Geometric Constructions in the Class of Busemann Nonpositively Curved Spaces
The procedures of gluing and the Hausdorff limit in the class of metric spaces nonpositively curved in the sense of Busemann are studied in the paper. Conditions under which the resulting spaces belong to the same class are found.
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2009
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/106531 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Geometric Constructions in the Class of Busemann Nonpositively Curved Spaces / P.D. Andreev // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 1. — С. 25-37. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-106531 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1065312016-10-01T03:01:45Z Geometric Constructions in the Class of Busemann Nonpositively Curved Spaces Andreev, P.D. The procedures of gluing and the Hausdorff limit in the class of metric spaces nonpositively curved in the sense of Busemann are studied in the paper. Conditions under which the resulting spaces belong to the same class are found. 2009 Article Geometric Constructions in the Class of Busemann Nonpositively Curved Spaces / P.D. Andreev // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 1. — С. 25-37. — Бібліогр.: 13 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106531 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The procedures of gluing and the Hausdorff limit in the class of metric spaces nonpositively curved in the sense of Busemann are studied in the paper. Conditions under which the resulting spaces belong to the same class are found. |
format |
Article |
author |
Andreev, P.D. |
spellingShingle |
Andreev, P.D. Geometric Constructions in the Class of Busemann Nonpositively Curved Spaces Журнал математической физики, анализа, геометрии |
author_facet |
Andreev, P.D. |
author_sort |
Andreev, P.D. |
title |
Geometric Constructions in the Class of Busemann Nonpositively Curved Spaces |
title_short |
Geometric Constructions in the Class of Busemann Nonpositively Curved Spaces |
title_full |
Geometric Constructions in the Class of Busemann Nonpositively Curved Spaces |
title_fullStr |
Geometric Constructions in the Class of Busemann Nonpositively Curved Spaces |
title_full_unstemmed |
Geometric Constructions in the Class of Busemann Nonpositively Curved Spaces |
title_sort |
geometric constructions in the class of busemann nonpositively curved spaces |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/106531 |
citation_txt |
Geometric Constructions in the Class of Busemann Nonpositively Curved Spaces / P.D. Andreev // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 1. — С. 25-37. — Бібліогр.: 13 назв. — англ. |
series |
Журнал математической физики, анализа, геометрии |
work_keys_str_mv |
AT andreevpd geometricconstructionsintheclassofbusemannnonpositivelycurvedspaces |
first_indexed |
2025-07-07T18:36:36Z |
last_indexed |
2025-07-07T18:36:36Z |
_version_ |
1837014342818594816 |
fulltext |
Journal of Mathemati
al Physi
s, Analysis, Geometry2009, vol. 5, No. 1, pp. 25�37Geometri
Constru
tions in the Class of BusemannNonpositively Curved Spa
esP.D. AndreevLomonosov Pomor State University4 Lomonosov Ave., Arkhangelsk, 163002, RussiaE-mail:pdandreev�mail.ruRe
eived May 18, 2007The pro
edures of gluing and the Hausdor� limit in the
lass of metri
spa
es nonpositively
urved in the sense of Busemann are studied in thepaper. Conditions under whi
h the resulting spa
es belong to the same
lassare found.Key words: Busemann nonpositive
urvature, gluing, Hausdor� limit.Mathemati
s Subje
t Classi�
ation 2000: 53C23.1. Introdu
tionWe study some
onstru
tions in the
lass of geodesi
metri
spa
es with Buse-mann nonpositive
urvature. Here we use not a
lassi
al de�nition of nonpositively
urved spa
es ([2℄), but the one introdu
ed by B. Bowdit
h in [1℄ where the
lassof spa
es
onsidered is
alled Busemann. This allows to in
lude the
onsiderationof all CAT (0)-spa
es, i.e., the
omplete simply
onne
ted spa
es of nonpositive
urvature in the sense of A.D. Alexandrov and all stri
tly
onvex normed spa
es.The main question of the paper is: what are additional
onditions for gluing andlimiting operations in the
lass of Busemann spa
es to keep the resulting spa
e inthe same
lass?Similar problems for Alexandrov spa
es were studied su�
iently deeply in[3, 4℄, et
. Some operations in the
lass of Busemann spa
es were studied in [5℄and [6℄. The
ondition of nonpositivity of
urvature in the sense of Busemannis weaker than in the sense of Alexandrov. By this reason many results that aretrue to Alexandrov spa
es do not have dire
t generalization for Busemann spa
es.When applying Alexandrov spa
es theory one should set additional requirementsin a number of situations.
