On a Class of Verblunsky Parameters that Corresponds to Guseinov's Class of Jacobi Parameters

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Golinskii, L., Kheifets, A., Peherstorfer, F., Yuditskii, P.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2010
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106645
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On a Class of Verblunsky Parameters that Corresponds to Guseinov's Class of Jacobi Parameters / L. Golinskii, A. Kheifets, F. Peherstorfer, P. Yuditskii // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 3. — С. 277-290. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-106645
record_format dspace
spelling irk-123456789-1066452016-10-02T03:02:30Z On a Class of Verblunsky Parameters that Corresponds to Guseinov's Class of Jacobi Parameters Golinskii, L. Kheifets, A. Peherstorfer, F. Yuditskii, P. 2010 Article On a Class of Verblunsky Parameters that Corresponds to Guseinov's Class of Jacobi Parameters / L. Golinskii, A. Kheifets, F. Peherstorfer, P. Yuditskii // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 3. — С. 277-290. — Бібліогр.: 12 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106645 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
format Article
author Golinskii, L.
Kheifets, A.
Peherstorfer, F.
Yuditskii, P.
spellingShingle Golinskii, L.
Kheifets, A.
Peherstorfer, F.
Yuditskii, P.
On a Class of Verblunsky Parameters that Corresponds to Guseinov's Class of Jacobi Parameters
Журнал математической физики, анализа, геометрии
author_facet Golinskii, L.
Kheifets, A.
Peherstorfer, F.
Yuditskii, P.
author_sort Golinskii, L.
title On a Class of Verblunsky Parameters that Corresponds to Guseinov's Class of Jacobi Parameters
title_short On a Class of Verblunsky Parameters that Corresponds to Guseinov's Class of Jacobi Parameters
title_full On a Class of Verblunsky Parameters that Corresponds to Guseinov's Class of Jacobi Parameters
title_fullStr On a Class of Verblunsky Parameters that Corresponds to Guseinov's Class of Jacobi Parameters
title_full_unstemmed On a Class of Verblunsky Parameters that Corresponds to Guseinov's Class of Jacobi Parameters
title_sort on a class of verblunsky parameters that corresponds to guseinov's class of jacobi parameters
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/106645
citation_txt On a Class of Verblunsky Parameters that Corresponds to Guseinov's Class of Jacobi Parameters / L. Golinskii, A. Kheifets, F. Peherstorfer, P. Yuditskii // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 3. — С. 277-290. — Бібліогр.: 12 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT golinskiil onaclassofverblunskyparametersthatcorrespondstoguseinovsclassofjacobiparameters
AT kheifetsa onaclassofverblunskyparametersthatcorrespondstoguseinovsclassofjacobiparameters
AT peherstorferf onaclassofverblunskyparametersthatcorrespondstoguseinovsclassofjacobiparameters
AT yuditskiip onaclassofverblunskyparametersthatcorrespondstoguseinovsclassofjacobiparameters
first_indexed 2025-07-07T18:48:47Z
