On the Spectrum of Riemannian Manifolds with Attached Thin Handles

The behavior as ε → 0 of the spectrum of the Laplace Beltrami operator Δε is studied on Rieinannian manifolds depending on a small parameter ε . They consist of a fixed compact manifold with attached handles whose radii tend to zero as ε → 0. We consider two cases: when the number of the handles is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2009
1. Verfasser: Khrabustovskyi, A.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2009
Schriftenreihe:Журнал математической физики, анализа, геометрии
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/106538
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the Spectrum of Riemannian Manifolds with Attached Thin Handles / A. Khrabustovskyi // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 2. — С. 145-169. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-106538
record_format dspace
spelling irk-123456789-1065382016-10-01T03:01:51Z On the Spectrum of Riemannian Manifolds with Attached Thin Handles Khrabustovskyi, A. The behavior as ε → 0 of the spectrum of the Laplace Beltrami operator Δε is studied on Rieinannian manifolds depending on a small parameter ε . They consist of a fixed compact manifold with attached handles whose radii tend to zero as ε → 0. We consider two cases: when the number of the handles is fixed and their lengthes are also fixed and when the number of the handles tend to infinity and their lengthes tend to zero as ε → 0 . For these cases we obtain the operators whose spectrum attracts the spectrum of Δε as ε → 0 . 2009 Article On the Spectrum of Riemannian Manifolds with Attached Thin Handles / A. Khrabustovskyi // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 2. — С. 145-169. — Бібліогр.: 9 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106538 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The behavior as ε → 0 of the spectrum of the Laplace Beltrami operator Δε is studied on Rieinannian manifolds depending on a small parameter ε . They consist of a fixed compact manifold with attached handles whose radii tend to zero as ε → 0. We consider two cases: when the number of the handles is fixed and their lengthes are also fixed and when the number of the handles tend to infinity and their lengthes tend to zero as ε → 0 . For these cases we obtain the operators whose spectrum attracts the spectrum of Δε as ε → 0 .
format Article
author Khrabustovskyi, A.
spellingShingle Khrabustovskyi, A.
On the Spectrum of Riemannian Manifolds with Attached Thin Handles
Журнал математической физики, анализа, геометрии
author_facet Khrabustovskyi, A.
author_sort Khrabustovskyi, A.
title On the Spectrum of Riemannian Manifolds with Attached Thin Handles
title_short On the Spectrum of Riemannian Manifolds with Attached Thin Handles
title_full On the Spectrum of Riemannian Manifolds with Attached Thin Handles
title_fullStr On the Spectrum of Riemannian Manifolds with Attached Thin Handles
title_full_unstemmed On the Spectrum of Riemannian Manifolds with Attached Thin Handles
title_sort on the spectrum of riemannian manifolds with attached thin handles
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/106538
citation_txt On the Spectrum of Riemannian Manifolds with Attached Thin Handles / A. Khrabustovskyi // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 2. — С. 145-169. — Бібліогр.: 9 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT khrabustovskyia onthespectrumofriemannianmanifoldswithattachedthinhandles
first_indexed 2025-07-07T18:37:13Z
last_indexed 2025-07-07T18:37:13Z
_version_ 1837014381525729280
fulltext Journal of Mathemati al Physi s, Analysis, Geometry2009, vol. 5, No. 2, pp. 145�169On the Spe trum of Riemannian Manifoldswith Atta hed Thin HandlesA. KhrabustovskyiMathemati al Division, B. Verkin Institute for Low Temperature Physi s and EngineeringNational A ademy of S ien es of Ukraine47 Lenin Ave., Kharkiv, 61103, UkraineE-mail:andry�ukr.netRe eived May 5, 2008The behavior as "! 0 of the spe trum of the Lapla e�Beltrami operator�" is studied on Riemannian manifolds depending on a small parameter ".They onsist of a �xed ompa t manifold with atta hed handles whose radiitend to zero as " ! 0. We onsider two ases: when the number of thehandles is �xed and their lengthes are also �xed and when the number ofthe handles tend to in�nity and their lengthes tend to zero as " ! 0. Forthese ases we obtain the operators whose spe trum attra ts the spe trumof �" as "! 0.Key words: homogenization, Lapla e�Beltrami operator, spe trum, Rie-mannian manifold.Mathemati s Subje t Classi� ation 2000: 35B27, 35P20, 58G25, 58G30.Introdu tionThe aim of the paper is to study the behavior as " ! 0 of the spe trum ofthe Lapla e�Beltrami operator �" on the Riemannian manifolds M " dependingon a small parameter ". We onsider two di�erent problems.In Se tion 1 we onsider a manifoldM " that onsists of a �xed two-dimensional ompa t Riemannian manifold without boundary and an atta hed "thin" mani-fold �". The last one onsists of several tubes with �xed lengthes and radii " (seeFig. 1 below). Thus �" " onverges" to some graph � as "! 