P.D. Andreev, 2009
P.D. AndreevThe paper is organized as follows. In Se
tion 2 we re
all some ne
essary de�-nitions and fa
ts from Busemann spa
es theory. In Se
tion 3 we prove the gluingtheorem whi
h generalizes Reshetnyak's gluing theorem known for Alexandrovspa
es (
f. [3, Th. 9.1.21℄). When we speak about Busemann spa
es, the gluingtheorem has the following formulation.Theorem 3.1. Let (X1; d1), (X2; d2) and (X3; d3) be three Busemann spa
esrepresented as unions of
losed
onvex subsets Xi := Ai [ Bi. Let g1 : B2 ! A3,g2 : B3 ! A1 and g3 : B1 ! A2 be three isometries su
h that g2Æg1Æg3 = Id jA1\B1 .Then the spa
e X obtained as a fa
torspa
e X := (X1[X2[X3)=fg1; g2; g3g withthe metri
d that
oin
ides with di in ea
h Xi, is a Busemann spa
e.In Se
tion 4 we study the Hausdor� limits of Busemann spa
es. The
lass ofall Busemann spa
es is not
losed under Hausdor� limit: the sequen
e of stri
tly
onvex normed spa
es
an
onverge to the normed spa
e with nonstri
tly
onvexnorm. B. Kleiner introdu
ed the notion of often
onvex spa
e in [6℄. The
lass ofoften
onvex spa
es is
losed under limits and
ontains a sub
lass of Busemannspa
es. We study the Hausdor� limits of Busemann spa
es under additional requi-rement of unimodular
onvexity. The main result of the se
tion is the followingtheorem.Theorem 4.3. Let the
omplete metri
spa
e (X; o; dX ) with basepoint o bea Hausdor� limit of unimodularly
onvex sequen
e (Xn; on; dn) of pointed Buse-mann spa
es. Then X is also a Busemann spa
e and its
onvexity modulus Æx(�; r)for all x 2 X is bounded from below by the
ommon low boundary of
onvexitymodules of spa
es Xn. 2. PreliminariesThe general theory of spa
es with intrinsi
metri
an be found in [3, 4℄ and[7℄. Here we re
all some basi
fa
ts related to Busemann nonpositively
urvedspa
es.De�nition 2.1. Let (X; d) be a geodesi
spa
e. We use the notation jxyj forthe distan
e d(x; y) between its points. A segment
onne
ting the points x; y 2 Xis denoted [xy℄. We say that X is a Busemann nonpositively
urved spa
e (shortlyBusemann spa
e) if its metri
is
onvex: if
: [a; b℄ ! X and d : [a0; b0℄! X area�ne parameterizations of two segments, then the fun
tion D : [a; b℄�[a0; b0℄! R+D(s; t) = j
(s)d(t)jis
onvex. Equivalently, the spa
e X is Busemann nonpositively
urved if for anythree points x; y; z 2 X, for the arbitrary midpoint m between x and y and for26 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1
Geometri
Constru
tions in the Class of Busemann Nonpositively Curved Spa
esarbitrary midpoint n between x and z the inequalityjmnj � 12 jyzj (2.1)holds.The following properties of the
onsidered spa
es are simple
orollaries fromDef. 2.1. Ea
h Busemann nonpositively
urved spa
e X is
ontra
tible, any itstwo points are
onne
ted by the unique segment.The
lass of Busemann nonpositively
urved spa
es
ontains all CAT (0)-spa
es and stri
tly
onvex Minkowski spa
es.The fa
t that some non-Minkowskian Finsler manifolds have nonpositive
ur-vature in sense of Busemann is less trivial. Finsler metri
s having nonpositive
urvature in the sense of Busemann were studied in [8℄. It is shown that everyFinsler manifold with Berwald metri
and nonpositive �ag
urvatures is a genera-lized Busemann spa
e (geodesi
spa
e with the Busemann property of
urvaturenonpositivity but without symmetry
ondition on the metri
). The Finsler metri
F (x; dx) on the manifold Mn is a Berwald metri
if there is a spe
ial
oordinatesystem, where its geodesi
s satisfy the system of di�erential equations��i + 2Gi(�; _�) = 0:Here Gi := Gi(x; y) are positive fun