last_indexed 2025-07-07T18:48:47Z
_version_ 1837015108308434944
fulltext Journal of Mathematical Physics, Analysis, Geometry 2010, v. 6, No. 3, pp. 277–290 On a Class of Verblunsky Parameters that Corresponds to Guseinov’s Class of Jacobi Parameters L. Golinskii Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering 47 Lenin Ave., Kharkiv, 61103, Ukraine E-mail:golinsky@ilt.kharkov.ua A. Kheifets∗ Department of Mathematics University of Massachusetts Lowell, 01854, USA E-mail:Alexander Kheifets@uml.edu F. Peherstorfer ∗∗ and P. Yuditskii∗∗ Institute for Analysis, Johannes Kepler University Linz A-4040 Linz, Austria E-mail:franz.peherstorfer@jk.uni-linz.ac.at petro.yuditskiy@jku.at Received August 7, 2009 The direct and inverse Geronimus relations between Verblunsky parame- ters of measures on the unit circle and Jacobi parameters of their Szegő trans- forms have been used to prove that Guseinov’s class of Jacobi parameters ∞∑ n=0 n(|an−1|+|bn|) < ∞ is in a canonical correspondence with the following class of Verblunsky parameters αn → 0 and ∞∑ n=0 n|αn+2 − αn| < ∞. Key words: Verblunsky coefficients, Szegő transform, direct and inverse Geronimus relations, Jacobi matrices; spectral measure. Mathematics Subject Classification 2000: 47B36 (primary); 42C05 (secondary). ∗The work was partially supported by the University of Massachusetts Lowell Research and Scholarship Grant, project number: H50090000000010. ∗∗The work was partially supported by the Austrian Science Found FWF, project number: P20413–N18. c© L. Golinskii, A. Kheifets, F. Peherstorfer, and P. Yuditskii, 2010 L. Golinskii, A. Kheifets, F. Peherstorfer, and P. Yuditskii 1. Introduction In the late 1950s L. Faddeev [1] developed a scattering theory for the one- dimensional Schrödinder equation −y′′ + q(x)y = λ2y (1.1) under the following assumption on the potential q ∞∫ −∞ (1 + |x|)|q(x)|dx < ∞. (1.2) In 1979 Deift and Trubowitz [2] found a gap in Faddeev’s construction and analyzed completely the case of potentials with a finite second moment ∞∫ −∞ (1 + x2)|q(x)|dx < ∞. (1.3) As it turned out, they were unaware of the book [3] by V.A. Marchenko where he had given a correct proof of Faddeev’s theorem for the class of potentials (1.2). That is why we call (1.2) the Faddeev–Marchenko condition. In the mid 1970s Guseinov [4, 5] suggested a discrete version of the Faddeev– Marchenko theory for Jacobi matrices an−1yn−1 + bnyn + anyn+1 = (λ + 1/λ)yn (1.4) under the condition ∞∑ n=0 n(|an − 1|+ |bn|) < ∞. (1.5) We say that a Jacobi matrix J = J({an}, {bn}) belongs to Guseinov’s class (G) if its parameters satisfy (1.5). In his recent papers [6–8] and PhD thesis [9] E. Ryckman came up with a new class of Jacobi matrices for which a complete spectral description is available. Moreover, this class extends Guseinov’s class (see Prop. 3.3 below). Let us write β = {βn} ∈ `2 s if ‖β‖2 `2s := ∑ n |n|s|βn|2 < ∞. Definition 1.1. A Jacobi matrix is said to be in Ryckman’s class (R), or a, b ∈ (R), if the series ∑ n(a2 n − 1) and ∑ n bn are conditionally summable, and λn := − ∞∑ k=n+1 bk ∈ `2 1, κn := − ∞∑ k=n+1 (a2 k − 1) ∈ `2 1. 