj�nj�1+1 lnj�nj�1+1 (5) for all p 2 Z+ and k = 2; : : : ; np+1 � np + 1. First we prove the following theorem using Lem. 1. Theorem 2. Let (np) 2 N and the sequence � 2 � and the function l 2 A+(0) be such that for all p 2 Z+ and k = 2; : : : ; np+1 � np ln lnp+k�1lnp+k+1 l2 np+k � ln lk�1lk+1 l2 k + ln �k�1�k+1 �2 k � 0: (6) If D np l f 2 A�(0) for all p 2 Z+ then the estimate ln R[f ] � lim p!+1 1 np + 1 8< :ln 1 lnp+1 � p ln l1 � pX j=1 ln �nj�nj�1+1 lnj�nj�1+1 9= ; (7) is true and sharp. P r o o f. From (5) for p!1 we have ln jfnp+kj np + k � 1 np + k 8< :ln lnp+k � ln lk + ln �k + p ln l1 + pX j=1 ln �nj�nj�1+1 lnj�nj�1+1 9= ;+ o(1): (8) We put Ap = p ln l1 + pX j=1 ln �nj�nj�1+1 lnj�nj�1+1 and k = k;p = 1 np + k fln lnp+k � ln lk + ln �k +Apg; k = 1; 2; : : : ; np+1 � np + 1: Then k � k�1 = Æk (np + k)(np + k � 1) ; k = 2; : : : ; np+1 � np + 1; (9) Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 2 243 M.M. Sheremeta and O.A. Volokh where Æk = (np + k � 1)(ln lnp+k � ln lk + ln �k) � (np + k)(ln lnp+k�1 � ln lk�1 + ln �k�1)�Ap: In view of (6) Æk+1 � Æk = (np + k) ln lnp+k�1lnp+k+1 l2np+k � ln lk�1lk+1 l2k + ln �k�1�k+1 �2k ! � 0; k = 2; : : : ; np+1 � np; i.e., Æ2 � � � � � Ænp+1�np+1. If all Æk � 0, then in view of (9) k � k�1 for all k = 2; : : : ; np+1 � np + 1 and maxf k : 2 � k � np+1 � np + 1g = np+1�np+1. If all Æk � 0, then k � k�1 for all k = 2; : : : ; np+1 � np + 1 and maxf k : 2 � k � np+1 � np + 1g = 1. Finally, if Æ2 � � � � � Æk0�1 < 0 � Æk0 � : : : Ænp+1�np+1 for some k0; 2 � k0 � np+1 � np + 1, then k0�1 < k0�2 < � � � < 1 and k0�1 � k0 � � � � < np+1�np+1. Thus, maxf k : 1 � k � np+1 � np + 1g = maxf 1; np+1�np+1g: Since 1 = 1 np + 1 fln lnp+1 � ln l1 + ln �1 +Apg; and np+1�np+1 = 1 np+1 + 1 fln lnp+1+1 � ln lnp+1�np+1 + ln �np+1�np+1 +Apg = 1 np+1 + 1 fln lnp+1+1 � ln l1 +Ap+1g; from (8) for 1 � k � np+1 � np + 1 we have ln jfnp+kj np + k � max � ln lnp+1 +Ap np + 1 ; ln lnp+1+1 +Ap+1 np+1 + 1 � + o(1); p!1; i.e., for p!1 1 np + k ln 1 jfnp+kj � min � 1 np + 1 � 1 ln lnp+1 �Ap � ; 1 np+1 + 1 � ln 1 lnp+1+1 �Ap+1 �� + o(1): Hence it follows ln R[f ] � lim p!1 1 np + 1 � 1 ln lnp+1 �Ap � ; 244 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 2 On a Convergence of Formal Power Series... that is in view of the de�nition of Ap the estimate (7) is proved. For the proof of its sharpness we consider a power series f(z) = 1X k=0 fnk+1z nk+1: (10) Since for the series (10) D np l f(z) = 1X k=p lnk�np+1 lnk+1 fnk+1z nk�np+1; then D np l f 2 A�(0) for all p 2 Z+ if and only if for all p 2 Z+ and k > p lnk�np+1 lnk+1 jfnk+1j � �nk�np+1 l1 lnp+1 jfnp+1j: (11) It is easy to see that if f1 > 0 and fnk+1 = f1l k�1 1 lnk+1 kY j=1 �nj�nj�1+1 lnj�nj�1+1 ; k � 1; (12) then (11) holds if and only if for all p 2 Z+ è k > p kY j=p+1 �nj�nj�1+1 lnj�nj�1+1 � l p+1�k 1 �nk�np+1 