0.Let � be the Lapla e�Beltrami operator on and L be the Lapla e operatoron �, i.e., L is de�ned by the operation d2ds2 on the edges of � (s is a naturalparameter on the edge), Diri hlet boundary onditions on the ends of � andKir hho� onditions on the verti es of �. We prove that the spe trum of �" A. Khrabustovskyi, 2009 A. Khrabustovskyi onverges in some suitable sense to the union of the spe trum of � and thespe trum of L. Also we study the behavior of orresponding eigenvalues.These results generalize the results by C. Anne [1℄. The behavior of spe trumis studied on a manifold with one atta hed handle having a �xed length anda vanishingly small radius in [1℄. These results are extended to the ase of theLapla ian a ting on di�erential p-forms in [2℄. The onvergen e of spe tra onmanifolds whi h ollapse to a graph was studied in [6℄.In Se tion 2 we onsider the manifold M " whose topologi al genus in reasesas " ! 0. It is onstru ted in the following way. Let be a ompa t two-dimensional Riemannian manifold without boundary, and D"i , i = 1 : : : N(") =3N1(") be a system of noninterse ting balls ("holes") in depending on ". Let " = nN(")Si=1 D"i . Suppose that the set f1 : : : N(")g is divided into subsets that onsist of three elements. If the indexes i, j, k lie on one subset we onne t the"holes" D"i ;D"j ;D"k by means of a manifold that onsists of the tubes G"i ; G"j ; G"kand a trun ated sphere B"ijk (see Fig. 2 below). As a result, we obtain the manifoldM " = " [i;j;k �G"i [G"j [G"k [B"ijk� :We suppose that the number of "holes" in reases as " ! 0, while their radiitend to 0. It is supposed that the radii of the "holes" are mu h smaller than thedistan es between them. We also suppose that, in ontrast to the manifold �" inSe t. 1 and in ontrast to [1℄, the metri is su h that the lengthes of the tubes onverge to 0.We obtain the following result: if some onditions on a distribution of the"holes" and on the metri s on the tubes and the trun ated spheres are hold,then the spe trum of the operator ��" onverges in some suitable sense to thespe trum of the operator L de�ned by the formula[Lu℄(x) = �� u(x) + Z W (x; y)(u(x)� u(y))dy:Here W (x; y) is a positive symmetri fun tion. We present an example for whi hW (x; y) is al ulated expli itly.The behavior of the spe trum of manifolds with omplex mi rostru ture wasstudied in [5, 8℄ for another type of manifolds. We note that the behavior ofspe trum of manifold with the atta hed one handle, having a vanishingly smallradius and (in ontrast to [1℄) a vanishingly small length, was studied in [4℄.The proof of main results is based on the abstra t s heme proposed in [7℄.Throughout the paper, we will denote by C various onstants independentfrom ".146 Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 On the Spe trum of Riemannian Manifolds with Atta hed Thin Handles1. Riemannian Manifold with Atta hed "Graph"1.1. Problem Setting and Main ResultLet be a two-dimensional ompa t Riemannian manifold without boundaryand with a metri g. By � we denote the orresponding Lapla e�Beltramioperator. Let D"i , i = 1 : : : N be a system of balls in with the enters xi 2 and the radii ". We onsider the following domain with holes: " = n N[i=1D"i :To " we glue the manifold �" illustrated on Fig. 1 and onstru ted as follows.Let � be a graph in R3 . We denote the verti es of this graph by pi, i = 1 : : : m(m > N) and the edges of the same graph by "ij. "ij onne ts the verti es pi andpj. We introdu e the symmetri matrix fAijgmi;j=1 su h that Aij = 1 if p"i and p"jare onne ted and Aij = 0 otherwise. We suppose that for the �rst N verti espi, i = 1 : : : N there is only one pj su h that Aij = 1. These are the ends of thegraph.Let zij be the natural parameter on ij , zij 2 [0; lij ℄. We denote by p(zij) thepoint on ij that orresponds to the natural parameter zij .We denote by G"ij the ylinder with the axis b ij = fp(zij) 2 ij : zij 2 [Æ"; lij�Æ"℄; Æ" � 0g and with the radius ". The length of G"ij is equal to l"ij = lij � 2Æ".We hoose the standard ylindri al oordinates on G"ijG"ij = �('ij ; zij) : 'ij 2 [0; 2�℄; zij 2 [Æ"; lij � Æ"� :Clearly, Æ" an be hosen su h that:1. G"ij are pairwise disjoint,2. jÆ"j � C � ".The boundary of G"ij onsists of two ir les S"ij and S"ji. Here we suppose that S"ijis loser to the vertex pi, and S"ji is loser to the vertex pj .For i 2 fN + 1 : : : mg, let B"i be the sphere of the radius b" =p"2 + Æ"2 withthe enter pi. It is lear that S"ij � B"i . Let D"ij be a part of B"i that lies insidethe ylinder G"ij, and let B"i = B"i n [j:Aij=1Dij:We obtain a two-dimensional manifold (see Fig. 1):�" = m[i=124 [i;j:Aij=1;i<jG"ij35 m[i=N+1B"i :Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 147 A. Khrabustovskyi Fig. 1: Manifold �".The boundary of �" onsists of S"ij, i, j : i = 1 : : : N , Aij = 1.Now we suppose that S"ij , i, j : i = 1 : : : N , Aij = 1 are di�eomorphi to �D"i .Using this di�eomorphisms, we glue �" to " and obtain a manifold withoutboundary M " = " [ �":We denote by ~x the points of this manifold. Clearly, M " an be overed bya system of harts and suitable lo al oordinates fx1; x2g an be introdu ed.It is supposed that M " is equipped with the metri g" that oin ides with themetri g on " and with the Eu lidean metri s indu ed from R3 on �". By g"�� ,we denote the omponents of the metri tensor in lo al oordinates.Let L2(B) be a Hilbert spa e of the real-valued fun tions on B � M " withthe s alar produ t and the norm(u; v)L2(B) = ZB u(~x) � v(~x)d~x; kuk2L2(B) = ZB �u(~x)�2d~x;where d~x =qdetg"��dx1dx2 is the volume form.We denote H" := L2(M "); H0 := L2( )� L2(�).Let �" be a Lapla e�Beltrami operator on M ". It is well known that thespe trum of the operator ��" is purely dis rete. Let 0 = �"1 < �"2 � �"3 � ::: ��"k !k!1 1 be the eigenvalues of ��" written with a ount of their multipli -ity, u"1; u"2; u"3 ::: be the orresponding eigenve tors normalized by the ondition(u"i ; u"j)H" = Æij .In this se tion we study the behavior of �"k as "! 