278 Journal of Mathematical Physics, Analysis, Geometry, 2010, v. 6, No. 3 On a Class of Verblunsky Parameters Ryckman’s argument is based on two main ingredients. First, he shows that under an appropriate Szegő transform the spectral measures of the class (R) correspond to measures µ on the unit circle that are from the B. Golinskii– Ibragimov (GI) class: ∞∑ n=1 n|αn|2 < ∞, where αn are the Verblunsky parameters of µ. The second step in Ryckman’s argument is the Strong Szegő theorem, which provides a complete spectral cha- racteristic of (GI) class. A problem we address in this note is to find the class of measures on the unit circle that corresponds to Guseinov’s class (1.5) under an appropriate Szegő transform. It turns out that this class is described as follows. Definition 1.2. We say that µ ∈ (K) (or α = {αn} ∈ (K)) if αn → 0 and ∞∑ n=0 n|αn+2 − αn| < ∞. (1.6) (K) is a proper subclass of (GI) class, and it solves the above problem. Ryckman also studies the class of Jacobi matrices with {λn}, {κn} ∈ `2 1 ∩ `1 and shows that the corresponding class of measures on the unit circle satisfies {αn} ∈ `2 1 ∩ `1. It is an open problem to characterize a class of Jacobi matrices which corresponds in this sense to the whole Baxter’s class {αn} ∈ `1. Note that the scattering theory for orthogonal polynomials on the unit circle (CMV matrices in the modern terminology) and for Jacobi matrices was suggested by Geronimo and Case in [10] for Baxter’s class, and in [11], for Guseinov’s class. 2. Classes of Verblunsky Parameters Theorem 2.1 (Szegő). Let µ be a nontrivial probability measure on T with Verblunsky parameters {αn}, |αn| < 1. Then ∞∑ n=0 |αn|2 < ∞ if and only if µ(dt) = w(t)m(dt), m(dt) the normalized Lebesgue measure on T, with log w ∈ L1. Theorem 2.2 (B. Golinskii–Ibragimov’s version of the Strong Szegő theo- rem). Let µ be a nontrivial probability measure on T with the Verblunsky para- meters {αn}, |αn| < 1. The following assertions are equivalent: Journal of Mathematical Physics, Analysis, Geometry, 2010, v. 6, No. 3 279 L. Golinskii, A. Kheifets, F. Peherstorfer, and P. Yuditskii 1. α ∈ `2 1, i.e., ∞∑ n=0 n|αn|2 < ∞. 2. µ(dt) = w(t)m(dt) with l̂og w ∈ `2 1. Here f̂ is a sequence of Fourier coeffi- cients of a function f . Proposition 2.3. α ∈ (K) =⇒ α ∈ `2 1. P r o o f. The claim will be proved separately for even and odd n’s. So we want to show that cn → 0 and ∞∑ n=1 n|cn+1 − cn| < ∞ =⇒ ∞∑ n=1 n|cn|2 < ∞. We have that ∞∑ n=1 n|cn|2 = ∞∑ n=1 n| ∞∑ k=n (ck+1 − ck)|2 ≤ ∞∑ n=1 n( ∞∑ k=n |ck+1 − ck|)2 = ∞∑ n=1 n( ∞∑ k=n |ck+1 − ck|)( ∞∑ l=n |cl+1 − cl|) = ∞∑ n=1 ∞∑ k=n ∞∑ l=n n|ck+1 − ck||cl+1 − cl| ≤ ∞∑ n=1 ∞∑ k=n ∞∑ l=n l|ck+1 − ck||cl+1 − cl| ≤ ∞∑ n=1 ∞∑ k=n ∞∑ l=1 l|ck+1 − ck||cl+1 − cl| = ∞∑ k=1 k∑ n=1 ∞∑ l=1 l|ck+1 − ck||cl+1 − cl| = ∞∑ k=1 k ∞∑ l=1 l|ck+1 − ck||cl+1 − cl| =( ∞∑ k=1 k|ck+1 − ck|)2. It is easy to see that also α ∈ (K) =⇒ α ∈ `1. Indeed, |αn| = | ∞∑ k=n (αk − αk+2)|, and so ∞∑ n=0 |αn| ≤ ∞∑ n=0 n|αn − αn+2|. Hence (K) ⊂ `2 1 ∩ `1. Obviously, the inclusion is proper. 