Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
A free boundary problem describing a filtration process in a porous medium is considered. An unknown interface divides the filtration domain into elliptic and parabolic regions. In the parabolic region the governing equation is degenerate. The existence of a smooth solution in the weighted Holder sp...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2011
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/106687 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem / B.V. Bazaliy, S.P. Degtyarev // Журнал математической физики, анализа, геометрии. — 2011. — Т. 7, № 4. — С. 295-332. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-106687 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1066872016-10-03T03:02:19Z Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem Bazaliy, B.V. Degtyarev, S.P. A free boundary problem describing a filtration process in a porous medium is considered. An unknown interface divides the filtration domain into elliptic and parabolic regions. In the parabolic region the governing equation is degenerate. The existence of a smooth solution in the weighted Holder space is proved. 2011 Article Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem / B.V. Bazaliy, S.P. Degtyarev // Журнал математической физики, анализа, геометрии. — 2011. — Т. 7, № 4. — С. 295-332. — Бібліогр.: 13 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106687 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A free boundary problem describing a filtration process in a porous medium is considered. An unknown interface divides the filtration domain into elliptic and parabolic regions. In the parabolic region the governing equation is degenerate. The existence of a smooth solution in the weighted Holder space is proved. |
format |
Article |
author |
Bazaliy, B.V. Degtyarev, S.P. |
spellingShingle |
Bazaliy, B.V. Degtyarev, S.P. Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem Журнал математической физики, анализа, геометрии |
author_facet |
Bazaliy, B.V. Degtyarev, S.P. |
author_sort |
Bazaliy, B.V. |
title |
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem |
title_short |
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem |
title_full |
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem |
title_fullStr |
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem |
title_full_unstemmed |
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem |
title_sort |
classical solution of a degenerate elliptic-parabolic free boundary problem |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/106687 |
citation_txt |
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem / B.V. Bazaliy, S.P. Degtyarev // Журнал математической физики, анализа, геометрии. — 2011. — Т. 7, № 4. — С. 295-332. — Бібліогр.: 13 назв. — англ. |
series |
Журнал математической физики, анализа, геометрии |
work_keys_str_mv |
AT bazaliybv classicalsolutionofadegenerateellipticparabolicfreeboundaryproblem AT degtyarevsp classicalsolutionofadegenerateellipticparabolicfreeboundaryproblem |
first_indexed |
2025-07-07T18:52:03Z |
last_indexed |
2025-07-07T18:52:03Z |
_version_ |
1837015315140050944 |
fulltext |
Journal of Mathematical Physics, Analysis, Geometry
2011, vol. 7, No. 4, pp. 295–332
Classical Solution of a Degenerate Elliptic-Parabolic Free
Boundary Problem
B.V. Bazaliy and S.P. Degtyarev
Institute of Applied Mathematics and Mechanics
National Academy of Sciences of Ukraine
74 R. Luxemburg Str., Donetsk 83114, Ukraine
E-mail: bazaliy@iamm.ac.donetsk.ua
Received March 11, 2011
A free boundary problem describing a filtration process in a porous
medium is considered. An unknown interface divides the filtration domain
into elliptic and parabolic regions. In the parabolic region the governing
equation is degenerate. The existence of a smooth solution in the weighted
Hölder space is proved.
Key words: elliptic and parabolic equations, free boundary problems,
classical solutions, a priori estimates.
Mathematics Subject Classification 2000: 35K65, 35R35.
To the memory of our teacher I.I. Danyljuk
1. Statement of the Problem
In this paper we study the following problem. Let Ω = (0, l) ⊂ R1, ΩT =
Ω× (0, T ),
∂c(u)
∂t
− ∂2u
∂y2
= 0 in ΩT , (1.1)
u(0, t) = g0(t) on [0, T ], (1.2)
u(l, t) = g(t) on [0, T ], (1.3)
c(u(y, 0)) = c(u0(y)) on [0, l]. (1.4)
Here c(η) is a continuous function that is strictly increasing for η > 0 and
c(η) = 0 for η ≤ 0, g0(t), g(t), u0(y) are given functions, g0(t) < 0 and g(t) > 0
∀t ∈ [0, T ].
c© B.V. Bazaliy and S.P. Degtyarev, 2011
B.V. Bazaliy and S.P. Degtyarev
Problem (1.1)–(1.4) arises in the theory of fluid flow through a partially sat-
urated porous media (see [4–8, 10, 11, 13] and the references therein). The level
set {u = 0} splits the domain ΩT in two regions in which equation (1.1) is re-
spectively parabolic and elliptic. It was shown in [11, 7] that under appropriate
conditions on the data there exists a function y = s(t) for which
u(y, t) ≤ 0, c(u(y, t)) = 0 for 0 ≤ y ≤ s(t),
and
u(y, t) > 0, c(u(y, t)) > 0 for s(t) < y ≤ l.