tions homogeneous of the se
ond degree iny. If the metri
F is Riemannian, then Gi = 12�ijk(x)yjyk, where �ijk are Levi�Chivita
onne
tion
oe�
ients.The Berwald
ondition is essential here. By Kelly�Straus theorem (
f. [9℄),if the Finsler spa
e with Hilbert metri
(of
onstant negative �ag
urvature) isa Busemann spa
e, then it is a Loba
hevsky spa
e.In
onne
tion with
onvexity, the spa
es with nonpositive
urvature are some-times
alled
onvex spa
es (
f. [10℄).De�nition 2.2. The metri
spa
e X is
alled lo
ally
onvex if every its pointhas a neighborhood that is the Busemann nonpositively
urved spa
e in the metri
of X.Several strengthenings of the
onvexity property were introdu
ed in [11℄.De�nition 2.3. The Busemann nonpositively
urved spa
e X is
alled stri
tly
onvex if there is the strong inequalityjx0mj < maxfjx0yj; jx0zjg
Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1 27
P.D. Andreevfor every triple of points x0; y; z 2 X, where m is a midpoint between y and z.The stri
tly
onvex spa
e X is
alled weakly uniformly
onvex if for any pointx0 2 X the modulus of
onvexity fun
tionÆx0(�; r) := inffr � jx0mj j y; z 2 X;jx0yj � r; jx0zj � r; jyzj � �r; jymj = jmzj = 12 jyzjgis positive for any �; r > 0. Finally, the weakly uniformly
onvex spa
e X is
alleduniformly
onvex if limr!+1 Æx0(�; r) = +1for any �xed � > 0.For example, every stri
tly
onvex Minkowski spa
e is uniformly
onvex,be
ause its modulus of
onvexity fun
tion is homogeneous by r:Æo(�; �r) = �Æo(�; r)for all �; r; � > 0. 3. GluingThe gluing theorem known for the Alexandrov spa
es in Reshetnyak's for-mulation (
f. [12℄) is not true for Busemann spa
es with nonpositive
urvature.For example, the result of gluing of two normed half-planes with di�erent normsis a plane whose metri
fails to be a Busemann nonpositive
urvature. We willprove the following version of the gluing theorem.Theorem 3.1. Let (X1; d1), (X2; d2) and (X3; d3) be three Busemann spa
esrepresented as unions of
losed
onvex subsets Xi := Ai [ Bi. Let g1 : B2 ! A3,g2 : B3 ! A1 and g3 : B1 ! A2 be three isometries su
h that g2Æg1Æg3 = Id jA1\B1 .Then the spa
e X obtained as a fa
torspa
e X := (X1[X2[X3)=fg1; g2; g3g withthe metri
d that
oin
ides with di in ea
h Xi, is a Busemann spa
e.P r o f. Identifying ea
h spa
e Xi with the
orresponding subset in X,we noti
e that A1 \B1 = B3 \A2 � X1 \X2 \X3:As a
orollary, X1 \X2 \X3 = A1 \B1 = A2 \B2 = A3 \B3:
28 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1
Geometri
Constru
tions in the Class of Busemann Nonpositively Curved Spa
es
x
y
z
B =A2 3
B =A3 1
B =A1 2
Fig. 1: The spa
e X is a result of the gluing of spa
es X1;X2 and X3.Any two points x; y 2 X are
ontained in one of Xi and
onne
ted in thisXi by a segment [xy℄ with natural parametrization
: [�; �℄ ! Xi. Assumefor de�niteness that x; y 2 X1. Sin
e the distan
e in X between the pointsthat belong to X1
oin
ides with the distan
e d1, then the parametrization
isa natural parametrization of the path
in the spa
e X as well. Consequently,the map
represents a segment
onne
ting x and y in X. It follows that X isa geodesi
spa
e.Let k =2 X1, that is k 2 B2 n A2 = A3 nB3 = (X2 \X3) nX1, be an arbitrarypoint. Consider the segments [xk℄ and [ky℄ with natural parameterizations p :[�;
℄ ! X and q : [Æ; �℄ ! X. Denote s 2 [�;
℄ the in�mum of parameters� for whi
h p(�) =2 X1, and t 2 [Æ; �℄ the supremum of parameters � for whi
hq(�) =2 X1. Sin
e the sets Ai and Bi are