280 Journal of Mathematical Physics, Analysis, Geometry, 2010, v. 6, No. 3 On a Class of Verblunsky Parameters 3. Classes of Jacobi Parameters Definition 3.1. We say that a, b ∈ (S) if ∞∑ n=0 (|an − 1|2 + |bn|2) < ∞. We say that a, b ∈ (R) if ∞∑ n=0 n ∣∣∣∣∣ ∞∑ k=n (ak − 1) ∣∣∣∣∣ 2 < ∞, ∞∑ n=0 n ∣∣∣∣∣ ∞∑ k=n bk ∣∣∣∣∣ 2 < ∞. We say that a, b ∈ (G) if ∞∑ n=0 n(|an − 1|+ |bn|) < ∞. Proposition 3.2. In Definition 3.1 one can everywhere equivalently replace an − 1 with a2 n − 1. P r o o f. It is obvious for (S) and (G), we prove it for (R). Assume that ∞∑ n=0 n ∣∣∣∣∣ ∞∑ k=n (ak − 1) ∣∣∣∣∣ 2 < ∞. Define cn as cn = ∞∑ k=n (ak − 1). (3.1) By assumption cn ∈ `2 1. Then an − 1 = cn − cn+1 ∈ `2 1. Define dn as dn = ∞∑ k=n (ak − 1)2. Then, by Lemma 2.4 of [7], dn ∈ `2 1. Therefore, fn = ∞∑ k=n (a2 k − 1) = dn + 2cn ∈ `2 1. In other words, ∞∑ n=0 n ∣∣∣∣∣ ∞∑ k=n (a2 k − 1) ∣∣∣∣∣ 2 < ∞. Journal of Mathematical Physics, Analysis, Geometry, 2010, v. 6, No. 3 281 L. Golinskii, A. Kheifets, F. Peherstorfer, and P. Yuditskii Conversely, assume that ∞∑ n=0 n| ∞∑ k=n (a2 k − 1)|2 < ∞. Define fn as fn = ∞∑ k=n (a2 k − 1). By assumption fn ∈ `2 1. Then a2 n − 1 = fn − fn+1 ∈ `2 1. By Lemma 2.4 of [7], ∞∑ k=n (a2 k − 1)2 ∈ `2 1. Since dn := ∞∑ k=n (ak − 1)2 < ∞∑ k=n (ak − 1)2(ak + 1)2 = ∞∑ k=n (a2 k − 1)2 ∈ `2 1, we get that dn ∈ `2 1. Therefore, cn := ∞∑ k=n (ak − 1) = 1 2 (fn − dn) ∈ `2 1 In other words, ∞∑ n=0 n ∣∣∣∣∣ ∞∑ k=n (ak − 1) ∣∣∣∣∣ 2 < ∞. Proposition 3.3. a, b ∈ (G) =⇒ a, b ∈ (R) =⇒ a, b ∈ (S). P r o o f. The proof of the first implication is similar to the proof of Proposition 2.3 above. To prove the second implication take cn (3.1). By (R) cn ∈ `2 1; therefore, an − 1 = cn − cn+1 ∈ `2 1. Then an − 1 ∈ `2, which means (S). The proof for bn is similar. 282 Journal of Mathematical Physics, Analysis, Geometry, 2010, v. 6, No. 3 On a Class of Verblunsky Parameters 4. Direct Geronimus Relations We assume that w(t̄) = w(t), |t| = 1, or equivalently, all Verblunsky parameters αn are real numbers, and we assume that w(t)m(dt) = w(t) dt 2πit is a probability measure on T. The image measure (on [−2, 2]) of this measure under the mapping x = t + 1 t is w(t(x)) dx π √ 4− x2 . (4.1) Therefore, it is also a probability measure on [−2, 2]. For γ1, γ2 = ±1 we define four measures on [−2, 2] ρ(x)dx =c(γ1, γ2, w) w(t(x)) √ (2− x)γ1 √ (2 + x)γ2 dx =c(γ1, γ2, w) w(t(x)) √ (2− x)γ1+1 √ (2 + x)γ2+1 dx√ 4− x2 , where the constants c(γ1, γ2, w) are chosen such that the measures are probability measures. The later is possible since the measures are finite. For instance, if γ1 = γ2 = −1 and c = 1 π , we get the above image measure (4.1). These four transforms are called the Szegő transforms. The following equalities are known as the direct Geronimus relations (cf., [12, Ths. 13.1.7 and 13.2.1]). Proposition 4.1 (Direct Geronimus Relations). Jacobi parameters an and bn of the measure ρ(x)dx are expressed in terms of the Verblunsky parameters of the measure w(t)m(dt) as follows: In the case γ1 = γ2 = −1 they are [a(e) n+1] 2 =(1− α2n−1)(1− α2 2n)(1 + α2n+1), b (e) n+1 =(1− α2n−1)α2n − (1 + α2n−1)α2n−2. In the case γ1 = γ2 = 1 they are [a(o) n+1] 2 =(1 + α2n+1)(1− α2 2n+2)(1− α2n+3), b (o) n+1 =− (1 + α2n+1)α2n+2 + (1− α2n+1)α2n. Journal of Mathematical Physics, Analysis, Geometry, 2010, v. 6, No. 3 283 L. Golinskii, A. Kheifets, F. Peherstorfer, and P. Yuditskii In the case γ1 = −γ2 = ±1 they are [a(±) n+1] 2 =(1± α2n)(1− α2 2n+1)(1∓ α2n+2), b (±) n+1 =∓ (1± α2n)α2n+1 −±(1∓ α2n)α2n−1. Here n = 0, 1, . . ., α−1 = −1. Proposition 4.2. α ∈ `2 1 =⇒ a, b ∈ (R), α ∈ (K) =⇒ a, b ∈ (G). P r o o f. We consider case (e), other ones are similar. By Proposition 4.1 [a(e) n+1] 2 =(1− α2n−1)(1− α2 2n)(1 + α2n+1) = 1− α2n−1 + α2n+1 −α2 2n − α2n−1α2n+1 + α2n−1α 2 2n − α2n+1α 2 2n + α2n−1α 2 2nα2n+1. Let αn ∈ `2 1. Consider ∞∑ k=n (a2 k+1 − 1) = −α2n−1 + ∞∑ k=n . . . All terms in the sum on the right are either ”quadratic” in α or dominated by terms ”quadratic” in α. By Lemma 2.4 of [7], the sequence on the right is in `2 1. Therefore, ∞∑ k=n (a2 k+1 − 1) ∈ `2 1, meaning that an ∈ (R). Let αn ∈ (K), then |a2 n+1 − 1| ≤| − α2n−1 + α2n+1| +|α2n|2 + |α2n−1α2n+1|+ |α2n−1 − α2n+1||α2n|2 + |α2n−1α 2 2nα2n+1| ≤C(| − α2n−1 + α2n+1|+ |α2n|2 + |α2n−1|2 + |α2n+1|2). By Proposition 2.3 α ∈ (K) =⇒ α ∈ `2 1. Therefore, an ∈ (G). The proofs for bn are similar. 284 Journal of Mathematical Physics, Analysis, Geometry, 2010, v. 6, No. 3 On a Class of Verblunsky Parameters 5. Inverse Geronimus Relations Since there are four direct Szegő transforms (Geronimus relations), there are, respectively, four inverse Szegő transforms (inverse Geronimus relations). Proposition 5.1 (Inverse Geronimus Relations). Let the spectrum of J σ(J) ⊆ [−2, 2]. Let Pn and Qn be the monic orthogonal polynomials of the first and the second kind, respectively, for J with the parameters an and bn. We define Fn(±2) as follows: • for the case (e) Rn(−2) = Pn(−2), Rn(2) = Pn(2); • for the case (o) Rn(−2) = Pn(−2) + Qn(−2) m(−2) , Rn(2) = Pn(2) + Qn(2) m(2) ; • for the case (+) Rn(−2) = Pn(−2), Rn(2) = Pn(2) + Qn(2) m(2) ; • for the case (−) Rn(−2) = Pn(−2) + Qn(−2) m(−2) , Rn(2) = Pn(2). We define An = −Rn+1(−2) Rn(−2) , Bn = Rn+1(2) Rn(2) . Then αn for the inverse Geronimus relations are computed as follows: • for the case (e) α2n = An −Bn An + Bn , α2n−1 = 1− An + Bn 2 ; • for the case (o) −α2n+2 = An −Bn An + Bn , −α2n+1 = 1− An + Bn 2 ; Journal of Mathematical Physics, Analysis, Geometry, 2010, v. 6, No. 3 285 L. Golinskii, A. Kheifets, F. Peherstorfer, and P. Yuditskii • for the case (+) −α2n+1 = An −Bn An + Bn , −α2n = 1− An + Bn 2 ; • for the case (−) α2n+1 = An −Bn An + Bn , α2n = 1− An + Bn 2 . We define the “right” inverse Szegő transform by following Ryckman. Definition 5.2. Let m(z) be the m-function of a Jacobi matrix J : m(z) = 2∫ −2 ρ(x) dx x− z . The “right” inverse Szegő transform for the J is • (e) if both m(−2) and m(2) are infinite, • (o) if both m(−2) and m(2) are finite, • (+) if m(−2) is infinite and m(2) is finite, • (−) if m(−2) is finite and m(2) is infinite. R e m a r k 5.3. In what follows we will use the function Fn(z) := Pn(z) + Qn(z) m(z) . In general, Rn(±2) 6= Fn(±2). (5.1) However, for the “right” inverse Szegő transform Rn(±2) = Fn(±2). Theorem 5.4. Let a, b be Jacobi parameters such that the corresponding Jacobi matrix does not have a discrete spectrum, then a, b ∈ (R) =⇒ α ∈ `2 1, a, b ∈ (G) =⇒ α ∈ (K), where α are defined by the “right” inverse Szegő transform. 