A new proof of Frank-Weissenborn inequality

A new proof of the Frank-Weissenborn inequality is given. This proof uses the theory of algebroid functions.

Збережено в:
Бібліографічні деталі
Дата:2005
Автор: Gol`dberg, A.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2005
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106565
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A new proof of Frank-Weissenborn inequality / A. Gol`dberg // Журнал математической физики, анализа, геометрии. — 2005. — Т. 1, № 1. — С. 71-73. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-106565
record_format dspace
fulltext Journal of Mathematical Physics, Analysis, Geometry 2005, v. 1, No. 1, p. 71�73 A new proof of Frank�Weissenborn inequality Anatoly Gol'dberg Department of Mathematics & Statistics, Bar-Ilan University Ramat-Gan, 52900, Israel E-mail:misgo@bezeqint.net Received January 24, 2005 A new proof of the Frank�Weissenborn inequality is given. This proof uses the theory of algebroid functions. Let f be a transcendental meromorphic in C function and all the poles of f be simple. We use the standard notation of the value distribution theory [1]. We also denote by Q(r; f) any quantity, satisfying Q(r; f) = o(T (r; f)) as r ! 1 possibly outside some system of intervals that have a �nite common length in the case of a function f of in�nite order. In [2] the following remarkable inequality was proved: Lemma 1. Let � > 0: Then N(r; f) � (1 + �)N(r; 1=f 00) +Q(r; f): (1) We give a new proof of the inequality (1). This proof uses elements of the theory of algebroid functions. We prove by the way that (1) holds with � = 0: Denote Af (z) := � f 000 f 00 �2 � 3 4 f (4) f 00 : Let z0 be a simple pole of f , i.e., f(z) = c(z � z0) �1 + h(z); where h is an analytic function at z0: One can suppose, without loss of generality, that c = 1: We have f (n)(z) = (�1)nn! (z � z0)n+1 + h(n)(z); n = 1; 2; 3; : : : : Mathematics Subject Classi�cation 2000: 30D35. Key words: Frank�Weissenborn inequality, meromorphic functions. c Anatoly Gol'dberg, 2005 Anatoly Gol'dberg Further f 000(z) f 00(z) = �6(z � z0) �4 + h000 2(z � z0)�3 + h00 = � 3 z � z0 (1 +O((z � z0) 3)) = � 3 z � z0 +O((z � z0) 2); f (4)(z) f 00(z) = 24(z � z0) �5 + h(4) 2(z � z0)�3 + h00 = 12 (z � z0)2 (1 +O((z � z0) 3)) = 12 (z � z0)2 +O(z � z0); Af (z) = O(z � z0): Hence Af (z0) = 0 and n(r; 1=Af ) � n(r; f): (2) Further n(r;Af ) � n(r; 1=f 00): (3) Now we will exploit the standart notions of the algebroid functions theory and some its basic results [3, Ch. 1, �7; Ch. 3, �7]; [4, 5]. Let us consider the algebroid function Bf (z) := q Af (z): Since all the poles of Af are of the second order, then all the poles of Bf (z) are of the �rst order. Recall ([4, �1]) that Bf (z) can be represented as Bf (z) = (z � z0) �=2g((z � z0) 1=2) in some heigborhood of its zero z0, where g(z) is holomorphic at z = 0 and � 2 N is the order of z0. Thus from (2) we have n(r; 1=Bf ) � n(r; f) and hence N(r; 1=Bf ) � N(r; f): (4) Inequality (3) implies n(r;Bf ) � n(r; 1=f 00) and hence N(r;Bf ) � N(r; 1=f 00): (5) By Logarithmic Derivative Lemma [5, 6] m(r;Bf ) = Q(r; f): By the First Main Theorem [3, 4] T (r;Bf ) = m(r;Bf ) +N(r;Bf ) = Q(r; f) +N(r;Bf ) 72 Journal of Mathematical Physics, Analysis, Geometry , 2005, v. 1, No. 1 A new proof of Frank�Weissenborn inequality T (r;Bf ) � Q(r; f) +N(r; 1=Bf ); and thus N(r;Bf ) � N(r; 1=Bf ) +Q(r; f): (6) From (4)�(6) we obtain N(r; f) � N(r; 1=f 00) +Q(r; f); i.e., (1) with � = 0: I am grateful to Prof. I.V. Ostrovskii for remarks that were exploited in the �nal variant of this paper. References [1] A.A. Gol'dberg and I.V. Ostrovskii, Distribution of values of meromorphic functions (Raspredelenie znachenij meromorfnyh funkcij). Nauka, Moscow, 1970. (Russian) [2] G. Frank and G. Weissenborn, Rational de�cient functions of meromorphic func- tions. � Bull. London Math. Soc. 18 (1986), 29�33. [3] V.P. Petrenko, Entire Curves (Tselyje krivyje). Vyshcha Shkola, Kharkov, 1984. (Russian) [4] E. Ullrich, �Uber den Ein�uss der Verzweigtheit einer Algebroide auf ihre Wertverteilung. � J. Reine Angew. Math. 167 (1932), 198�220. [5] G. Valiron, Sur la deriv�ee des functions algebroides. � Bull. Soc. Math. France 59 (1931), 17�39. [6] V.D. Mohon'ko, Logarithmic Derivative Lemma. � Teor. Funktsii, Funktsion. Anal. i ikh Prilozhen. 20 (1974), 112�122. (Russian) Journal of Mathematical Physics, Analysis, Geometry , 2005, v. 1, No. 1 73
spelling irk-123456789-1065652016-10-01T03:01:43Z A new proof of Frank-Weissenborn inequality Gol`dberg, A. A new proof of the Frank-Weissenborn inequality is given. This proof uses the theory of algebroid functions. 2005 Article A new proof of Frank-Weissenborn inequality / A. Gol`dberg // Журнал математической физики, анализа, геометрии. — 2005. — Т. 1, № 1. — С. 71-73. — Бібліогр.: 6 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106565 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A new proof of the Frank-Weissenborn inequality is given. This proof uses the theory of algebroid functions.
format Article
author Gol`dberg, A.
spellingShingle Gol`dberg, A.
A new proof of Frank-Weissenborn inequality
Журнал математической физики, анализа, геометрии
author_facet Gol`dberg, A.
author_sort Gol`dberg, A.
title A new proof of Frank-Weissenborn inequality
title_short A new proof of Frank-Weissenborn inequality
title_full A new proof of Frank-Weissenborn inequality
title_fullStr A new proof of Frank-Weissenborn inequality
title_full_unstemmed A new proof of Frank-Weissenborn inequality
title_sort new proof of frank-weissenborn inequality
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/106565
citation_txt A new proof of Frank-Weissenborn inequality / A. Gol`dberg // Журнал математической физики, анализа, геометрии. — 2005. — Т. 1, № 1. — С. 71-73. — Бібліогр.: 6 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT goldberga anewproofoffrankweissenborninequality
AT goldberga newproofoffrankweissenborninequality
first_indexed 2025-07-07T18:38:52Z
last_indexed 2025-07-07T18:38:52Z
_version_ 1837014485301198848