In this problem the function s(t) is the free (unknown) boundary, and our
main concern is to describe the qualitative properties of s(t). It was shown in
[4] that under the conditions c(η) ∈ C(R) ∩ C2+β(R+), c′(+0) = 0, and s(t) < l
the function s(t) is continuously differentiable. Contrary to [4], we will study the
case when
c(η) =
{
η1−α, η ≥ 0, α ∈ (0, 1),
0, η ≤ 0.
(1.5)
This situation leads to the additional singularity in the free boundary problem.
In the region where the medium is saturated, y ∈ (0, s(t)), we have
u(y, t) = −g0(t)
s(t)
y + g0(t). (1.6)
Note that the value s(0) is defined by the initial function u0(y) and it is
assumed that there is the only point s(0) ∈ (0, l) that separates the saturated
and unsaturated regions. In the unsaturated region, y ∈ (s(t), l), the function
u(y, t) satisfies the equation
∂u
∂t
− uα
1− α
∂2u
∂y2
= 0, (1.7)
and since at y = s(t) we have u(s(t), t) = 0, equation (1.7) is a degenerate
parabolic equation.
On the free boundary we have the following conditions:
u(s(t)− 0, t) = u(s(t) + 0, t) = 0, (1.8)
∂u
∂y
(s(t)− 0, t) =
∂u
∂y
(s(t) + 0, t). (1.9)
296 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
We drop the unessential factor 1/(1−α) in equation (1.7) and get the following
free boundary problem for unknown functions u(y, t) and s(t):
∂u
∂t
− uαuyy = 0 in y ∈ (s(t), l), t ∈ (0, T ), (1.10)
u(y, 0) = u0(y), y ∈ (s(0), l), (1.11)
u(l, t) = g(t), t ∈ [0, T ], (1.12)
u(s(t), t) = 0, t ∈ [0, T ], (1.13)
∂u
∂y
(s(t), t) = −g0(t)
s(t)
, t ∈ [0, T ], (1.14)
s(0) = s0 ∈ (0, l). (1.15)
The structure of the paper is as follows. In Sec. 2, we reduce the free bound-
ary problem to a problem in a fixed domain and formulate our main result,
Theorem 2.1. In Sec. 3, we reformulate the nonlinear free boundary problem
as a nonlinear equation in Banach spaces by using Theorem 3.1. In Sec. 4, we
formulate the results relating to the principal model problem for the degenerate
parabolic equation. In Sec. 5, we finish the proof of Theorem 2.1. In Sec. 6, we
study the properties of the model problem and derive the corresponding estimates
by using an integral representation of its solution.
R e m a r k 1.1. The similar approach can be used for a free boundary problem
in the case of the constitutive function of the form
c(η) =
{
η1+α, η ≥ 0, α ∈ (0, 1),
0, η ≤ 0.
2. Reduction of the Free Boundary Problem (1.10)–(1.15) to a
Problem in a Fixed Domain and the Main Result
Let s(t) = s0 + ρ(t) and introduce a spatial variable
x =
y − s0 − ρ(t)
l − s0 − ρ(t)
=
y − s(t)
l − s(t)
(2.1)
such that the segment [s(t), l] is mapped onto [0, 1] and the free boundary y = s(t)
is mapped at x = 0. Denote v(x, t) = u(y(x, t), t). In the new variables we get
the following problem in the fixed domain GT = G× (0, T ), G = [0, 1]:
∂v
∂t
+
x− 1
l − s0 − ρ(t)
∂v
∂x
dρ
dt
− vα vxx
(l − s0 − ρ(t))2
= 0 in GT , (2.2)
v(x, 0) = v0(x), x ∈ [0, 1], (2.3)
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 297
B.V. Bazaliy and S.P. Degtyarev
v(1, t) = g(t), t ∈ [0, T ], (2.4)
v(0, t) = 0, t ∈ [0, T ], (2.5)
∂v
∂x
|x=0 = −g0(t)
l − s0 − ρ(t)
s0 + ρ(t)
, t ∈ [0, T ], (2.6)
ρ(0) = 0. (2.7)
We will use the anisotropic Hölder spaces Cβ,γ(GT ) of smooth functions u(x, t)
with the norm
|u|(β,γ)
GT
= |u|(0)
GT
+ 〈u〉(β)
x,GT
+ 〈u〉(γ)
t,GT
, β, γ ∈ (0, 1),
where
|u|(0)
GT
= max
GT
|u(x, t)|,
〈u〉(β)
x,GT
= sup
(x1,t),(x2,t)∈GT
|u(x1, t)− u(x2, t)|
|x1 − x2|β ,
〈u〉(γ)
t,GT
= sup
(x,t1),(x,t2)∈GT
|u(x, t1)− u(x, t2)|
|t1 − t2|γ ,
and the Hölder space C1+γ([0, T ]) with the norm |u(t)|(1+γ)
[0,T ] = |u|(0)
[0,T ] + |ut|(γ)
[0,T ]
with |ut|(γ)
[0,T ] = |ut|(0)
[0,T ] + 〈ut〉(γ)
t,[0,T ]. We will also use the standard Hölder spaces
Cγ([0, T ]), 0 < γ < 1, with the norm |u|(γ)
[0,T ] = |u|(0)
[0,T ] + 〈u〉(γ)
t,[0,T ].