286 Journal of Mathematical Physics, Analysis, Geometry, 2010, v. 6, No. 3 On a Class of Verblunsky Parameters R e m a r k 5.5. The first implication was proved by E. Ryckman in [7, 8] (Cor. 5.8 below), the second is a result of this note. As it was shown in [5] for the class (G) and in [7], for the class (R), a Jacobi matrix of the classes may have at most finitely many eigenvalues outside [−2, 2]. To apply the inverse Szegő transform we need to assume that there is no discrete spectrum. R e m a r k 5.6. The following example from B. Simon’s book [12] (Example 13.1.3 Revisited on page 876) shows that the assertion of Theorem 5.4 may fail if one chooses an inverse Szegő transform, which is not the “right” one. Namely, let an = 1, bn = 0 for n ≥ 1. Then the spectral measure and m-function are ρ(dx) = √ 4− x2 2π χ[−2,2] dx, m(z) = √ z2 − 4− z 2 . Therefore, both m(±2) are finite. In this case the “right” inverse Szegő transform is (o), and the corresponding αn = 0 is in (K). For this example (e) is not the “right” inverse Szegő transform, the corre- sponding sequence of Verblunsky parameters α2n = 0, α2n−1 = −(n + 1)−1, n ≥ 0, is not in `2 1. The key tool in proving Theorem 5.4 is the following asymptotics of the so-called small solution of the Jacobi equation. Theorem 5.7 (E. Ryckman [7, 8]). Let Fn(z) = Pn(z) + Qn(z) m(z) , where Pn and Qn are as above. In other words, Fn(z) is a solution of the equation Fk+1(z) + (bk+1 − z)Fk(z) + a2 kFk−1(z) = 0 (5.2) with the initial conditions F−1(z) = − 1 m(z) , F0(z) = 1. Let a, b ∈ (R), then Fk(±2) Fk−1(±2) = ±1 + εk(±2), εk(±2) ∈ `2 1. Corollary 5.8 (E. Ryckman [7, 8]). Let a, b ∈ (R), then αn ∈ `2 1, where αn are defined by the “right” inverse Szegő transform. Journal of Mathematical Physics, Analysis, Geometry, 2010, v. 6, No. 3 287 L. Golinskii, A. Kheifets, F. Peherstorfer, and P. Yuditskii P r o o f. Since we use the “right” inverse Szegő transform, (5.1) holds and we have, by Theorem 5.7, that An = −Rn+1(−2) Rn(−2) = −Fn+1(−2) Fn(−2) = 1 + `2 1 and Bn = Rn+1(2) Rn(2) = Fn+1(2) Fn(2) = 1 + `2 1. Hence, An −Bn and 1 − 1 2(An + Bn) are in `2 1. By the inverse Geronimus relations we get that αn ∈ `2 1, (which is verified separately for even and odd indices). We will prove the second assertion in Theorem 5.4 as a corollary of the next proposition. Proposition 5.9. Let a, b ∈ (G), then Fk(±2) Fk−1(±2) = ±1 + εk(±2), (5.3) where ∞∑ k=0 k|εk(±2)− εk+1(±2)| < ∞. P r o o f. We show it for z = 2; for z = −2 the proof is analogous. We use again equation (5.2). From there we have Fk+1(z) Fk(z) + (bk+1 − z) + a2 k Fk−1(z) Fk(z) = 0. (5.4) We substitute (5.3) into (5.4) to get (1 + εk+1) + (bk+1 − 2) + a2 k 1 1 + εk = 0. Transform it (1 + εk+1) + (bk+1 − 2) + a2 k ( 1− εk + ε2k 1 + εk ) = 0, (1 + εk+1) + (bk+1 − 2) + ( 1− εk + ε2k 1 + εk ) + (a2 k − 1) ( 1− εk + ε2k 1 + εk ) = 0. Since εk → 0, we get from here that |εk+1 − εk| ≤ C(|bk+1|+ |εk|2 + |a2 k − 1|). 