losed, then p(s); q(t) 2 (B2 = A3)\X1.It followsjxyjX = d1(x; y) � d1(x; p(s)) + d1(p(s); q(t)) + d1(q(t); y) < jxkjX + jkyjX :Consequently, every segment
onne
ting x and y passes in X1, and the pointsx and y are
onne
ted by the unique segment in X. If x; y 2 Xi, then there isa unique midpoint between x and y and it belongs to the same Xi.Let three points x; y; z 2 X and the midpoints m;n of segments [xy℄ and[xz℄, respe
tively, be given. If x; y; z 2 Xi for some i, then also m;n 2 Xi, andthe inequality (2.1) is ful�lled automati
ally. Assume that x =2 X1, y =2 X2 andz =2 X3 (as in Fig. 1). Denote p an arbitrary point of the segment [yz℄ in theinterse
tion A1 \ B1 = A1 \ A2 \ A3, and q the midpoint of the segment [xp℄(Fig. 2).Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1 29
P.D. Andreev
x
y
z
m n
p
q
Fig. 2:Then from x; y; p 2 X3 there follows the inequalityjmqjX � 12 jypjX ; (3.1)and from x; p; z 2 X2 the inequalityjqnjX � 12 jpzjX : (3.2)Combining (3.1) and (3.2), we getjmnjX � jmqjX + jqnjX � 12(jypjX + jpzjX) = 12 jyzjX :4. Convergen
e in the Class of Busemann NonpositivelyCurved Spa
esDe�nition 4.1. The distortion of the map f : X ! Y of the metri
spa
e(X; dX ) to the metri
spa
e (Y; dY ) is de�ned bydis(f) := supx;y2X jdY (f(x); f(y))� dX(x; y)j:The uniform distan
e jXY ju between metri
spa
es (X; dX ) and (Y; dY ) isde�ned by jXY ju := inf dis(f);30 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1
Geometri
Constru
tions in the Class of Busemann Nonpositively Curved Spa
eswhere the in�mum is taken over all bije
tions f : X ! Y . A sequen
e (Xn; dn)of metri
spa
es
onverges uniformly to the metri
spa
e (X; dX ) if jXnXju ! 0.For � > 0; �-net in the metri
spa
e X is a subset N � X su
h that for anyx 2 X there exists a 2 N with jxaj < �:De�nition 4.2 [13, Part I, p. 7℄. Let (X; d) be a bounded metri
spa
e and(Xi; di) be a sequen
e of bounded metri
spa
es with distan
es di. The sequen
eXi
onverges in the sense of Hausfor� to the spa
e X if for any � > 0 there exists�-net N� � X that is a uniform limit of �-nets Ni� in Xi.The de�nition of the Hausdor�
onvergen
e in the
ase of nonbounded spa
es isvalid in the
ategory of pointed spa
es. Let (X; o; d) be a pointed metri
spa
e withthe marked point o and the metri
d, and (Xi; oi; di) be a sequen
e of pointed metri
spa
es with the marked points oi and the metri
s di, respe
tively. The sequen
e Xi
onverges in the sense of Hausdor� to the spa
e X if for any r > 0 the sequen
eof balls BXi(oi; r)
onverges in the sense of Hausdor� to the ball BX(o; r).We say that the family of geodesi
spa
es f(X�; d�)g with the metri
s d�is unimodularly
onvex if ea
h of spa
es (X�; d�) is weakly uniformly
onvexand there exists the positive fun
tion m(�; r) de�ned for �; r > 0 that bounds
onvexity modules of all spa
es X� from below uniformlyÆx(�; r) � m(�; r) (4.1)for any x 2 X� and for all �.Theorem 4.3. Let the
omplete metri
spa
e (X; o; dX ) with basepoint o isa Hausdor� limit of unimodularly
onvex sequen
e (Xn; on; dn) of pointed Buse-mann spa
es. Then X is also a Busemann spa
e and its
onvexity modulus Æx(�; r)for all x 2 X is bounded from below by the
ommon low boundary of
onvexitymodules of spa
es Xn.R e m a r k. The unimodular
onvexity
ondition is essential here.For example, Minkowski planes with the normsk(x; y)kn := npjxjn + jyjnthat are stri
tly
onvex when n > 1
onverges in the sense of Hausdor� to thenon-stri
tly
onvex Minkowski plane with maximum normk(x; y)k1 := maxfjxj; jyjg:First, we need the following lemma.
Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1 31
P.D. AndreevLemma 4.4. Let the sequen
e (Xn; on; dn) and the spa
e (X; o; dX ) satisfythe
onditions of Th. 4.3. Then:1. X is a geodesi
spa
e;2. for any two points x; y 2 X the midpoint m between them is unique.P r o f. By Claim 6.1 in [13, Part I℄ the metri
of the spa
e X is interior.Consequently, X is geodesi
as a
omplete spa
e with interior metri
.Now we prove the se
ond statement. Assume for the
ontrarythat for points x, y 2 X there exists two di�erent midpoints m1, m2 2 X.Put R := 2maxfdX(o; x); dX (o; y)g. From the de�nition of Hausdor�
onver-gen
e in unbounded spa
es, the balls BXn(on; R)
onverge to the ball BX(o;R).Let the positive fun
tion L(�; r) be de�ned for �; r > 0 by the equalityL(�; r) = inf Æx(�; �);where the in�mum is taken over all x 2 Xn for all natural n. By the inequality(4.1) the in�mum is positive. The fun
tion L(�; r) is nonde
reasing on � whenr > 0 is �xed. To see this it is su�
ient to observe that for all n the fun
tionsÆx(�; r) have the mentioned property, where x 2 Xn is arbitrary. Let �2 > �1 > 0.If d�(x; y) � r, d�(x; z) � r and d�(y; z) � �2r hold for the points x; y; z 2 Xn,then also d�(y; z) � �1r. Hen
e Æx(�1; r) � Æx(�2; r), and Æ�(�1; r) � Æ�(�2; r).Consequently, for all �; r > 0 there exists � > 0 su
h that� < 29L��� 9�r ; r� :Take � > 0 to satisfy the
onditionsdX(m1;m2)� 3� > �M(�); (4.2)where M(�) = 12dX(x; y) + 3�, and� < 29L�2dX(m1;m2)� 9�dX(x; y) ; 12dX(x; y)� : (4.3)Let X� be an �-net in the ball B(o;R) � X and a uniform limit of �-nets X�;n inballs B(on; R) � Xn. Let the number N 2 N be taken su
h that for all n > Nthere exists a bije
tion ��;n : X�;n ! X� for whi
hdis��;n < �: (4.4)
32 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1
Geometri
Constru
tions in the Class of Busemann Nonpositively Curved Spa
esChoose the points x�; y�;m1;�;m2;� 2 X� with the
onditionsdX(x; x�) < �;dX(y; y�) < �;dX(m1;m1;�) < �;dX(m2;m2;�) < �:For them dX(x�; y�) � dX(x; y) � 2�;jdX(x�;m1;�)� 12dX(x; y)j � 2�;jdX(x�;m2;�)� 12dX(x; y)j � 2�;jdX(y�;m1;�)� 12dX(x; y)j � 2�;jdX(y�;m2;�)� 12dX(x; y)j � 2�and jdX(m1;�;m2;�)� dX(m1;m2)j � 2�:For arbitrary n > N we havedn(��1�;n(x�); ��1�;n(y�)) � dX(x; y)� 3�; (4.5)and also jdn(��1�;n(x�); ��1�;n(m1;�))� 12dX(x; y)j � 3�; (4.6)jdn(��1�;n(x�); ��1�;n(m2;�))� 12dX(x; y)j � 3�; (4.7)jdn(��1�;n(y�); ��1�;n(m1;�))� 12dX(x; y)j � 3�;jdn(��1�;n(y�); ��1�;n(m2;�))� 12dX(x; y)j � 3�and jdn(��1�;n(m1;�); ��1�;n(m2;�))� dX(m1;m2)j � 3�:Consequently, from (4.2)dn(��1�;n(m1;�); ��1�;n(m2;�)) � �M(�):
Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1 33
P.D. Andreev
r r
rrr r
r
r
r
rr rr-
-
x
y�y
x� m2m2;�m1zn m1;���1�;n(x�)