For our purposes the weighted Hölder space C
2+β,β/q
α (GT ) is appropriate,
where β ∈ (0, 1), q = 2− α, and
‖u‖
C
2+β,β/q
α (GT )
≡ ‖u‖(2+β)
α,GT
= |u|(0)
GT
+ |ux|(0)
GT
+ 〈ux〉
(
β+1−α
q
)
t,GT
+ |xαuxx|(β, β/q)
GT
+ |ut|(β,β/q)
GT
.
We define the space C2+γ
α (G) in the similar way.
We denote by Ċ
2+β,β/q
α (GT ) the subspace of C
2+β,β/q
α (GT ) such that u(x, t) ∈
Ċ
2+β,β/q
α (GT ) if u(x, 0) = ut(x, 0) = 0 and similarly define the spaces Ċβ,γ(GT )
for the functions such that u(x, 0) = 0 and the space Ċγ([0, T ]).
In problem (2.2)–(2.7), we assume that
xαv0xx(x) ∈ C
2γ
q ([0, 1]), v0(x) ∈ C1([0, 1]),
∂v0
∂x
(0) ≥ ν = const > 0, (2.8)
g0(t), g(t) ∈ C1+γ/q([0, T1]), T1 > 0, γ > 2β/q
298 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
and that the consistency conditions of the first order are fulfilled. It means that
v0(0) = 0, v0(1) = g(0),
1
l − s0
∂v0
∂x
(0)
(
dρ
dt
|t=0
)
+
1
(l − s0)2
(vα
0 (x)v0xx(x))|x=0 = 0, (2.9)
∂g
∂t
(0)− 1
(l − s0)2
vα
0 (1)v0xx(1) = 0.
Theorem 2.1. Let the conditions (2.8), (2.9) be fulfilled with q = 2 − α,
0 < 2β/q < γ, α + 2γ/q < 1. Then there exists a unique solution of prob-
lem (2.2)–(2.7) for some 0 < T ≤ T1 such that v(x, t) ∈ C
2+β,β/q
α (GT ), ρ(t) ∈
C1+β/q([0, T ]).
This theorem asserts the existence and uniqueness of the classical solution to
the elliptic-parabolic degenerate problem locally in time.
The similar result is valid if we change the boundary conditions (1.2), (1.3)
for the Neumann or mixed boundary conditions.
3. The Nonlinear Functional Equation
Introduce the notations
ρ(1) ≡ dρ
dt
(0), v(1)(x) ≡ ∂v
∂t
(x, 0).
Then from (2.9)
ρ(1) = −(vα
0 (x)v0xx(x))|x=0
(l − s0)v0x(0)
, (3.1)
and from equation (2.2)
v(1)(x) =
1− x
l − s0
v0x(x)ρ(1) +
vα
0 (x)v0xx(x)
(l − s0)2
. (3.2)
Now we construct a function w(x, t) such that w(x, t) ∈ C
2+γ,γ/q
α (GT ), γ >
2β/q, w(x, 0) = v0(x), wt(x, 0) = v(1)(x), w(0, t) ≡ 0. Consider a model problem
∂ũ
∂t
− xα ∂2ũ
∂x2
= ṽ(1)(x)− xαṽ0xx(x), x > 0, t > 0,
ũx|x=0 = v0x(0),
ũ(x, 0) = ṽ0(x),
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 299
B.V. Bazaliy and S.P. Degtyarev
where ṽ0(x) and ṽ(1)(x) are the finite extensions of v0(x) and v(1)(x) on
x ≥ 0. It follows from Theorem 4.1 below that there exists a unique solution of
this problem and the estimate of the form (4.20) is valid so that in particular
ũ(x, t) ∈ C
2+γ,γ/q
α (GT ). Moreover, ũ(x, 0) = v0(x) and ũt(x, 0) = v(1)(x) on [0, 1]
by the construction. Now we set
w(x, t) = ũ(x, t)− ũ(0, t).
Since ũ(0, 0) = v0(0) = 0 and ũt(0, 0) = v(1)(0) = 0 (due to consistency condi-
tions), the function w(x, t) has the desired properties.
We denote also
σ(t) = ρ(1) · t
so that σ(0) = 0, σt(0) = ρ(1) = ρt(0).
To reduce problem (2.2)–(2.7) to a problem in the spaces Ċ
2+β,β/q
α (GT ) and
Ċ1+β/q([0, T ]) with zero initial data, we introduce the new unknown functions
u(x, t) = v(x, t)− w(x, t), δ(t) = ρ(t)− σ(t) (3.3)
such that δ(0) = 0, δt(0) = 0, u(x, 0) ≡ 0, ut(x, 0) ≡ 0.
We rewrite equation (2.2) in the form
L(ρ, v) =
∂v
∂t
− a11(ρ, v)
∂2v
∂x2
+ a1(ρ)
dρ
dt
∂v
∂x
= 0, (3.4)
where
a11(ρ, v) =
vα
(l − s0 − ρ(t))2
, a1(ρ) =
x− 1
l − s0 − ρ(t)
. (3.5)
For the new unknown functions δ(t) and u(x, t) we obtain the equation
L(δ(t) + σ(t), u(x, t) + w(x, t)) = 0. (3.6)
Next we single out the main linear part from L(δ+σ, u+w) with respect to (δ, u)
so that equation (3.6) takes the form
∂u
∂t
− a11(σ,w)
∂2u
∂x2
+ a1(σ)δt
∂w
∂x
= −L(σ,w)− [a11(σ,w)− a11(δ + σ, u + w)]
∂2u
∂x2
−[a11(σ,w)− a11(δ + σ, u + w)]
∂2w
∂x2
−[a1(δ + σ)(δt + σt)− a1(σ)σt]
∂u
∂x
− a1(σ)σt
∂u
∂x
300 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
−[a1(δ + σ)(δt + σt)− a1(σ)σt − a1(σ)δt]
∂w
∂x
= −L(σ,w) + F (δ, u) = F0(δ, u).
One can check that the function F (δ, u) contains either “quadratic” terms with
respect to (δ, u) or minor terms in the sense of smoothness. For instance, the
term
[a11(σ,w)− a11(δ + σ, u + w)]
∂2u
∂x2
=
[
wα
(l − s0 − σ(t))2
− (u + w)α
(l − s0 − σ(t)− δ(t))2
]
∂2u
∂x2
=
[
wα
(l − s0 − σ(t))2
− wα
(l − s0 − σ(t)− δ(t))2
]
∂2u
∂x2
+
wα − (u + w)α
(l − s0 − σ(t)− δ(t))2
∂2u
∂x2
(3.7)
consists of the terms ”quadratic” in (δ, u), and in the expression
[a1(δ + σ)(δt + σt)− a1(σ)σt − a1(σ)δt]
∂w
∂x
=
dδ
dt
(
1
l − s0 − σ(t)− δ(t)
− 1
l − s0 − σ(t)
)
∂w
∂x
+
dσ
dt
(
1
l − s0 − σ(t)− δ(t)
− 1
l − s0 − σ(t)
)
∂w
∂x
the first term is “quadratic” and the second one is minor. Note also that by the
construction of σ(t), w(x, t) and (3.2)
L(σ,w)|t=0 = 0.
