A Property of Azarin's Limit Set of Subharmonic Functions

Let v(z) be a subharmonic function of order ρ > 0, and Fr(v) be the limit set in the sense of Azarin. Let z be fixed and I(z) = {u(z) : u is in Fr(v)}. We prove that I(z) is either a closed interval or a semiclosed interval which does not contain its infimum.

Saved in:
Bibliographic Details
Date:2008
Main Authors: Chouigui, A., Grishin, A.F.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2008
Series:Журнал математической физики, анализа, геометрии
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/106511
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A Property of Azarin's Limit Set of Subharmonic Functions / A. Chouigui, A.F. Grishin // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 3. — С. 346-357. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine