A q-Analog of the Hua Equations
A necessary condition is established for a function to be in the image of a quantum Poisson integral operator associated to the Shilov boundary of the quantum matrix ball. A quantum analogue of the Hua equations is introduced.
Saved in:
Date: | 2009 |
---|---|
Main Authors: | Bershtein, O., Sinel’shchikov, S. |
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2009
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/106542 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | A q-Analog of the Hua Equations / O. Bershtein, S. Sinel’shchikov // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 3. — С. 219-244. — Бібліогр.: 45 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Generic Symmetries of the Laurent Extension of Quantum Plane
by: Sinel'shchikov, S.
Published: (2015) -
Classification of Uq(sl₂)-Module Algebra Structures on the Quantum Plane
by: Duplij, S., et al.
Published: (2010) -
On the convergence of the Padé approximants of q-analogs of exponent
by: N. M. Havryliuk, et al.
Published: (2015) -
q-Analog of Gelfand-Graev Basis for the Noncompact Quantum Algebra Uq(u(n,1))
by: Asherova, R.M., et al.
Published: (2010) -
On a new analog of the biparabolic evolution equation with conformable fractional derivatives
by: V. A. Bogaenko, et al.
Published: (2020)