0.148 Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 On the Spe trum of Riemannian Manifolds with Atta hed Thin HandlesLet L : L2(�) ! L2(�) be a Lapla e operator on the graph � with Diri hletboundary onditions, i.e., L is de�ned by the operation[Lu℄(x) = � d2udzij (x); x = p(zij) 2 ijand by a de�nitional domain onsisting of the fun tions u 2 H2( ij) 8i; j andsu h that if we denote by uij the restri tion of u on ij , thenfor i = 1; N : u(xi) = 0;for i = N + 1;m : 8><>:uij(pi) are equivalent for all j : Aij = 1;Xj:Aij=1 �uij�� (pi) = 0;where ��� means the derivative in the dire tion outward to ij . In short, u isa ontinuous fun tion on � that satis�es the Diri hlet onditions on the endsof the graph as well as Kir hho� onditions in the verti es (for more pre isedes ription of di�erential operators on the graphs and its properties see, e.g., [6℄).To des ribe the behavior of eigenfun tions we introdu e the operator R" :H0 ! H": [R"f ℄(~x) = 8><>:f0(~x); ~x 2 ";fij(zij)"�1=2; ~x = (zij ; 'ij) 2 G"ij;0; ~x 2 B"i ;f = (f0; fij; i; j : Aij = 1) 2 L2( )� L2(�):Let L : H0 !H0: L = ��� 00 L� ;and let �0; �1; �2::: be the eigenvalues of L written with a ount of their multi-pli ity. It is lear that the spe trum of L is the union of the eigenvalues of theoperator �� and the eigenvalues of the operator L that are taken with a ountof their multipli ity.Theorem 1.1. For any k=1,2,3. . .�"k ! �k; "! 0:Theorem 1.2. Let �k < �k+1 = �k+2 = : : : = �k+m < �k+m+1 (i.e.,the multipli ity of �k+1 is equal to m). Let N(�k+1) be the eigenspa e of theJournal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 149 A. Khrabustovskyieigenvalue �k+1: Then for any w 2 N(�k+1) there exists a linear ombination �u"of the eigenfun tions u"k+1 : : : u"k+m su h thatk�u" �R"wkH" ! 0; "! 0: (1.1.1)1.2. Proof of Theorems 1.1 and 1.2We prove Theorems 1.1 and 1.2 for the ase N = 3;m = 4, i.e., �" onsists ofthree tubes G"14; G"24; G"34 and the trun ated sphere B"4 that onne ts these tubes.For the general ase the theorems are proved in a similar way. We introdu e newnotations: l"i := l"i4; zi := zi4; 'i := 'i4; G"i := G"i4;S"j := S"4j ; C"i := S"i4; B" := B"4; B" := B"4; i; j = 1; 2; 3;(i.e. ��" = Si=1;2;3C"i ).For simpli ity we suppose that the metri g is Eu lidean in some neighbour-hood of the holes D"i (and thus g" is ontinuous). For the general ase the proofneeds small modi� ations.We denote byA" andA0 the operators inverse to��"+I and L+I, respe tively(I is an identi al operator).Now we study the behavior of A" as "! 0.Theorem 1.3. The following onditions are ful�lled:C1. For any f 2 H0 kR"fkH" ! kfkH0 ; "! 0: (1.2.1)C2. The operators A";A0 are positive, ompa t, self-adjoint and bounded inL(H") uniformly with respe t to ".C3. For any f 2 H0kA"R"f �R"A0fkH" ! 0; "! 0: (1.2.2)C4. For any sequen e f " 2 H" su h that sup kf "kH" < 1 there exists thesubsequen e "0 and w 2 H0 su h thatkA"f " �R"wkH" ! 0; " = "0 ! 0: (1.2.3)P r o o f 1. The ondition C1 follows dire tly from the de�nition of theoperator R".150 Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 On the Spe trum of Riemannian Manifolds with Atta hed Thin Handles2. The ondition C2 follows easily from the properties of the resolvent, namelythe following estimate is valid kA"kL(H") � 1:3. Let f 2 H. We denote u" = A"R"f , f " = R"f . To des ribe the behaviorof u" on " we introdu e the operator �"0 : H1(M ")! H1( ) with the followingproperties:1) k�"u"kH0 + kr"�"u"kH0 � Cnku"kH" + kr"u"kH"o, C > 0,2) �"0u"(~x) = u"(~x) on ".(Here kr"u"kH" := ZM" 2X�;�=1 g��" �u�x� �u�x� d~x, where g��" are the omponents of thetensor inverse to g"). This operator exists, see, e.g, [3℄.Due to C1�C2 we have ku"kH" � kf "kH" ! kfkH0 . Moreover, using varia-tional methods, we obtainkr"u"k2H" � 2kf "kH" � ku"kH" :Using these inequalities and the properties of the operator �"0, we on lude that�"0u" is bounded in H1( ) uniformly with respe t to ", and therefore there existsa subsequen e (still denoted by ") su h that�"0u" !"!0 u0 2 H1( ) weakly in H1( ) and strongly in L2( ): (1.2.4)To des ribe the behavior of u" on the tubes G"i , i = 1; 2; 3, we represent u" inthe form u"('i; zi) = P "i u"(zi) +Q"iu"('i; zi); (1.2.5)where P "i u"(zi) = 12� 2�Z0 u"('i; zi)d'i:Let �"i : H1(G"i )! H1([0; li℄) that is de�ned by the formula�"iu"(zi) = 8><>:p"P "i (zi); zi 2 [Æ"; li � Æ"℄;p"P "i (Æ"); zi 2 [0; Æ");p"P "i (li � Æ"); zi 2 (li � Æ"; li℄: Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 151 A. KhrabustovskyiWe have the following estimates: ddzi�"iu" 2L2[0;li℄ = li�Æ"ZÆ" 0� ��zi 12� 2�Z0 u"('i; zi)p"d'i1A2 dzi� 12� li�Æ"ZÆ" 2�Z0 � ��ziu"('i; zi)�2 "d'idzi � (2�)�1kr"u"k20"; (1.2.6)k�"iu"k2L2[0;li℄ � Æ" h(�"iu"(Æ"))2 + (�"iu"(li � Æ"))2i+ (2�)�1ku"k2L2(G"i ): (1.2.7)Further, (�"iu"(Æ"))2 � 20�(�"iu"(zi))2 + li li�Æ"ZÆ" ���� ��zi�"iu"('i; zi)����2 dzi1A :Integrating this estimate on zi from Æ" to li � Æ" one has(�"iu"(Æ"))2 � C k�"iu"k2L2[Æ";li�Æ"℄ + ddzi�"iu" 2L2[Æ";li�Æ"℄! (1.2.8)and, similarly,(�"iu"(li � Æ"))2 � C k�"iu"k2L2[Æ";li�Æ"℄ + ddzi�"iu" 2L2[Æ";li�Æ"℄! : (1.2.9)It follows from (1.2.6)-(1.2.9) that �iu" is bounded in H1([0; li℄), and thereforefor i = 1; 2; 3 there exists a subsequen e (still denoted by ") su h that�"iu" !"