lnk�np+1 : (13) We suppose that l1 � 1, and �k=lk = expf(k � 1)'(k � 1)g, k � 2, where ' is positive, continuous and nondecreasing function on [0; +1). Then kY j=p+1 �nj�nj�1+1 lnj�nj�1+1 � kY j=p+1 e(nj�nj�1)'(nj�nj�1) � kY j=p+1 e(nj�nj�1)'(nk�np) = e(nk�np)'(nk�np) = �nk�np+1 lnk�np+1 � l p+1�k 1 �nk�np+1 lnk�np+1 ; i.e., (13) holds and, thus, D np l f 2 A�(0) for all p 2 Z+. Since for the series (10) with the coe�cients (12) the equality ln R[f ] = lim p!+1 1 np + 1 8< :ln 1 lnp+1 � p ln l1 � pX j=1 ln �nj�nj�1+1 lnj�nj�1+1 9= ; (14) Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 2 245 M.M. Sheremeta and O.A. Volokh is true, then we need to show that there exist sequences (lk) and (�k) such that �k=lk = expf(k � 1)'(k � 1)g, k � 2, and the condition (6) holds. Since for �k=lk = expf(k � 1)'(k � 1)g the condition (6) takes the form ln lnp+k�1lnp+k+1 l2 np+k + (k � 2)'(k � 2) + k'(k) � 2(k � 1)'(k � 1) � 0; it is su�cient to choose a sequence (lk) such that lk�1lk+1 � l2k; k � 2, and a func- tion ' such that the function x'(x) is convex. The proof of Th. 2 is complete. P r o o f of Theorem 1. At �rst we remark that if � 2 �, l 2 A+(0), the sequence (lk�1lk+1=l 2 k) is nondecreasing and �k�1�k+1=� 2 k � 1, k � 2, then the condition (6) of Th. 2 holds. Therefore, if (4) holds, then (7) implies the inequality R[f ] � R, i.e. f 2 A(R). The su�ciency of (4) is proved. On the other hand, from the proof of Th. 2 it follows that there exist f 2 A(0), � 2 �, l 2 A+(0) (for example, lk = 1 and �k = expf(k � 1)'(k � 1)g; k � 2) such that the sequence (lk�1lk+1=l 2 k) is nondecreasing, �k�1�k+1=� 2 k � 1 for k � 2 and D np l f 2 A�(0) for all p 2 Z+ and the equality (14) holds. Therefore, if the condition (4) does not hold, then for the series (10) with the coe�cients (12) we have lim p!+1 1 np + 1 8< :ln 1 lnp+1 � p ln l1 � pX j=1 ln �nj�nj�1+1 lnj�nj�1+1 9= ; < ln R; i.e., f 62 A(R). Theorem 1 is proved. 3. Essentiality of the Conditions in Theorems 1�2 We suppose that np = 2p for p � 1 (thus, np+1 � np = np for p � 2) and consider a power series f(z) = 1X k=0 � fnkz nk + fnk+1z nk+1 � ; (15) where f0 = 0; f1 = 1; fn1 = �n1 , fnk = lnk�nk�1 k�2Y j=0 �nj+1; k � 2; fnk+1 = lnk+1 k�1Y j=0 �nj+1; k � 1; (16) and (�n) is an arbitrary sequence of positive numbers. Since for the series (15) D np l f(z) = 1X k=p � lnk�np lnk fnkz nk�np + lnk�np+1 lnk+1 fnk+1z nk�np+1 � ; 246 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 2 On a Convergence of Formal Power Series... then D np l f 2 A�(0) if and only if for all k � p+ 1 lnk�np+1 lnk+1 fnk+1 � �nk�np+1 l1 lnp+1 fnp+1; lnk�np lnk fnk � �nk�np l1 lnp+1 fnp+1: If l1 = 1 then hence it follows that D np l f 2 A�(0) for all p � 0 if and only if for all p � 1 �np � �np+1�np lnp+1�np = �np lnp (17) and for all p � 0 k�1Y j=p �nj+1 � �nk�np+1 lnk�np+1 ; k � p+ 1; �nk�1 k�2Y j=p �nj+1 � �nk�np lnk�np ; k � p+ 2: (18) Choosing properly the sequences (lk), (�k) and (�k), we can show that the conditions in Ths. 1 and 2 are essential. For example, if lk = �k and �k = 1 for all k � 1, then the inequalities (17) and (18) are obvious and D np l f 2 A�(0) for all p 2 Z+. Besides, if l2j = e�2ja; l2j+1 = e�(2j+1)b and b > a, then the condition (6) does not hold, lim p!