Thus problem (2.2)–(2.7) is transformed to the nonlinear problem for the func-
tions u(x, t) and δ(t)
∂u
∂t
− a11(σ,w)
∂2u
∂x2
+ a1(σ)δt
∂w
∂x
= F0(δ, u) in GT , (3.8)
u(x, 0) = 0, δ(0) = 0, x ∈ [0, 1], (3.9)
u(0, t) = 0, u(1, t) = g(t)− w(1, t), t ∈ [0, T ], (3.10)
∂u
∂x
(0, t) = F1(δ(t)), t ∈ [0, T ], (3.11)
where
F1(δ(t)) = −g0(t)
l − s0 − σ(t)− δ(t)
s0 + σ(t) + δ(t)
− ∂w
∂x
(0, t), (3.12)
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 301
B.V. Bazaliy and S.P. Degtyarev
and moreover,
ut(x, 0) = 0, δt(0) = 0. (3.13)
First we study the linear problem
∂u
∂t
− a11(σ,w)
∂2u
∂x2
+ a1(σ)δt
∂w
∂x
= f0(x, t) in GT , (3.14)
u(x, 0) = 0, δ(0) = 0, x ∈ [0, 1], (3.15)
u(0, t) = 0, u(1, t) = ϕ(t), t ∈ [0, T ], (3.16)
∂u
∂x
(0, t) = f1(t), t ∈ [0, T ], (3.17)
where ϕ(t) = g(t)− w(1, t), f0(x, t) and f1(t) correspond to the right hand sides
of (3.8) and (3.11) for some fixed u(x, t) and δ(t) from classes Ċ
2+β,β/q
α (GT ) and
Ċ1+β/q([0, T ]), respectively. So we assume
f0(x, t) ∈ Ċβ,β/q(GT ), f1(t) ∈ Ċ
β+1−α
q ([0, T ]), ϕ(t) ∈ Ċ1+β/q([0, T ]). (3.18)
From (3.5) we have
a11(σ,w) =
wα
(l − s0 − σ(t))2
=
1
(l − s0 − σ(t))2
(
w(x, t)
x
)α
xα ≡ a(x, t)xα, (3.19)
where µ ≤ a(x, t) ≤ µ−1, µ = const > 0, for small t since σ(0) = 0 and w(x, t) is
the smooth function with w(0, t) = 0, wx(0, t) ≥ ν > 0. Similar arguments give
a1(σ)δt
∂w
∂x
(x, t) =
x− 1
l − s0 − σ(t)
∂w
∂x
(x, t)
dδ(t)
dt
≡ −b(x, t)
dδ(t)
dt
(3.20)
with b(x, t) ≥ µ > 0 for x ∈ [0, 1/2], t ∈ [0, T ].
Theorem 3.1. Under conditions (3.18) there exists a unique solution of prob-
lem (3.14)–(3.17) u(x, t) ∈ Ċ
2+β,β/q
α (GT ), δ(t) ∈ Ċ1+β/q([0, T ]) for some T > 0
and
‖u‖(2+β)
α,GT
+ |δ|(1+β/q)
[0,T ] ≤ C
(
|f0|(β,β/q)
GT
+ |f1|
(β+1−α
q
)
[0,T ] + |ϕ|(1+β/q)
[0,T ]
)
. (3.21)
The proof of Theorem 3.1 uses the well-known procedure (see [12], Ch. 4):
i) partition of unity on G,
ii) investigation of model problems in R+
T or RT ,
iii) construction of a regularizator.
302 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
In the next section we describe the main model problem related to problem
(3.14)–(3.17). We will not discuss problems i) and iii). For discussion of these
problems see, for example, [1–3].
Problem (3.8)–(3.12) has the form
A(u, δ) = F(u, δ), (3.22)
where A(u, δ) is the linear bounded operator, and F(u, δ) is the nonlinear operator
F(u, δ) = (F0(δ, u), F1(δ), g(t)− w(1, t)). (3.23)
Theorem 3.1 means that the operator A has the bounded inverse operator A−1.
Hence, equation (3.22) can be written as
(u, δ) = A−1F(u, δ),
and in Sec. 5 we will show that the operator A−1F is contractive.
4. The Model Problem
Consider the differential operator defined by the left hand side in (3.14) and
freeze the coefficients a(x, t) from (3.19) and b(x, t) from (3.20) at the point
(x, t) = (0, 0). Let a(0, 0) = a0, b(0, 0) = b0, R+ = {x ≥ 0}, R+
T = R+ × [0, T ].
We are looking for a solution (u(x, t), δ(t)) of the problem
∂u
∂t
− a0x
α ∂2u
∂x2
− b0
dδ
dt
= f(x, t) in R+
T , (4.1)
u(x, 0) = 0, δ(0) = 0, x ∈ R+, (4.2)
u(0, t) = 0,
∂u
∂x
(0, t) = f1(t), t ∈ [0, T ] (4.3)
with
f(x, t) ∈ Cβ,β/q(R+
T ), f1(t) ∈ C
β+1−α
q ([0, T ]), (4.4)
where function f(x, t) has a finite support.
Note that by all norms in Hölder spaces over unbounded domains R+ and R+
T
we mean supremum in M > 0 of the corresponding norms over sets R+ ∩ {|x| ≤
M} and R+
T ∩ {|x| ≤ M}.