288 Journal of Mathematical Physics, Analysis, Geometry, 2010, v. 6, No. 3 On a Class of Verblunsky Parameters By assumption, a, b ∈ (G), then, by Proposition 3.3, a, b ∈ (R). Therefore, by Theorem 5.7, εk ∈ `2 1 Hence, we get ∞∑ k=0 k|εk+1 − εk| < ∞. P r o o f (of the second assertion in Theorem 5.4). As in Corollary 5.8 An = −Rn+1(−2) Rn(−2) = −Fn+1(−2) Fn(−2) = −1 + εn+1(−2) and Bn = Rn+1(2) Rn(2) = Fn+1(2) Fn(2) = 1 + εn+1(2). Therefore, An −An−1 = εn+1(−2)− εn(−2), Bn −Bn−1 = εn+1(2)− εn(2). Hence, by Proposition 5.9, ∞∑ n=0 n(|An −An−1|+ |Bn −Bn−1|) < ∞. Consider ∣∣∣∣ An+1 −Bn+1 An+1 + Bn+1 − An −Bn An + Bn ∣∣∣∣ = 2 ∣∣∣∣ An+1Bn −AnBn+1 (An+1 + Bn+1)(An + Bn) ∣∣∣∣ =2 ∣∣∣∣ (An+1 −An)Bn −An(Bn+1 −Bn) (An+1 + Bn+1)(An + Bn) ∣∣∣∣ ≤C(|An+1 −An|+ |Bn+1 −Bn|). Also ∣∣∣∣ ( 1− An + Bn 2 ) − ( 1− An + Bn 2 )∣∣∣∣ ≤ C(|An+1 −An|+ |Bn+1 −Bn|). Hence, by Inverse Geronimus relations we get that αn ∈ (K), (which is verified separately for even and odd indices). Journal of Mathematical Physics, Analysis, Geometry, 2010, v. 6, No. 3 289 L. Golinskii, A. Kheifets, F. Peherstorfer, and P. Yuditskii References [1] L.D Faddeev, On the Relation Between S-Matrix and Potential for the One- Dimensional Schrödinger Operator. — Dokl. Akad. Nauk SSSR 121 (1958). (Rus- sian) [2] P. Deift and E. Trubowitz, Inverse Scattering on the Line. — Comm. Pure Appl. Math. 32 (1979), No. 2, 121–251. [3] V.A. Marchenko, Operatory Shturma-Liuvillya i Ikh Prilozheniya. (Russian) [Sturm–Liouville Operators and Their Applications] Izd-vo Naukova Dumka, Kiev, 1977. [4] G.Sh. Guseinov, The Determination of an Infinite Jacobi Matrix from the Scattering Data. — Soviet. Math. Dokl. 17 (1976), 596–600. [5] G.Sh. Guseinov, The Scattering Problem for an Infinite Jacobi Matrix. — Izv. Akad. Nauk ArmSSR. Ser. Mat. 12 (1977), No. 5, 365–379. (Russian) [6] E. Ryckman, A Spectral Equivalence for Jacobi Matrices. — J. Approx. Theory 146 (2007), No. 2, 252–266. [7] E. Ryckman, A Strong Szegő Theorem for Jacobi Matrices. — Comm. Math. Phys. 271 (2007), No. 3, 791–820. [8] E. Ryckman, Erratum: A Strong Szegő Theorem for Jacobi Matrices. — Comm. Math. Phys. 275 (2007), No. 2, 581–585. [9] E. Ryckman, Two Spectral Equivalences for Jacobi Matrices. PhD Theses, UCLA, Los Angeles, 2007. [10] J. Geronimo and K. Case, Scattering Theory and Polynomials Orthogonal on the Unit Circle. — J. Math. Phys. 20 (1979), No. 2, 299–310. [11] J. Geronimo and K. Case, Scattering Theory and Polynomials Orthogonal on the Real Line. — Trans. Amer. Math. Soc. 258 (1980), No. 2, 467–494. [12] B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory; Part 2: Spectral Theory. AMS Colloquium Series, AMS, Providence, RI, 2005. 290 Journal of Mathematical Physics, Analysis, Geometry, 2010, v. 6, No. 3