+1 1 np + 1 8< :ln 1 lnp+1 � p ln l1 � pX j=1 ln �nj�nj�1+1 lnj�nj�1+1 9= ; = b and ln R[f ] = lim p!+1 1 np ln 1 lnp = a; i.e., the inequality (7) does not hold and, thus, the condition (6) in Th. 2 can not be dropped in general. Now we show that the condition �k�1�k+1=� 2 k � 1, k � 2, in Th. 1 can not be dropped in general. For this purpose we put lk = 1 and �k = �k for k � 1, and we choose the sequence (�k) such that �2j+1 = 1, �2(j+1) � �2j for all j � 1 and ln�nk = nk, k � 1. Due to the choice l 2 A+(0), the sequence (lk�1lk+1=l 2 k) is nondecreasing and it is easy to verify the ful�llment of conditions (17) and (18), i.e., D np l f 2 A�(0) for all p 2 Z+. Besides, lim p!+1 1 np + 1 8< :ln 1 lnp+1 � p ln l1 � pX j=1 ln �nj�nj�1+1 lnj�nj�1+1 9= ; = 0; and ln R[f ] = lim p!+1 1 np ln 1 fnp = lim p!+1 1 np ln 1 �np�1 = �1 2 < 0; i.e., the condition (4) holds with R = 1, but f 62 A(R). Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 2 247 M.M. Sheremeta and O.A. Volokh Finally, we show that the condition of nondecreasing for the sequence (lk�1lk+1=l 2 k) in Th. 1 can not be dropped in general. We choose �k = ek 2 , l2k = e�(2k) 2 , l2k+1 = e�12(2k) 2 and �k = 1=lk. Then �k�1�k+1=� 2 k � 1, k � 2, and the sequence (lk�1lk+1=l 2 k) is not nondecreasing. The inequality (17) is obvious and for k � p+ 1 k�1X j=p ln �nj+1 = � kX j=p+1 ln lnj�nj�1+1 = 12 kX j=p+1 (nj � nj�1) 2 � 12(nk � np) 2 = � ln lnk�np+1 < ln �nk�np+1 lnk�np+1 ; that is the �rst inequality in (18) holds. Further, for k � p+ 2 we have ln �nk�1 + k�2X j=p ln �nj+1 = � ln lnk�1 � k�2X j=p ln lnj+1 = n2k�1 + 12 k�2X j=p n2j = 4k�1 + 12 k�2X j=p 4j = 4k�1 + 4k � 4p+1 < 2(2k � 2p)2 = 2(nk � np) 2 = ln �nk�np lnk�np ; that is the second inequality in (18) holds and, thus, D np l f 2 A�(0) for all p 2 Z+. Besides, lim p!+1 1 np + 1 8< :ln 1 lnp+1 � p ln l1 � pX j=1 ln �nj�nj�1+1 lnj�nj�1+1 9= ; = lim p!+1 1 np 8< :12n2p � pX j=1 ((nj � nj�1 + 1)2 + 12(nj � nj�1) 2) 9= ; = lim p!+1 1 np 8< :12n2p � 13 pX j=1 (nj � nj�1) 2 � 2 pX j=1 (nj � nj�1)� pX j=1 1 9= ; = lim p!+1 1 2p � 12 4p � 13 3 (4p � 1)� 2p+1 � p � = +1 and ln R[f ] = lim p!+1 1 np ln 1 fnp = lim p!+1 1 np 8< :ln 1 lnp � ln 1 lnp�1 � p�2X j=0 ln 1 lnj+1 9= ; 248 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 2 On a Convergence of Formal Power Series... lim p!+1 1 np 8< :n2p � n2p�1 � 12 p�2X j=0 n2j 9= ; = lim p!