Define the function
θ(x, t) = u(x, t)− b0δ(t). (4.5)
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 303
B.V. Bazaliy and S.P. Degtyarev
The function θ(x, t) can be found from the equations
∂θ
∂t
− a0x
α ∂2θ
∂x2
= f(x, t) in R+
T , (4.6)
θ(x, 0) = 0, x ∈ R+, (4.7)
∂θ
∂x
(0, t) = f1(t), t ∈ [0, T ]. (4.8)
To find the function δ(t) we have the relation
θ(0, t) + b0δ(t) = 0. (4.9)
Keeping in mind also the problem of constructing of the function w(x, t) from
Sec. 3, we consider the next model problem for the unknown function u(x, t)
∂u
∂t
− xα ∂2u
∂x2
= f(x, t) in R+
T , (4.10)
∂u
∂x
(0, t) = f1(t), t ∈ [0, T ], (4.11)
u(x, 0) = u0(x), x ∈ R+, (4.12)
where the functions f(x, t) and u0(x) have finite supports. In this case the fol-
lowing conditions are required in addition to (4.4):
u0(x) ∈ C2+2β/q
α (R+), f(x, 0) ∈ C2β/q(R+). (4.13)
To find a general solution of the equation
∂u
∂t
− xα ∂2u
∂x2
= 0,
we apply the Laplace transform in t such that
pũ− xαũxx = 0, (4.14)
where ũ(x, p) is the Laplace image of u(x, t). The general solution of (4.14) is
(see [9], 8.491(7))
ũ(x, p) = c1x
1/2I−1/q(
2
q
√
pxq/2) + c2x
1/2K−1/q(
2
q
√
pxq/2),
where q = 2 − α, Iµ(z), Kµ(z) are the modified Bessel functions, and c1, c2 are
arbitrary constants. The Green function to the Neumann problem for equation
(4.14) is
G̃(x, ξ, p) =
{2
q I−1/q(2
qp1/2xq/2)K−1/q(2
qp1/2ξq/2)x1/2ξ1/2ξ−α, x < ξ,
2
qK−1/q(2
qp1/2xq/2)I−1/q(2
qp1/2ξq/2)x1/2ξ1/2ξ−α, x > ξ,
304 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
and the inverse Laplace transform gives (see [9], 6.653) the Green function for
problem (4.10)–(4.12)
G(x, ξ, t) = c(q)t−1+1/q
(
xq/2ξq/2
q2t
)1/q
I−1/q
(
2
(xξ)q/2
q2t
)
e
−xq+ξq
q2t ξ−α. (4.15)
Denote
u =
ξq/2
qt1/2
, v =
xq/2
qt1/2
and rewrite the Green function as
G(x, ξ, t) = c(q)t−1/q(uv)1/qI−1/q(2uv)e−(u2+v2)u−2α/q. (4.16)
We define the constant c(q) in (4.16) by the condition
∞∫
0
G(x, ξ, t)dξ = 1. (4.17)
By direct calculations one can show that the function G(x, ξ, t − τ) satisfies
the equations
∂G
∂t
− xα ∂2G
∂x2
= 0 and
∂G
∂τ
+
∂2
∂ξ2
(ξαG) = 0, τ < t. (4.18)
We use equations (4.18) and the Green formula to get the integral representation
of the solution to problem (4.10)–(4.12)
u(x, t) =
t∫
0
dτ
∞∫
0
G(x, ξ, t− τ)f(ξ, τ)dξ
+
∞∫
0
G(x, ξ, t)u0(ξ)dξ −
t∫
0
(ξαG(x, ξ, t− τ))|ξ=0f1(τ)dτ. (4.19)
Theorem 4.1. Let in (4.10)–(4.13) and (4.4) the consistency condition f1(0)=
u0x(0) be fulfilled. Then there exists a unique solution u(x, t) ∈ C
2+β,β/q
α (R+
T ),
α + β < 1, q = 2− α, such that
〈xαuxx〉(β,β/q)
BR,T
+ 〈ut〉(β,β/q)
BR,T
+ 〈ux〉((β+1−α)/q)
t,BR,T
≤ C(R, T )(〈f〉(β,β/q)
R+
T
+ 〈f1〉
(β+1−α
q
)
[0,T ]
+ |f(x, 0)|(2β/q)
R+ + |xαu0xx|(2β/q)
R+ ), (4.20)
where BR,T = {0 ≤ x ≤ R} × [0, T ], R > 0, and the constant C(R, T ) is bounded
for bounded R and T .