!0 ui 2 H1([0; li℄) weakly in H1([0; li℄) and strongly in L2([0; li℄):(1.2.10)The following lemma says that u" is vanishingly small in B".Lemma 1.1. Let u" 2 H1(M "). Thenku"k2L2(B")� C�"2kr"u"k2L2(B") + "kr"u"k2L2([iG"i ) + "2j ln "j�kr"u"k2L2( ") + ku"k2L2( ")��:P r o o f. At �rst we note that u" an be extended to the whole ball B" in su ha way that kr"u"kL2(B") � Ckr"u"kL2(B") (see [9, p. 118, Ex. 4.10℄). Let us �x i152 Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 On the Spe trum of Riemannian Manifolds with Atta hed Thin Handlesfrom f1; 2; 3g. We introdu e the spheri al oordinates ' 2 [0; 2�℄; � 2 [0; �℄ on B"su h that the points of S"i have the oordinates ' 2 [0; 2�℄; � = ar sin("=b") =: �".So, we extend u" to B" and haveu"('; �) = u"('; �") + �Z�" �u"('; )� d :Further, 2�Z0 ���"Z�" (u"('; �))2b"2 sin �d�d'� C"20� ���"Z�" ��u"('; )� �2 sin d d' � ���"Z�" (sin )�1d + 2�Z0 (u"('; �"))2 d'1A :(1.2.11)Sin e C1 � �" � C2, the �rst term is estimated by C"2kr"u"k2L2(B"). Nowwe estimate the se ond term. Representing the orresponding integral in the ylindri al oordinates, one hasu"('; �") � u"('i; li) = u"('i; 0) + liZ0 �u"('i; zi)�zi dzi:Let D" and R" be the balls in with the radii d" and r" (r" > d"). Then forany u 2 H1(R" nD") the following estimate is valid (see [1℄):kuk2L2(�D") � Cd" �j ln d"j � kruk2L2(R"nD") + 1(r")2 kuk2L2(R"nD")� : (1.2.12)Using (1.2.12), we have"2 2�Z0 (u"('i; li))2 d'i � C"2 2640� 2�Z0 u"('i; 0)d'i1A2 + 2�Z0 liZ0 ��u"('i; zi)�zi �2 dzi375� Ch"2j ln "j�ku"k2L2( ") + kr"u"k2L2( ")�+ "kr"u"k2L2(G"i )i:We denote D�"i = f('; �) 2 B" : � 2 [� � �"; �"℄g. It follows from (1.2.11) thatfor i = 1; 2; 3: ku"k2L2(B"n(D"i[D�"i ))� C�"2kr"u"k2L2(B") + "kr"u"k2L2(G"i ) + "2j ln "j�kr"u"k2L2( ") + ku"k2L2( ")��:Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 153 A. KhrabustovskyiThe lemma is proved sin e Si=1;2;3 [B" n (D"i [D�"i )℄ = B".We return to the proof of Theorem 1.3. We denote u := (u0; u1; u2; u3). Letus prove that u = A0f , what is equal to the ful�lment of the following onditions:I: ui(0) = 0; i = 1; 2; 3; (1.2.13)II: u1(l1) = u2(l2) = u1(l3); (1.2.14)III: (ru0;rw)H0 + (u0; w)H0 = (f0; w)H0 ; 8w 2 H1( ); (1.2.15)IV: 3Xi=1 liZ0 (ui(z))0(wi(z))0dz + 3Xi=1 liZ0 ui(z)wi(z)dz= 3Xi=1 liZ0 fi(z)wi(z)dz; 8wi 2 H1[0; li℄: (1.2.16)Let us verify the ful�lment of these onditions.I. Using the tra e theorem, for i = 1; 2; 3 we haveui(0) = lim"!0�"iu"(0) = lim"!0�"iu"(Æ") = p" lim"!0 �u"i ; (1.2.17)where �u"i is the mean value of u" over �D"i . It follows from (1.2.12), (1.2.17) that(1.2.13) is valid.II. For i; j = 1; 2; 3, one hasjui(li)� uj(lj)j = lim"!0p"jû"i � û"jj; (1.2.18)where û"i is the average value of u" over the ir le S"i .We denote v"(~x) := u"(~x)� U ", where U " is the average value of u" over B",and by v̂"i we denote the average value of v" over the ir le S"i .Using the inequality of the type (1.2.12) and Poin are inequality, one hasjv̂"i j2 � C �����ln tan �"2 ���� � kr"v"k2L2(B") + 1(b"i )2 kv"k2L2(B")�� C ����ln tan �"2 ���� � kr"v"k2L2(B"): (1.2.19)Using (1.2.19), we havejû"i � û"j j = jv̂"i � v̂"j j � jv̂"i j+ jv̂"j j � Cs����ln tan �"2 ���� � kr"v"kL2(B"): (1.2.20) 154 Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 On the Spe trum of Riemannian Manifolds with Atta hed Thin HandlesSin e ��ln tan �"2 �� < C, it follows from (1.2.18), (1.2.20) that (1.2.14) is ful�lled.III. Clearly, it is su� ient to prove (1.2.15) for w su h that9Æ > 0 8i = 1 : : : 3 : �g(supp(w); x"i ) � Æ;where �g is the distan e on generated by the metri g (be ause the set of thesew is dense in H1( )). Then for these w and for su� iently small " supp(w) � ".Let w"(~x) 2 L2(M "): w"(~x) = w(~x) in " and w" = 0 in M " n ". Clearly,w" 2 H2(M ") for " being small enough.We have0 = lim"!0�(r"u";r"w")H" + (u"; w")H" � (f "; w")H"�= lim"!0�(r�"u";rw)L2( ) + (�"u"; w)L2( ) � (f;w)L2( )�= (ru0;rw)H0 + (u0; w)H0 � (f0; w)H0 ;and (1.2.15) is valid.IV. It is su� ient to prove (1:2:16) for su h wi that9Æ > 0 8z 2 [0; Æ℄ : wi(z) = 0 and 8z 2 [li � Æ; li℄ : wi(z) = wi(li);be ause the set of these wi is dense in the set of test fun tions mentioned above.For su� iently small " Æ" � Æ, and therefore these wi satisfy the onditions:8z 2 [0; Æ"℄ : wi(z) = 0 and 8z 2 [li � Æ"; li℄ : wi(z) = wi(li).At �rst, let us estimate the reminder Q"u" on G"i . Using Poin are inequality,we have li�Æ"ZÆ" 2�Z0 (Q"iu"('i; zi))2d'idzi � C li�Æ"ZÆ" 2�Z0 ��Q"iu"�'i �2 d'idzi= C li�Æ"ZÆ" 2�Z0 ��u"�'i�2 d'dzi � C"kr"u"k2L2(G"i ): (1.2.21)Using the above and the representation (1.2.5), we have3Xi=1 liZ0 (ui(zi))0(wi(zi))0dzi = 3Xi=1 lim"!0 12� 2�Z0 li�Æ"ZÆ" ��"iu"�zi �w"i�zi dzid'i= 3Xi=1 lim"!0 12� 24 2�Z0 li�Æ"ZÆ" �u"�zi � ��zi � wip"� "dzid'i + 2�Z0 li�Æ"ZÆ" p"Q"iu" � �2wi�z2i dzid'i35 :Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 155 A. KhrabustovskyiIn view of (1.2.21) the se ond integral tends to zero. Therefore we have3Xi=1 liZ0 (ui(z))0(wi(z))0dz = 12� lim"!0(r"u";rw")H" ;where w" 2 H1(M ")w"(x) = 8><>:wi(zi)"�1=2; ~x = (zi; 'i) 2 Gi;0; ~x 2 ";wi(li � Æ")"�1=2; ~x 2 B":In the same way using Lemma 1.1, we obtain3Xi=1 0� liZ0 ui(z)wi(z)dz � liZ0 fi(z)wi(z)dz1A = 12� lim"!0�(u"; w")H" � (f "; w")H"�:The last two equalities imply the ondition (1.2.16).Thus we prove that u = A0f .It is easy to see that (1.2.2) follows from (1.2.4), (1.2.10), (1.2.21), andLemma 1.1. The ondition C3 is ful�lled.4. It remains to verify the ful�lment of the ondition C4. Let f " 2 H" besu h that sup kf "kH" < 1. We denote u" = A"f ". It is lear that the normsku"k2L2(M")+kr"u"k2L2(M") are uniformly bounded with respe t to ". In the sameway as in item 3 one an prove that there exists a subsequen e (still denoted by ")su h that the following limits existw0 = lim"!0�"0u" 2 H1( ) strongly in L2( ); (1.2.22)wi = lim"!0�"iu" 2 H1[0; li℄; i = 1; 2; 3 strongly in L2[0; li℄: (1.2.23)By means Lemma 1.1 we haveku"k2L2(B") ! 0; "! 0: (1.2.24)The ful�lment of the ondition C4 (with w = (w0; w1; w2; w3)) follows easilyfrom (1.2.21)�(1.2.24).Theorem 1.3 is proved.We ontinue the proves of Theorems 1.1 and 1.2. Let �"1 � �"2 � �"3 � : : : ��"k !k!1 0 be the eigenvalues of A" written with a ount of their multipli ityand let f "1 ; f "2 : : : be the orresponding eigenve tors normalized by the ondition(f "i ; f "j )H" = Æij . Let �1 � �2 � �3 � : : : � �k !k!1 0 be the eigenvalues of A.156 Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 On the Spe trum of Riemannian Manifolds with Atta hed Thin HandlesIt is proved in [7℄ that the onditions C1�C4 imply�"k ! �k; "! 0; k = 1; 2; 3 : : :and, moreover, if �k � �k+1 = �k+2 = : : : = �k+m > �k+m+1, then for any w 2N(�k+1) there exists a linear ombination �f " of the eigenfun tions f "k+1 : : : f "k+msu h that k �f " �R"wkH" ! 0; "! 0:Sin e �"k = 1�"k � 1, �k = 1�k � 1, u"k = f "k (and so N(�k) = N(�k)), it followsthat Theorems 1.1 and 1.2 are proved.2. Riemannian Manifold of In reasing Genus2.1. Setting of the Problem and Main ResultLet be a two-dimensional ompa t Riemannian manifold without boundaryand with a metri g. By � we denote the orresponding Lapla e�Beltramioperator. Let D"i , i = 1 : : : N(") = 3N1(") be a system of the balls in with enters x"i 2 and radii d". We onsider the following domain with holes: " = nN(")[i=1 D"i :Let G"i , i = 1 : : : N("), be a set of tubesG"i = f~x = ('i; zi) : 'i 2 [0; 2�℄; zi 2 [0; 1℄g:We suppose that C"i = f~x = ('i; zi) 2 G"i : zi = 0g � �G"iis di�eomorphi to �D"i . Using this di�eomorphism, we glue G"i , i = 1 : : : N(") to ". By S"i we denote the "ends" of G"iS"i = f~x = ('i; zi) 2 G"i : zi = 1g � �G"i :We divide the set f1 : : : N(")g into subsets, ea h onsisting of three elements.For any three indexes i; j; k we introdu e the number Aijk, and set Aijk = 1 ifi; j; k belong to the same subset, and we set Aijk = 0 otherwise. If Aijk = 1, wesay that the orresponding holes D"i ;D"j ;D"k are onne ted. Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 157 A. KhrabustovskyiFor any i; j; k : Aijk = 1 we onsider the sphere B"ijk � R3 with the radius b".Let D"i ;D"j ;D"k be the geodesi balls on B"ijk with the radii b" ar sin�d"b"�. It is lear that the radii of the ir les �D"i ; �D"j ; �D"k are equal to d". LetB"ijk = B"ijkn(D"i [D"j [ D"k):One an see that �D"i ; �D"j ; �D"k are di�eomorphi to S"i ; S"j ; S"k, respe tively. Us-ing these di�eomorphisms, we glue B"ijk to G"i [ G"j [ G"k. Thus we obtain themanifold (see Fig. 2)M " = " [ 24 [i;j;k:Aijk=1(B"ijk [G"i [G"j [G"k)35 :We denote the points of the manifold by ~x. Clearly,M " an be overed by a systemof harts, and suitable lo al oordinates fx1; x2g an be introdu ed. It is supposedthat M " is equipped with the metri g" that oin ides with the metri g on "and with the metri s indu ed from R3 on B"ijk. On G"i the metri is de�ned bythe formula for the square of the element of length:ds2 = q"i dz2i + (d")2d'2i ; q"i > 0:By g"�� , we denote the omponents of metri tensor in lo al oordinates. Fig. 2: Manifold M ".We denote r"i = minj �g(x"i ; x"j), where �g is a distan e on generated bymetri g. It is supposed that the following properties are valid:(i) j ln d"j�1 � C(r"i )2, r"i = O("), 0 < C1 � "2N(") � C2, "! 0;(ii) q"i � q" ! 0; "! 0, i.e., the lengthes of the ylinders G"i tend to zero;(iii) (b")2�j ln d"j+ ��ln tan �"2 ��+ pq"d" �! 0; "! 0; �" = ar sin d"b" :158 Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 On the Spe trum of Riemannian Manifolds with Atta hed Thin HandlesLet �" be a Lapla e�Beltrami operator onM ". Let 0 = �"1 < �"2 � �"3 � : : : ��"k !k!11 be the eigenvalues of ��" written with a ount of their multipli ity,and u"1; u"2; u"3 : : : be the orresponding eigenve tors normalized by the ondition(u"i ; u"j)H" = Æij.To des ribe the behavior of �"k as "! 