��1�;n(y�)
��1�;n(m1;�) ��1�;n(m2;�) ��;n
��;n
Fig. 3:Let zn 2 Xn be the midpoint between ��1�;n(m1;�) and ��1�;n(m2;�)(Fig. 3). Consider also the following points. The point p1;n 2 Xn in the segment[��1�;n(x�)��1�;n(m1;�)℄, su
h thatdn(��1�;n(x�); p1;n) ==� 12dX(x; y); if dn(��1�;n(x�); ��1�;n(m1;�)) � 12dX(x; y)dn(��1�;n(x�); ��1�;n(m1;�)) otherwise:The point p1;n
oin
ides with the endpoint ��1�;n(m1;�) of the segment ifdn(��1�;n(x�); ��1�;n(m1;�)) � 12dX(x; y);or its distan
e from ��1�;n(x�) is 12dX(x; y) ifdn(��1�;n(x�); ��1�;n(m1;�)) � 12dX(x; y):
r
r rrr
��1�;n(x�)
��1�;n(m1;�) ��1�;n(m2;�)p1;n p2;nqn
Fig. 4:34 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1
Geometri
Constru
tions in the Class of Busemann Nonpositively Curved Spa
esThe point p2;n is de�ned analogously in the segment [��1�;n(x�)��1�;n(m2;�)℄. Finally,the point qn is the midpoint of the segment [p1;np2;n℄ (Fig. 4).Let us estimate the distan
e dn(p1;n; p2;n) from below. From inequalities (4.6)and (4.7) the distan
es dn(pi; ��1�;n(mi;�)) and i = 1; 2 satisfy the inequalitydn(pi; ��1�;n(mi;�)) � 3�:Hen
e dn(p1;n; p2;n) � dn(��1�;n(m1;�); ��1�;n(m2;�))� 6� � dX(m1;m2)� 9�:We have dn(��1�;n(x�); zn) � dn(��1�;n(x�); qn) + dn(qn; zn)� 12dX(x; y)� L�2dX(m1;m2)� 9�dX(x; y) ; 12dX(x; y)�+12 �dn(p1;n; ��1�;n(m1;�)) + dn(p2;n; ��1�;n(m2;�)�� 12dX(x; y)� L�2dX(m1;m2)� 3�dX(x; y) ; 12dX(x; y)�+ 3�< 12dX(x; y)� 32�:Similarly, dn(��1�;n(y�); zn) < 12dX(x; y)� 32�:Finally, dn(��1�;n(x�); ��1�;n(y�)) < dX(x; y)� 3�;
ontradi
ting to the inequality (4.5).Now we
an
omplete the proof.P r o o f of Theorem 4.3. Let the points x; y; z 2 X and the midpoints p andq of segments [xy℄ and [xz℄, respe
tively, be given. DenoteR := 2maxfdX(o; x); dX (o; y); dX (o; z)g:Fix the de
reasing sequen
e �i ! 0.For ea
h i,
hoose �i-net X�i � BX(o;R) whi
h is a uniform limit of �i-netsX�i;n � BXn(o;R). Here BX(o;R) and BXn(on; R) are balls in the spa
es X andXn, respe
tively.Let n(i) be the natural number su
h that there exists a bije
tion �i : X�i;n(i) !X�i with the distortion dis�i < �i:Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1 35
P.D. AndreevLet the distan
es from the points xi; yi; zi 2 X� to x; y; z, respe
tively, be notgreater than �i. Denote ~pi 2 Xn(i) the midpoint of the segment [��1i (xi)��1i (yi)℄,�pi 2 X�i;n(i) the point on the distan
e not greater than �i from ~pi, and pi = �i(�pi) 2X its image in the bije
tion �i. Sin
e by the
ondition the spa
e X is proper andthe sequen
e pi is bounded, one
an subtra
t the
onverging subsequen
e. We mayassume that the sequen
e pi is also
onverging. The points pi are (4�i)-midpointsbetween x and y, that is jdX(x; pi)� 12dX(x; y)j � 4�iand jdX(y; pi)� 12dX(x; y)j � 4�i:Sin
