On the Berg-Chen-Ismail Theorem and the Nevanlinna-Pick Problem

In 2002, C. Berg, Y. Chen, and M. Ismail found a nice relation between the determinacy of the Hamburger moment problem and asymptotic behavior of the smallest eigenvalues of the corresponding Hankel matrices. We investigate whether an analog of this statement holds for the Nevanlinna-Pick interpolat...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Golinskii, L., Peherstorfer, F., Yuditskii, P.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2008
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106518
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Berg-Chen-Ismail Theorem and the Nevanlinna-Pick Problem / L. Golinskii, F. Peherstorfer, P. Yuditskii // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 4. — С. 451-456. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-106518
record_format dspace
spelling irk-123456789-1065182016-09-30T03:03:03Z On the Berg-Chen-Ismail Theorem and the Nevanlinna-Pick Problem Golinskii, L. Peherstorfer, F. Yuditskii, P. In 2002, C. Berg, Y. Chen, and M. Ismail found a nice relation between the determinacy of the Hamburger moment problem and asymptotic behavior of the smallest eigenvalues of the corresponding Hankel matrices. We investigate whether an analog of this statement holds for the Nevanlinna-Pick interpolation problem. 2008 Article On the Berg-Chen-Ismail Theorem and the Nevanlinna-Pick Problem / L. Golinskii, F. Peherstorfer, P. Yuditskii // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 4. — С. 451-456. — Бібліогр.: 5 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106518 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In 2002, C. Berg, Y. Chen, and M. Ismail found a nice relation between the determinacy of the Hamburger moment problem and asymptotic behavior of the smallest eigenvalues of the corresponding Hankel matrices. We investigate whether an analog of this statement holds for the Nevanlinna-Pick interpolation problem.
format Article
author Golinskii, L.
Peherstorfer, F.
Yuditskii, P.
spellingShingle Golinskii, L.
Peherstorfer, F.
Yuditskii, P.
On the Berg-Chen-Ismail Theorem and the Nevanlinna-Pick Problem
Журнал математической физики, анализа, геометрии
author_facet Golinskii, L.
Peherstorfer, F.
Yuditskii, P.
author_sort Golinskii, L.
title On the Berg-Chen-Ismail Theorem and the Nevanlinna-Pick Problem
title_short On the Berg-Chen-Ismail Theorem and the Nevanlinna-Pick Problem
title_full On the Berg-Chen-Ismail Theorem and the Nevanlinna-Pick Problem
title_fullStr On the Berg-Chen-Ismail Theorem and the Nevanlinna-Pick Problem
title_full_unstemmed On the Berg-Chen-Ismail Theorem and the Nevanlinna-Pick Problem
title_sort on the berg-chen-ismail theorem and the nevanlinna-pick problem
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/106518
citation_txt On the Berg-Chen-Ismail Theorem and the Nevanlinna-Pick Problem / L. Golinskii, F. Peherstorfer, P. Yuditskii // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 4. — С. 451-456. — Бібліогр.: 5 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT golinskiil onthebergchenismailtheoremandthenevanlinnapickproblem
AT peherstorferf onthebergchenismailtheoremandthenevanlinnapickproblem
AT yuditskiip onthebergchenismailtheoremandthenevanlinnapickproblem
first_indexed 2025-07-07T18:35:54Z
last_indexed 2025-07-07T18:35:54Z
_version_ 1837014298040205312
fulltext Journal of Mathematical Physics, Analysis, Geometry 2008, vol. 4, No. 4, pp. 451�456 On the Berg�Chen�Ismail Theorem and the Nevanlinna�Pick Problem L. Golinskii Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering National Academy of Sciences of Ukraine 47 Lenin Ave., Kharkiv, 61103, Ukraine E-mail:leonid.golinskii@gmail.com F. Peherstorfer and P. Yuditskii Institute for Analysis, Johannes Kepler University Linz A-4040 Linz, Austria E-mail:franz.peherstorfer@jku.at petro.yuditskiy@jku.at Received May 19, 2008 In 2002, C. Berg, Y. Chen, and M. Ismail found a nice relation between the determinacy of the Hamburger moment problem and asymptotic beha- vior of the smallest eigenvalues of the corresponding Hankel matrices. We in- vestigate whether an analog of