0 we introdu e the notations:R"i = f~x 2 " : d" � �g(~x; x"i ) � r"i =2g; bC"i = f~x 2 " : �g(~x; x"i ) = r"i =2g;�"ijk = G"i [G"j [G"k [B"ijk; b�"ijk = R"i [R"j [R"k [ �"ijk:For i; j; k : Aijk = 1, we onsider the problem�"v = 0 in b�"ijk; v = 1 on bC"i and v = 0 on bC"j [ bC"k: (2.1.1)The solution of (2.1.1) we denote by v"ijk. It is lear that v"ijk = v"ikj .For i; j; k : Aijk = 1, we denoteW "ijk = � Zb�"ijk (r"v"ijk;r"v"jik)d~x;(here (r"u;r"v) := 2X�;�=1 g��" �u�x� �v�x� ), otherwise we set W "ijk = 0 (i.e., W "ijk =�(r"v"ijk;r"v"jik)L2(b�"ijk)).We introdu e the generalized fun tionW "(x; y) = Xi;j;k=1:::N(")W "ijkÆ(x� x"i )Æ(y � x"j) 2 D0( � ):The limit(iv) 9 lim"!0W "(x; y) =W (x; y) 2 L1( � ) - positive symmetri fun tion,is supposed to exist.We denote H" := L2(M "), H0 := L2( ).Theorem 2.1. For any k = 1; 2; 3 : : :�"k ! �k; "! 0;where 0 = �1 < �2 � �3 � : : : are the eigenvalues of the operator L : L2( ) !L2( ): [Lu℄(x) = �� u(x) + Z W (x; y)(u(x) � u(y))dy: Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 159 A. KhrabustovskyiTheorem 2.2. Let R" : H0 !H":[R"f ℄(~x) = 8<:f(~x); ~x 2 ";0; ~x 2 Si;j;k:Aijk=1�"ijk:Then the eigenfun tions of ��" onverge in the sense (1.1.1) to the eigen-fun tions of the operator L.2.2. Proof of Theorems 2.1 and 2.2We denote by A" and A the operators inverse to ��"+I and L+I, respe tively.Analogously as in the previous se tion, Theorems 2.1 and 2.2 follow fromTheorem 2.3. The onditions C1�C4 are ful�lled.P r o o f. The onditions C1�C2 are trivial. Let us he k the ondition C3.Let f 2 H. We denote u" = A"R"f , f " = R"f , u0 = A0f . Noti e that thefollowing estimates are valid:ku"kL2(M") � kf "kL2(M"); kr"u"k2L2(M") � 2kf "kL2(M") � ku"kL2(M"): (2.2.1)It is well known that u" minimizes the fun tionalJ"[u"℄ = ZM" �jr"u"j2 + (u")2 � 2f "u"� d~x (2.2.2)in the lass of fun tions H1(M "), while u0 minimizes the fun tionalJ0[u℄ = Z �jruj2 + u2 � 2fu�dx+ Z Z 12W (x; y) (u(x)� u(y))2 dxdy (2.2.3)in the lass of fun tions H1( ). The onverse assertions are also true.In order to prove that u" onverges to u0, we onsider the following abstra ts heme.Let H" be a Hilbert spa e depending on the parameter " > 0, (u"; v")"; ku"k"be a s alar produ t and norm in this spa e, and F " be the ontinuous linear fun -tionals in H" whi h are uniformly bounded with respe t to ". Let H be a Hilbertspa e with the s alar produ t (u; v) and the norm kuk, and F be a ontinuouslinear fun tional in H.Consider the following two problems of minimization:ku"k2" + F "[u"℄! inf; u" 2 H"; (2.2.4)kuk2 + F [u℄! inf; u 2 H: (2.2.5)160 Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 On the Spe trum of Riemannian Manifolds with Atta hed Thin HandlesLet u" and u0 be the minimizants of the problems (2.2.4) and (2.2.5). The fol-lowing theorem is proved in [3℄.Theorem 2.4. Let M be a dense subset of H, let �" : H" ! H, and P " :M ! H" be the operators satisfying the following onditions:(a) k�"w"k � Ckw"k;8w" 2 H";(b1) �"P "w ! w weakly in H as "! 0;8w 2M ;(b2) lim"!0 kP "wk" = kwk;8w 2M ;(b3) for any sequen e " 2 H" su h that �" " ! weakly as " ! 0, for anyw 2M one has lim"!0 j(P "w; ")"j � Ckwkk k;( ) for any sequen e " 2 H", su h that �" " ! weakly, as "! 0, one haslim"!0F "[ "℄ = F [ ℄:Then �"u" !"!0 u0 weakly in H:Noti e that Theorem 2.4 holds true if the onditions (b3) and ( ) hold onlyfor su h sequen es " that the norms k "k" are uniformly bounded with respe tto " be ause in the proof of Theorem 2.4 the onditions (b3) and ( ) are used onlywith these sequen es.Now we apply our abstra t s heme. Let H" be the Hilbert spa e H1(M ") ofthe fun tions on M " with the s alar produ t(u"; v")" = ZM" [(r"u";r"v") + u"v"℄ d~x;and let F " be a linear fun tional de�ned by the formulaF "[u"℄ = ZM" �2f "u"d~x:Let H be the Hilbert spa e H1( ) with the s alar produ t(u; v) = Z [(ru;rv) + uv℄ dx+ Z Z 12W (x; y)(u(x) � u(y))(v(x) � v(y))dxdy;and f be a linear fun tional on it de�ned by the formulaF [u℄ = Z �2fudx:Obviously, the fun tionals F " are uniformly bounded with respe t to ".Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 161 A. KhrabustovskyiNow we introdu e the operators �" and P " satisfying the onditions (a)�( )of Theorem 2.4.The existen e of the operator �" : H1(M ")! H1( ) that has the propertieskr�"u"k2L2( ) + k�"u"k2L2( ) � C�kru"k2L2( ") + ku"k2L2( ")�; (2.2.6)�"u"(~x) = u"(~x); ~x 2 " (2.2.7)is proved in [9, p. 118, Ex. 4.10℄).Clearly, (a) follows from (2.2.6).We introdu e the operator P ". Let '(r) be a twi e ontinuously di�erentiablenon-negative fun tion on the half-line [0;1) equal to 1 for r 2 [0; 1=4℄ and equalto 0 for r � 1=2. We set'"i (x) = '��g(x; x"i )r"i � ; '"0i(x) = '��g(x; x"i )d"0 � ;where d"0i = exp(�j ln d"j1=2).Let M = C2( ), M is dense in H1( ) and let w 2M . We de�ne the operatorP " by the equality[P "w℄(~x) = 8>>>><>>>>:w(~x) + (w"i � w(~x))'"0i(~x) +�(v"ijk(~x)� 1)w"i+v"jik(~x)w"j + v"kij(~x)w"k�'"i (~x); ~x 2 R"i ; j; k : Aijk = 1;v"ijk(~x)w"i + v"jik(~x)w"j + v"kij(~x)w"k; ~x 2 �"ijk;where w"i = w(x"i ).To see that the onditions (b1)�(b3) hold, we use the following estimates ofthe solution v"ijk of (2.1.1).Lemma 2.1 Let R"0q = f~x 2 " : d"0q � �g(x; x"q) � r"q=2g. Then fori; j; k : Aijk = 1 and q 2 fi; j; kg:jD�(v"ijk(~x)� Æiq)j � C ����D�(ln�g(x"q; ~x))lnd" ���� ; ~x 2 R"0q j�j = 0; 1:The p r o o f of the lemma is arried out in the same way as that ofLemma 2.4 in [9, p. 44℄ using the inequality 0 � v"ijk � 1 whi h follows from themaximum prin iple. 162 Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 On the Spe trum of Riemannian Manifolds with Atta hed Thin HandlesLemma 2.2 Let u" 2 H1(M "). Then for any i; j; k : Aijk = 1ku"k2B"ijk � C �(b")2 ����ln tan �"2 ���� � kr"u"k2L2(B"ijk) + pq"(b")2d" kr"u"k2L2(G"i[G"j[G"k)+(b")2�j lnd"j � kr"u"k2L2(R"i[R"j[R"k) + 1r"i 2 ku"k2L2(R"i[R"j[R"k)�� ;ku"k2G"i � C �q"kr"u"k2L2(Gi) + d"pq"�j lnd"j � kr"u"k2L2(R"i ) + 1r"i 2 ku"k2L2(R"i )�� :The p r o o f of this lemma is arried out in the same way as the proof ofLemma 1.1.We verify that the ondition (b2) holds. We denote bR"i = f~x 2 " : r"i =4 ��g(~x; x"i ) � r"i =2g. Let w 2M . ThenkP "wk2" = Z " �jrwj2 + w2�dx+ Xi<j<k:Aijk=1 Zb�"ijk �w"i 2jrv"ijkj2 + w"j2jrv"jikj2 + w"k2jrv"kijj2+2w"iw"j (rv"ijk;rv"jik) + 2w"jw"k(rv"jik;rv"kij) + 2w"iw"k(rv"ijk;rv"kij)�d~x+ Æ("):(2.2.8)Here Æ(") are the remaining integrals estimated as follow?:jÆ(")j � C(w) Xi;j;k:Aijk=1 �J"ijk +E"ijk + I"ijk + Y "ijk + (d"0)2� ;where J"ijk = ZbR"i[ bR"j[ bR"k �jr"v"ijkj2 + 1r"i 2 jv"ijkj2� d~x;E"ijk = ZR"0i[R"0j[R"0k �jr"v"ijkj+ 1r"i jv"ijkj� d~x;I"ijk = ZR"i jv"ijk � 1j2d~x+ ZR"j[R"k jv"ijkj2d~x; Y "ijk = Z�"ijk jv"ijkj2d~x:?The sum Pi<j<k:Aijk=1 means that any three indexes fi; j; kg appear only ones in this sum.Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 163 A. KhrabustovskyiUsing Lemma 2.1 and maximum prin iple for v"ijk, we haveJ"ijk � Cj lnd"j�2(1 + j ln r"i j2); (2.2.9)E"ijk � Cj lnd"j�1�r"i j ln r"i j+ d"0j lnd"0j�; (2.2.10)I"ijk � C�(d"0)2(1 + j lnd"j�1) + (r"i ln r"i = lnd")2�; (2.2.11)Y "ijk � C � j�"ijkj � C(d"pq" + (b")2); (2.2.12)Using (i)�(iii), we on lude thatÆ(") ! 0; "! 0: (2.2.13)We denote V "ijk = Rb�"ijk jr"v"ijkj2d~x, where i; j; k : Aijk=1. Sin e v"ijk + v"jik +v"kij = 1 for any i; j; k : Aijk = 1, we have V "ijk = W "ijk +W "ikj. Therefore (2.2.8) an be rewritten in the formkP "wk2 =Z �jrwj2 +w2�dx+ Xi;j;k=1:::N(")W "ijk�(w(x"i ))2 � w(x"i )w(x"j)�+ Æ(")= Z �jrwj2 + w2�dx+ 12 Xi;j;k=1:::N(")W "ijk�w(x"i )� w(x"j)�2 + Æ("): (2.2.14)It is easy to see that (b2) follows from (iv), (2.2.13) and (2.2.14).We verify the ondition (b1). Let w 2 M . In view of the onditions (a) and(b2), the norms k�"P "wk" are uniformly bounded with respe t to ", and in thesame way as in (b2) one an prove that �"P "w ! w strongly in L2( ). Thus the ondition (b1) also holds.We verify the ondition (b3). Let w 2 M , and the sequen e " 2 H" is su hthat the norms k "k" are uniformly bounded with respe t to ", and �" " ! weakly in H as "! 0. Integrating by parts, we have(P "w; ")" = (�� w + w;�" ")L2( ) + Æ("); (2.2.15)where Æ(") are the remaining integrals. Using Lemma 2.1, in the same way as in(b2) we obtain the estimatelim"!0 jÆ(")j � C lim"!08><>:0�N(")Xi=1 (w"i )2jR"i j1A1=2 k�" "kL2( )9>=>; :Sin e �" " onverges weakly to in H, then �" " onverges strongly to inL2( ), and therefore we havelim"!0 jÆ(")j � CkwkL2(M") � k kL2( ) � Ckwk � k k: (2.2.16)164 Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 On the Spe trum of Riemannian Manifolds with Atta hed Thin HandlesIt follows from (2.2.15)�(2.2.16) that (b3) holds.Further, we verify that the ondition ( ) holds. Let the sequen e " 2 H" besu h that �" " ! weakly in H. Then �" " ! strongly in L2( ). We havejF "[ "℄� F [ ℄j = ������ Z " f � (�" " � )d~x������+ ������� Z n " f d~x�������! 0; "! 0;and so the ondition ( ) holds.Thus all the onditions of Theorem 2.4 hold. Hen e �"u" ! u0 weakly in H.Therefore, by the embedding theorem, �"u" ! u0 strongly in L2( ): Finally, wehave kA"R"f �R"A0fk2H" = ku"k2L2([�"ijk) + k�"u" � u0k2L2( "):In view of Lemma 2.2, (i�iii) and (2.2.1) ku"k2L2([�"ijk) ! 0; " ! 0. Thus C3 isproved.And �nally, we verify the ful�lment of the ondition C4. Let f " 2 H" besu h that sup kf "kH" < 1. Let u" = A"f ". In view of (2.2.1), �"u" is weakly ompa t in H1( ) and so there exists the subsequen e "0 and w 2 H1( ) su hthat �"u" ! w strongly in L2( ): This and Lemma 2.2 imply C4.Theorem 2.3 and therefore Theorems 2.1 and 2.2 are proved.2.3. ExampleWe onsider an example of the manifoldM " and al ulate the fun tionW (x; y)expli itly.Let ontain the subset K, whi h is a �at square with the side equal to l.Let " > 0 and let n" = �1"�1=3.We divide K into the squares K"�, � = 1 : : : n"2 with the side length l=n".Within ea h squareK"� we ut out n"4 holesD"i with the radius d" = exp ��n"6=l6�and su h that their enters form a periodi latti e with the period ln"3 . It is learthat j lnd"j�1 = l4(r"i )2. The total number of D"i is equal to N(") = n"6.For ea h hole D"i we denote the number of square K"� ontaining this hole by�(i). Sin e the number of holes within the square K"� is equal to n"2 � n"2, we an assign to ea h hole D"i � K"� the pair (�(i); (i)), �(i); (i) 2 f1 : : : n"2g. So,ea h hole D"i is hara terized by (�(i); �(i); (i)).If �(i) = �(j) = (k); �(j) = �(k) = (i); �(k) = �(i) = (j) and only inthis ase, then we join the boundaries of the holes D"i ;D"k;D"j by means of themanifold �"ijk = G"i [G"j [G"k [B"ijk.Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 165 A. KhrabustovskyiWe set q"i = [q � j lnd"j � d"℄2; q > 0and hoose su h b" that (iii) is valid andln�tan �"2 � = lnd" ! 0; "! 