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 305
B.V. Bazaliy and S.P. Degtyarev
The proof of (4.20) is based on the estimates of the potentials on the right
hand side of (4.19) and will be done in Sec. 6.
5. Proof of Theorem 2.1
Now we return to problem (3.22) and the equation
(u, δ) = A−1F(u, δ), (5.1)
where F(u, δ) is defined in (3.23). We introduce the space
M = Ċ2+β,β/q
α (GT )× Ċ1+β/q([0, T ]) (5.2)
with the elements z = (u(x, t), δ(t)) and the norm
‖z‖M = ‖u‖(2+β)
α,GT
+ |δ|(1+β/q)
[0,T ] , (5.3)
and the space
W = Ċβ,β/q(GT )× Ċ
β+1−α
q ([0, T ])× Ċ1+β/q([0, T ]) (5.4)
with the elements f = (f(x, t), f1(t), ϕ(t)) and the norm
‖f‖W = |f |(β,β/q)
GT
+ |f1|
(β+1−α
q
)
[0,T ] + |ϕ|(1+β/q)
[0,T ] . (5.5)
It is straightforward to check that analogously to the inequality for the stan-
dard Hölder norms |u|(l)GT
from [12]
|u|(l′)GT
≤ CT
l−l′
2 |u|(l)GT
, (5.6)
which is valid for the functions u ∈ Ċ l,l/2(GT ), l′ < l, l′ integer, (see [12], Ch. 4),
in our case we have
‖u‖(2+β)
α,GT
≤ CT
γ−β
q ‖u‖(2+γ)
α,GT
, |f |(β,β/q)
GT
≤ CT
γ−β
q |f |(γ,γ/q)
GT
, β < γ < 1 (5.7)
for the functions u ∈ Ċ
2+γ,γ/q
α (GT ) and f ∈ Ċγ,γ/q(GT ), and analogous inequality
is valid for the functions defined on [0, T ]. We will also use a known inequality
|fg|(β,β/q)
GT
≤ CT β/q|f |(β,β/q)
GT
|g|(β,β/q)
GT
(5.8)
for the functions f, g ∈ Ċβ,β/q(GT ). We give here the short outline of the proof
of inequalities (5.7).
306 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
Consider, for example, a weighted Hölder constant 〈xαuxx〉(β)
x,GT
in the defini-
tion of the norm ‖u‖(2+β)
α,GT
in the space C
2+β,β/q
α (GT ). Let function u(x, t) be in
fact more smooth, namely, u ∈ C
2+γ,γ/q
α (GT ) with 0 < β < γ < 1.
According to the definition,
〈xαuxx〉(β)
x,GT
= sup
(x,t),(x,t)∈GT
|v(x, t)− v(x, t)|
|x− x|β ,
where v(x, t) = xαuxx. Consider the ratio |v(x,t)−v(x,t)|
|x−x|β .
Consider two cases. If |x− x| < T 1/q, then
|v(x, t)− v(x, t)|
|x− x|β =
|v(x, t)− v(x, t)|
|x− x|γ |x− x|γ−β ≤ 〈v〉γ
x,GT
T
γ−β
q .
If now |x− x| ≥ T 1/q, then, as v(x, 0) ≡ 0,
|v(x, t)− v(x, t)|
|x− x|β ≤ |v(x, t)|+ |v(x, t)|
T 1/q
≤ 2〈v(x, t)〉γ/q
t,GT
tγ/q
T β/q
≤ 2〈v(x, t)〉γ/q
t,GT
T
γ−β
q .
Consequently, in both cases,
〈xαuxx〉(β)
x,GT
≤ CT
γ−β
q ‖u‖(2+γ)
α,GT
.
Other terms in the definition of the norm ‖u‖(2+β)
α,GT
can be treated in a quite
similar way which leads to (5.7).
Due to our assumptions on the smoothness of the initial data u0(x), the
boundary functions g0(t) and g(t), and consistency conditions (2.9) with (5.7),
we obtain
‖F(0, 0)‖W ≤ PT
γ−β
q , (5.9)
where P is a constant independent of T .
We set
Md = {z ∈ M : ‖z‖M ≤ d},
where d > 0 is sufficiently small and will be given below.
Lemma 5.1. There holds an inequality
‖F(z2)−F(z1)‖W ≤ C(d + Tκ)‖z2 − z1‖M , (5.10)
where κ > 0 is a certain positive number, and the constant C is bounded for
bounded d and T .