+1 1 2p 8< :4p � 4p�1 � 12 p�2X j=0 4j 9= ; = lim p!+1 1 2p (�4p�1 + 4) = �1; that is the condition (4) holds with R = +1, but f 62 A(1). 4. Supplements and Remarks Here we consider the case when the sequence � 2 � satis�es a condition of the form � 2 ��. Proposition 1. Let (np) 2 N , the function l 2 A+(0) be such that the sequence (lk�1lk+1=l 2 k) is nondecreasing and ln �k � a(k � 1) for all k � 1 and some a 2 (0; +1). If D np l f 2 A�(0) for all p 2 Z+, then the estimate ln R[f ] � lim p!+1 1 np + 1 8< :ln 1 lnp+1 � p ln l1 � pX j=1 ln 1 lnj�nj�1+1 9= ;� a (19) is true and sharp. Indeed, from the conditions ln �k � a(k � 1) for all k � 1 and D np l f 2 A�(0) for all p 2 Z+ it follows that D np l f 2 A��(0) for all p 2 Z+, where ln ��k = a(k � 1). It is clear that ��k�1� � k+1 = (��k) 2 and, since the sequence (lk�1lk+1=l 2 k) is nondecreasing, the condition (6) of Th. 2 holds. Therefore, from (7) we obtain ln R[f ] � lim p!+1 1 np + 1 8< :ln 1 lnp+1 � p ln l1 � pX j=1 ln 1 lnj�nj�1+1 � pX j=1 ln ��nj�nj�1+1 9= ; � lim p!+1 1 np + 1 8< :ln 1 lnp+1 � p ln l1 � pX j=1 ln 1 lnj�nj�1+1 � a pX j=1 (nj � nj�1) 9= ; ; whence the inequality (19) follows. For the proof of sharpness of the inequality (19) it is su�cient to consider the series (10) with the coe�cients (12) and choose �k = lk = ea(k�1). Then the inequality (13) holds (thus, D np l f 2 A�(0) for all p 2 Z+) and ln R[f ] = lim p!+1 1 np + 1 ln 1 fnp+1 = lim p!+1 1 np + 1 ln 1 lnp+1 = �a Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 2 249 M.M. Sheremeta and O.A. Volokh = lim p!+1 1 np + 1 8< :ln 1 lnp+1 � p ln l1 � pX j=1 ln 1 lnj�nj�1+1 9= ;� a: Proposition 1 is proved. We remark that the condition ln �k � a(k � 1) in Prop. 1 can not be re- placed in general by the condition ln �k � ak and moreover by the condition lim k!1 (ln �n)=n = a. Indeed, let np = p + �p p � for all p � 0, �k = eak, and lk = ebk for all k � 2, b > a, and l1 = 1. It is easy to verify that for such �k and lk the inequality (13) holds. Therefore, for the function (10) with the coe�cients (12) we have D np l f 2 A�(0) for all p 2 Z+. Besides, ln R[f ] = lim p!+1 1 np + 1 8< :ln 1 lnp+1 � p ln l1 � pX j=1 ln �nj�nj�1+1 lnj�nj�1+1 9= ; = lim p!+1 1 np + 1 8< :ln 1 lnp+1 � p ln l1 � pX j=1 ln 1 lnj�nj�1+1 9= ;� lim p!1 a(np + p) np + 1 = 1 np + 1 8< :ln 1 lnp+1 � p ln l1 � pX j=1 ln 1 lnj�nj�1+1 9= ;� 2a; that is the inequality (19) does not hold. We remark that from the proof of Prop. 1 it follows that if the sequence (lk�1lk+1=l 2 k) is nondecreasing, �k = 1 for all k � 1 and D np l f 2 A�(0) for all p 2 Z+, then ln R[f ] � lim p!+1 1 np + 1 8< :ln 1 lnp+1 � p ln l1 � pX j=1 ln 1 lnj�nj�1+1 9= ; ; (20) and moreover the condition �k = 1 can not be replaced in general by the condition ln �k = o(k), k !1. However the following proposition is true. Proposition 2. Let (np) 2 N , ln �k = o(k) as k ! 