0; �" = ar sin d"b"(for example d" � Cb").In order to al ulate W (x; y) we �nd a suitable approximation for the solutionv"ijk to (2.1.1). Namely, we represent it in the form v"ijk = bv"ijk + w"ijk, where bv"ijk(~x) = 8>>>>>>>>>>><>>>>>>>>>>>: a"i ln j~x� x"i j+ b"i ; ~x 2 R"i ;A"i z +B"i ; ~x = (zi; 'i) 2 G"i ;a"j ln j~x� x"jj+ b"j; ~x 2 R"j ;A"jz +B"j ; ~x = (zj ; 'j) 2 G"j;a"k ln j~x� x"kj+ b"k; ~x 2 R"k;A"kz +B"k; ~x = (zk; 'k) 2 G"k;C"ijk; ~x 2 B"ijk:We hose the onstants a"i ; b"i : : : A"k; B"k; C"ijk su h that:1) bv"ijk is a harmoni fun tion in G"i [R"i , G"j [R"j , G"k [R"k,2) bv"ijk = 1 on bC"i , bv"ijk = 0 on bC"j [ bC"k,3) bv"ijkjS"i = bv"ijkjS"j = bv"ijkjS"k =M , where M is a onstant,4) �bv"ijk�~n jS"i + �bv"ijk�~n jS"j + �bv"ijk�~n jS"k = 0, ~n is the outward (or inward) normal?.As a result, we obtaina"i = 2j ln d"j�13(1 + q) (1 + o(1)) = �2a"j = �2a"k;A"i = �a"ipq"id" ; A"j = �a"jpq"jd" ; A"k = �a"kpq"kd" ;b"i = 1� a"i ln(r"i =2); b"j = �a"j ln(r"j=2); b"k = �a"k ln(r"k=2);B"i = a"i lnd" + b"i ; B"j = a"j lnd" + b"j ; B"k = a"k lnd" + b"k:?Here the normal derivatives are taken in an arbitrary point of S"i . It is easy to see that the onditions 1)�3) guarantee that �bv"ijk�~n are onstant on S"i , as on S"j and S"k). The ondition 4)determines the onstant M from the ondition 3). 166 Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 On the Spe trum of Riemannian Manifolds with Atta hed Thin HandlesDire t al ulations show thatkr"bv"ijkk2L2(b�"ijk) = 4�3(1 + q) j lnd"j�1(1 + �o(1)) ! 0; "! 0; (2.3.1)(r"bv"ijk;r"bv"jik)L2(b�"ijk) = � 2�3(1 + q) j ln d"j�1(1 + �o(1)); "! 0: (2.3.2)Now we prove that w"ijk gives vanishingly small ontribution toW "ijk. Sin e v"ijkminimizes the fun tional I"[v℄ = kr"vk20" in the lass of fun tions from H1(b�"ijk)equal to 1 on bS"i and equal to 0 on bS"j [ bS"k, then kr"v"ijkk2L2(M") � kr"bv"ijkk2L2(M")and therefore kr"w"ijkk2L2(M") � 2 ��(r"w"ijk;r"bv"ijk)L2(M")�� :Using the properties of the fun tion bv"ijk, we obtainkr"w"ijkk20" � 4�d" ����� A"ipq"i w"i + A"jpq"j w"j + A"ipq"j w"k����� = 4�ja"iw"i + a"jw"j + a"kw"kj= 4�ja"j(w"j � w"i ) + a"k(w"k � w"i )j; (2.3.3)where w"i ; w"j ; w"k are the average values of w"ijk in S"i ; S"j ; S"k, respe tively.The following estimate is validjw"i � w"j j+ jw"i � w"kj � Crj ln tan �"2 j � kr"v"ijkk0"� Crj ln tan �"2 j � kr"bv"ijkk0" � Crj ln tan �"2 j=j ln d"j !"!0 0: (2.3.4)The proof is similar to that of (1.2.20).It follows from (2.3.3), (2.3.4) and from the form of the oe� ients a"i ; a"j ; a"kthat kr"w"k20" = �o(j lnd"j�1): (2.3.5)We have W "ijk = ��(bv"ijk; bv"jik)L2(b�"ijk) + (bv"ijk; w"jik)L2(b�"ijk)+ (w"ijk; bv"jik)L2(b�"ijk) + (w"ijk; w"jik)L2(b�"ijk)�: (2.3.6)It follows from (2.3.1), (2.3.2), (2.3.5), (2.3.6) thatW "ijk � �(bv"ijk; bv"jik)L2(b�"ijk) � 2�3(1 + q) j lnd"j�1:Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 167 A. KhrabustovskyiLet w(x; y) 2 C1( ). ThenhW "; wi = Xi;j;k:Aijk=1 2�3(1 + q)w(x"i ; x"j)j ln d"j�1:By the onstru tion of the manifold M ", for any three squares K"�;K"� ;K" thereare only three holes D"i�� ;D"j�� ;D"k�� su h thatD"i�� � K"�; D"j�� � K"�; D"k�� � K" ; Ai�� j�� k�� = 1:Therefore the sum above an be easily rewritten as follows:hW "; wi = 2�3(1 + q) n2(")X�;�; =1w(xi�� ; xj�� )j ln d"j�1= 2�3(1 + q) n2(")X�;�; =1w(xi�� ; xj�� )jK"�j� jK"� j� jK" j !"!0 ZK ZK ZK 2�3(1 + q)w(x; y)dxdydz:Thus W (x; y) = �K(x)�K(y)ZK 2�3(1 + q)dz = 2�l23(1 + q)�K(x)�K(y);where �K is the hara teristi fun tion of K.A knowledgements. The author is grateful to Prof. E.Ya. Khruslov forsetting the problem and his attention paid to this work. The work is partiallysupported by the Grant for Young S ientists of National A ademy of S ien esof Ukraine (No. 20207). Referen es[1℄ C. Anne, Spe tre du Lapla ien et E rasement d'Anses. � Ann. S i. E ole. NormSup. (4) 20 (1987), 271�280.[2℄ C. Anne and B. Colbois, Spe tre du Lapla ien Agissant sur les p-FormesDi�e'rentielles et e'Crasement d'Anses. � Math. Ann. 303(3) (1995), 545�573.[3℄ L. Boutet de Monvel and E.Ya. Khruslov, Averaging of the Di�usion Equation onRiemannian Manifolds of Complex Mi rostru ture. � Tr. Mos ow Mat. Obsh h. 58(1997), 137�161. (Russian) (Transl. Mos ow Math. So ., 1997.)[4℄ I. Chavel and E. Feldman, Spe tra of Manifolds with Small Handle. � Comment.Math. Helv. 56(1) (1981), 83�102.168 Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 On the Spe trum of Riemannian Manifolds with Atta hed Thin Handles[5℄ G. Dal Maso, R. Gulliver, and U. Mos o, Asymptoti Spe trum of Manifolds ofIn reasing Topologi al Type. Prepr. S.I.S.S.A. 78/2001/M, Trieste.[6℄ P. Exner P and O. Post, Convergen e of Spe tra of Graph-Like Thin Manifolds. �J. Geom. Phys. 54(1) (2005), 77�115.[7℄ G. Iosif 'yan, O. Ole'inik, and A. Shamaev, On the Limit Behavior of the Spe trumof a Sequen e of Operators De�ned in Di�erent Hilbert Spa es. � Usp. Mat. Nauk44(3) (1989), 157�158. (Russian) (Transl. Russian Math. Surveys 44(3) (1989),195�196.)[8℄ A. Khrabustovskyi, Asymptoti Behavior of Spe trum of Lapla e�Beltrami Operatoron Riemannian Manifolds with Complex Mi rostru ture. � Appl. Analysis 87(12)(2008), 1357�1372.[9℄ V.A. Mar henko and E.Ya. Khruslov, Homogenization of Partial Di�erential Equa-tions. Progress in Mathemati al Physi s. 46. Birkhauser Boston In ., Boston, 2006. Journal of Mathemati al Physi s, Analysis, Geometry, 2009, vol. 5, No. 2 169