e �i ! 0, when i ! 1, the limit of the sequen
e pi is the midpoint betweenx and y. From the uniqueness of midpoints in X, it follows thatlimi!1 pi = p:Analogously, one
an
onstru
t the sequen
e of (4�i)-midpoints qi between x andz
onverging to q. We havedX(pi; qi) � dXn(i)(�pi; �qi) + �i � dXn(i)(~pi; ~qi) + 3�i� 12dXn(i)(��1i (yi); ��1i (zi)) + 3�i � 12dX(yi; zi) + 4�i� 12dX(y; z) + 5�i:Hen
e dX(p; q) � 12dX(y; z);that is X is Busemann nonpositively
urved. The estimation of the
onvexitymodulus Æx(�; r) in X
an be proven in a similar way.A
knowledgement. The author is grateful to the referee for the number ofimportant remarks and
orre
tions made.Referen
es[1℄ B.H. Bowdit
h, Minkowskian Subspa
es of Nonpositively Curved Metri
Spa
es. �Bull. London Math. So
. 27 (1995), 575�584.[2℄ H. Busemann, Spa
es with Nonpositive Curvature. � A
ta Math. 80 (1948), 259�310.36 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1
Geometri
Constru
tions in the Class of Busemann Nonpositively Curved Spa
es[3℄ D. Burago, Yu. Burago, and S. Ivanov, A Course in Metri
Geometry. GraduatedStudies in Mathemati
s, 33. AMS, Providen
e, RI, 2001.[4℄ M. Bridson and A. Hae�iger, Metri
Spa
es of Nonpositive Curvature. Comprehen-sive Studies in Mathemati
s. 319. Springer-Verlag, Berlin, 1999.[5℄ A. Bernig, Th. Foers
h, and V. S
hroeder, Non Standard Metri
Produ
ts. � Contr.Algebra and Geom. 44 (2003), No. 2, 499�510.[6℄ B. Kleiner, The Lo
al Stru
ture of Length Spa
es with Curvature Bounded above.� Math. Z. 231 (1999), 409�456.[7℄ A. Papadopoulos, Metri
Spa
es, Convexity and Nonpositive Curvature. IRMALe
t. in Math. and Theor. Phis. 6. EMS, Strasbourg, 2005.[8℄ A. Krist�alu, C. Varga and L. Kozma, The Dispersing of Geodesi
s in Berwald Spa
esof Nonpositive Flag Curvature. � Houston J. Math. 30 (2004), No. 2, 413�420.[9℄ P.J. Kelly and E.G. Straus, Curvature in Hilbert Geometry. � Pa
i�
J. Math. 8(1958), 119�126.[10℄ M. Gromov, Hyperboli
Manifolds, Groups and A
tions. In: Riemann Surfa
es andRelated Topi
s. Pro
. 1978 Stony Brook Conf. (State Univ. New York, Stony Brook,N.Y., 1978). � Ann. Math. Stud. 97 (1981), Prin
eton Univ. Press, Prin
eton, NJ,183�213.[11℄ T. Gelander, A. Karlsson, and G. Margulis, Superrigidity, Generalized Harmoni
Maps and Uniformly Convex Spa
es. � GAFA 17 (2007), 1524�1550.[12℄ Yu.G. Reshetnyak, K Teorii Prostranstv Krivizny ne Bol'shei K. (On the Theory ofSpa
es with Curvature not Greater than K). � Mat. Sb., N. Ser. 52 (1960), No. 3,789�798.[13℄ S. Buyalo, Le
tures on Spa
es of Curvature Bounded above. Illinois, Univ. Urbana-Champaign, Spring Sem. 1994�1995 a.y., Parts I�III.
Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1 37
|