1, l 2 A+(0) and the sequence (�k�1�k+1=� 2 k) is nondecreasing, where �k = lk=�k. If D np l f 2 A�(0) for all p 2 Z+ then the estimate (20) is true and sharp. Indeed, from the inequality (5) we have jfnp+kj � jf1jlp1�np+k �np+k �k pY j=1 1 �nj�nj�1+1 250 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 2 On a Convergence of Formal Power Series... for all p 2 Z+ è k = 2; : : : ; np+1 � np + 1, whence in view of the condition ln �k = o(k), k !1, we have ln jfnp+kj np + k � 1 np + k 8< :ln �np+k � ln �k + p ln l1 + pX j=1 ln 1 �nj�nj�1+1 9= ;+ o(1); p!1: Since the sequence (�k�1�k+1=� 2 k) is nondecreasing, hence as in the proof of Th. 2 we obtain for all p 2 Z+ and k = 2; : : : ; np+1 � np + 1 1 np + k ln 1 jfnp+kj � min 8< : 1 np + 1 0 @ln 1 �np+1 � p ln l1 � pX j=1 ln 1 �nj�nj�1+1 1 A ; 1 np+1 + 1 0 @ln 1 �np+1+1 � (p+ 1) ln l1 � p+1X j=1 ln 1 �nj�nj�1+1 1 A 9= ;+ o(1); p!1; that is ln R[f ] � lim p!+1 1 np + 1 8< :ln 1 �np+1 � p ln l1 � pX j=1 ln 1 �nj�nj�1+1 9= ; : Since �k = lk=�k and ln �k = o(k), k !1, hence we obtain the inequality (20). For the proof of its sharpness it is su�cient to consider the series (10) with the coe�cients (12), where �1 = 1, �k = k � 1 and lk = (k � 1)ek�1 for k � 2. Proposition 2 is proved. From the proof of Prop. 2 one can see that in Th. À nondecreasing of sequence (lk�1lk+1=l 2 k) can be replaced by the following condition: there exists a positive sequence (�k) such that ln �k = O(k); k ! 1, and (�k�1�k+1=� 2 k) does not decrease, where �k = lk�k. Finally, the following proposition supplements Th. A. Proposition 3. For all � 2 � and l 2 A+(0) there exists f 2 A(0) such that Dn l f 2 A�(0) for all n � 0 and R[f ] = +1. Indeed, there exists an increasing to +1 function ' such that max � � 2 k � 1 ln 1 lk�1 ; �1 k ln �1�k lk � � '(k); k � 1: Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 2 251 M.M. Sheremeta and O.A. Volokh We put fk = lk expf�(k + 1)'(k + 1)g; k � 1. Then 1 k ln 1 fk � 1 k ln 1 lk + '(k + 1)! +1; k !1; and for all n � 0 and k � 1 fk+n lk+n = e�(k+n+1)'(k+n+1) � e�k'(k)e�(n+1)'(n+1) � l1�k lk fn+1 ln+1 ; that is R[f ] = +1 and Dn l f 2 A�(0) for all n � 0. Proposition 3 is proved. We remark that in view of Th. A one can not replace R[f ] = +1 by R[f ] = R 2 (0; +1) in the last proposition. References [1] A.O. Gelfond and A.F. Leont'ev, On a Generalisation of Fourier Series. � Mat. Sb. 29 (1951), No. 3, 477�500. (Russian) [2] M.M. Sheremeta, On Power Series with Gelfond�Leont'ev Derivatives Satisfying a Special Condition. � Mat. phys., anal., geom. 3 (1996), 423�445. (Russian) [3] O.A. Volokh and M.M. Sheremeta, On Formal Power Series with Gelfond�Leont'ev Derivatives Satisfying a Special Condition. � Mat. Stud. 22 (2004), No. 1, 87�93. (Ukraine) 252 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 2