this statement holds for the Nevanlinna�Pick interpolation problem. Key words: moment problem, Blaschke product, Carleson measure, Pick matrix. Mathematics Subject Classi�cation 2000: 30E05 (primary), 30D50 (secondary). The Hamburger moment problem is a problem of �nding conditions on a sequence fsjg, j = 0; 1; : : : ; so that there exists a positive Borel measure � and sj = Z R x j d�(x); j = 0; 1; : : : : (1) With � one can associate the in�nite Hankel matrix and the sequence of its principal submatrices H = ksi+jk 1 i;j=0; Hn = ksi+jk n i;j=0; n = 0; 1; 2; : : : : (2) Partially supported by the Austrian Founds FWF (Project P20413�N18) and Marie Curie International Fellowship within the 6th European Community Framework Programme (Contract MIF1-CT-2005-00696). c L. Golinskii, F. Peherstorfer, and P. Yuditskii, 2008 L. Golinskii, F. Peherstorfer, and P. Yuditskii By the famous result of Hamburger (1) has a solution if and only if Hn � 0 for all n. Denote by f�n;jg n j=0 the eigenvalues of Hn (2) labelled in increasing order. Because of the interlacing property we have 0 � �n+1;0 � �n;0 � �n+1;1 � �n;1 � : : : � �n+1;n � �n;n � �n+1;n+1; (3) and so for each k �n;k are monotone decreasing, �k(H) = limn!1 �n;k exists, and 0 � �0(H) � �1(H) � : : : : (4) Let us call the problem (1) regular if �0(H) > 0, and singular otherwise. In 2002, C. Berg, Y. Chen, and M. Ismail [2] proved a beautiful result which states that (1) is regular if and only if it has in�nitely many solutions (indeterminate). The Hamburger moment problem is one of the representatives of the so-called classical interpolation problems [1]. In this note we address to another one, speci�- cally, the Nevanlinna�Pick interpolation problem in the Schur class S of functions contractive and analytic in the unit disk D . This is a problem of �nding the solutions of f(zk) = wk; k = 0; 1; 2; : : : ; (5) where zk are distinct points in D , wk complex numbers, and f 2 S. The well- known criterion for (5), to have at least one solution, is given in terms of Pick matrices by Pn := 1� wi �wj 1� zi�zj n i;j=0 � 0 for all n = 0; 1; : : : . For the eigenvalues f�n;jg n j=0 of the matrices Pn labelled in increasing order the above relations (3), (4) hold, and, again, we distinguish between the regular and singular Nevanlinna�Pick problem, i.e., in this paper we say that the problem (5) is regular if �0(P ) > 0, and it is singular if �0(P ) = 0. With respect to a number of various questions there is a strong similarity between di�erent classical interpolation problems, that is, if one can prove this or that statement with respect to one of the classical problems, a quite parallel statement holds for another one. In this note we study the question: Is it true that a Nevanlinna�Pick problem has in�nitely many solutions (indeterminate) if and only if �0(P ) > 0? We give a negative answer to this question. More precisely, we construct data fzk; wkg 1 k=0 of an indeterminate Nevanlinna�Pick problem such that �0(P ) = 0. First of all, we note that the Blaschke condition on the interpolation nodes Z = fzkg 1X k=0 (1� jzkj) <1 (6) 452 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 4 On the Berg�Chen�Ismail Theorem and the Nevanlinna�Pick Problem guarantees that the interpolation problem f(zk) = 0; k = 0; 1; 2; : : : ; (7) has in�nitely many solutions. Indeed, every function of the form f = g(z)B(z); where g(z) 2 S, and B(z) is the Blaschke product B(z) = Y k zk � z 1� z�zk jzkj zk ; solves (7). Note that (6) is necessary and su�cient for the problem (7) to be indeterminate. Thus, our goal is to construct a Blaschke set Z such that �0(P ) = 0 for the sequence of Nevanlinna�Pick matrices of the speci�c form Pn = Kn, where Kn := 1 1� zi�zj n i;j=0 : In fact, our main statement here characterizes completely the regularity of such Nevanlinna�Pick problems in the above sense. Recall (see, e.g., [4]), that a (�nite) Borel measure � on D is called a Carleson measure, if Z D jf j2 d� � C Z T jf j2 dm (8) for all f 2 H 2. Here dm is the normalized Lebesgue measure on the unit circle T. Due to Carleson's theorem [3] such measures are characterized completely by the following property: there exists C > 0 such that �(Q�(�)) � C� for all �� < � � �, 0 < � < 1, Q�(�) := fz 2 D : j arg z � �j � ��; 1� � � jzj < 1g: Theorem 1. Let Z satisfy (6), B(z) be the corresponding Blaschke product. The Nevanlinna�Pick problem (7) is regular if and only if the measure �, de�ned by �(fzkg) = jB0(zk)j �2 ; (9) is a Carleson measure in D . Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 4 453 L. Golinskii, F. Peherstorfer, and P. Yuditskii P r o o f. Let � (9) be a Carleson measure. For arbitrary c0; : : : ; cn 2 C put h(z) = B(z) nX k=0 ck z � zk 2 H 2 with khk2 = nX i;j=0 Kijcicj ; K = kKijk 1 i;j=0 = 1 1� zi�zj 1 i;j=0 : We have h(zj) = cjB 0(zj) for j = 0; 1; : : : ; n and h(zj) = 0 for j � n+ 1, so Z D jhj2 d� = nX j=0 jcj j 2 : Hence by (8) Z T jhj2 dm = khk2 � 1 C nX j=0 jcj j 2 ; and so �0(K) � C �1 > 0, as claimed. Conversely, assume that the Nevanlinna�Pick problem in question is regular. We use the standard orthogonal decomposition L 2(T) = H 2 L H 2 � . Put KB = (BH2)? = H 2 \BH2 � ; �k(z) = B(z) z � zk ; k = 0; 1; : : : : It is easy to see that f�kg is complete in KB . Indeed, (z � zk) �1 2 H 2 �, so �k 2 KB . Let g 2 KB , g?�k for all k = 0; 1; : : : . Then g = B�g1(�), g1 2 H 2, and 0 = (g; �k) = Z T B(�) � � zk �B(�)�g1(�) dm = g1(zk); that is, g1 2 BH 2, so g 2 H 2 � and g � 0, as claimed. Hence the system of functions f(z) = B(z) nX k=0 ck z � zk +B(z)g(z) = h(z) +B(z)g(z); n = 0; 1; : : : ; c0; : : : ; cn 2 C , and g 2 H 2, is dense in H 2. We prove (8) for such functions. As above, f(zj) = cjB 0(zj); j = 0; 1; : : : ; n; f(zj) = 0; j � n+ 1; 454 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 4 On the Berg�Chen�Ismail Theorem and the Nevanlinna�Pick Problem and Z D jf j2 d� = nX j=0 jcj j 2 ; kfk2 = khk2 + kgk2 � khk2 = nX i;j=0 Kijcicj ; and so Z T jf j2 dm � nX i;j=0 Kijcicj � �0(K) nX j=0 jcj j 2 = �0(K) Z D jf j2 d�: The proof is complete. If the Nevanlinna�Pick problem (7) is singular (as in the example below), then so is the general problem (5). Indeed, for D = diag(w0; w1; : : : ; wn) Pn = Kn �DKnD � � Kn; and so �0(P ) � �0(K). E x a m p l e. Put zk = 1�k�p, p > 1. Evidently Z is a Blaschke set. On the other hand (1� jznj 2)jB0(zn)j = n�1Y k=1 zn � zk 1� znzk 1Y k=n+1 zk � zn 1� znzk � 1Y k=n+1 k p � n p np + kp � 1 � 1Y k=n+1 � 1� � n k �p� � exp � 1X k=n+1 � n k �p! � exp � � n+ 1 2p(p� 1) � ; so jB0(zn)j �2 � 1 n2p exp � n+ 1 2p�1(p� 1) � : Thus the measure � (9) is in�nite and, moreover, it is not of Carleson type. There is a simple way of manufacturing regular Nevanlinna�Pick problems (7). Recall that Z = fzkg is the Carleson (uniformly separated) sequence if Æ(Z) := inf n ������ Y k 6=n jzkj zk zn � zk 1� �znzk ������ > 0: (10) Assume that Z satis�es (10). By the theorem of H.S. Shapiro and A.L. Shields [5] the system of functions xk(z) = (1� jzkj 2)1=2 1� �zkz k = 0; 1; : : : ; Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 4 455 L. Golinskii, F. Peherstorfer, and P. Yuditskii forms a Riesz basis in KB . So, for all c0; : : : ; cn 2 C there is c > 0 such that nX i;j=0 Kij(1� jzij 2)1=2 (1� jzj j 2)1=2 cicj � c nX j=0 jcj j 2 ; or nX i;j=0 Kij didj � c nX j=0 jdj j 2 (1� jzj j2) � c nX j=0 jdj j 2 ; as claimed. Acknowledgement. The authors thank Alexander Kheifetz for helpful dis- cussions. The paper is written mainly during the �rst author's visit to Johannes Kepler University, Linz. He wishes to thank JKU for the hospitality and the Marie Curie Foundation that made this visit possible. References [1] N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis. Oliver and Boyed, Edinburgh, 1965. [2] C. Berg, Y. Chen, and M. Ismail, Small Eigenvalues of Large Hankel Matrices: the Indeterminate Case. � Math. Scand. 91 (2002), No. 1, 67�81. [3] L. Carleson, An Interpolation Problem for Bounded Analytic Functions. � Amer. J. Math. 80 (1958), No. 4, 921�930. [4] J.B. Garnett, Bounded Analytic Functions. (Revised �rst edition.) Graduate Texts in Mathematics. 236. Springer, New York, 2007. xiv+459 pp. [5] H.S. Shapiro and A.L. Shields, On Some Interpolation Problems for Analytic Functions. � Amer. J. Math. 83 (1961), No. 3, 513�532. 456 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 4