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 307
B.V. Bazaliy and S.P. Degtyarev
It follows from this lemma and from (5.9) that if T and d are sufficiently
small, then the mapping z → A−1F(z) maps Md into itself and is a contraction
in Md. Hence this mapping has a unique fixed point. This completes the proof
of Theorem 2.1.
P r o o f of Lemma 5.1. The origin of the estimate (5.10) is that the
expression for F(z) = F(u, δ) contains, as it was mentioned, either “quadratic”
terms or minor terms. Thus in the factor (d+Tκ) in (5.10) the value d appears as
we estimate “quadratic” terms and Tκ appears for minor terms in view of (5.7).
As a typical example of calculations in the proof of Lemma 5.1, we show the
estimate of the term
E(z) ≡ wα − (u + w)α
(l − s0 − σ(t)− δ(t))2
∂2u
∂x2
in (3.7). By the mean value theorem one can write
wα − (u + w)α = −αu
1∫
0
[εw + (1− ε)(u + w)]α−1dε
and hence
E(z) = (xα ∂2u
∂x2
)
(u
x
) α
(l − s0 − σ(t)− δ(t))2
×
1∫
0
[
εw + (1− ε)(u + w)
x
]α−1
dε. (5.11)
Since α− 1 < 0, some additional arguments are required to show the smoothness
of E(z) in z.
Taking into account that u(0, t) = w(0, t) = 0, we use the following represen-
tation with some sufficiently small a > 0:
εw(x, t) + (1− ε)(u(x, t) + w(x, t))
x
=
{∫ 1
0 [εwx(ωx, t) + (1− ε)(ux(ωx, t) + wx(ωx, t))]dω, 0 ≤ x ≤ a,
εw(x,t)+(1−ε)(u(x,t)+w(x,t))
x , x > a,
(5.12)
where the mean value theorem is applied.
By the properties of the initial function u0(x) and w(x, t), wx(0, 0) ≥ ν > 0,
u0x(0) ≥ ν > 0, and because u(x, t) ∈ Md, for sufficiently small T and d we get
wx(x, t) ≥ ν/2, (wx + ux)(x, t) ≥ ν/2 for 0 ≤ x ≤ a, (5.13)
308 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
and for x ≥ a
εw(x, t) + (1− ε)(u(x, t) + w(x, t))
x
≥ ν1, ν1 = const > 0 (5.14)
as far as w(x, t) ≥ ν2 for x ≥ a. Moreover, the integrand in (5.12) is bounded
from above and the same is true for the left hand side of (5.14). Thus from (5.12),
inequalities (5.13), (5.14) and (u, δ) ∈ Md it follows
ν2 ≤ εw(x, t) + (1− ε)(u(x, t) + w(x, t))
x
≤ ν−1
2 , ν2 = const > 0. (5.15)
We observe also that for small d and T and t ≤ T
ν3 ≤ l − s0 − σ(t)− δ(t) ≤ ν−1
3 , ν3 = const > 0. (5.16)
So we obtain the representation
E(z) =
(
xα ∂2u
∂x2
) (u
x
)
Φ(z), (5.17)
Φ(z) =
α
(l − s0 − σ(t)− δ(t))2
1∫
0
[
εw + (1− ε)(u + w)
x
]α−1
dε,
and from (5.15), (5.16) it follows that Φ(z) is the smooth function in z for z ∈ Md
and small t > 0.
The difference E(z2)− E(z1), z1, z2 ∈ Md, is evaluated as follows:
|E(z2)−E(z1)|(β,β/q)
GT
≤
∣∣∣∣
(
xα ∂2u2
∂x2
− xα ∂2u1
∂x2
)(u2
x
)
Φ(z2)
∣∣∣∣
(β,β/q)
GT
+
∣∣∣∣
(
xα ∂2u1
∂x2
)(u2
x
− u1
x
)
Φ(z2)
∣∣∣∣
(β,β/q)
GT
+
∣∣∣∣
(
xα ∂2u1
∂x2
) (u1
x
)
(Φ(z2)− Φ(z1))
∣∣∣∣
(β,β/q)
GT
.
To continue this estimate we note that
u
x
=
1∫
0
ux(εx)dε, |Φ(z)|(β,β/q)
GT
≤ const, z ∈ Md,
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 309
B.V. Bazaliy and S.P. Degtyarev
|Φ(z2)− Φ(z1)|(β,β/q)
GT
≤ const · ‖z2 − z1‖M , z1, z2 ∈ Md.
This leads to
|E(z2)−E(z1)|(β,β/q)
GT
≤ const · (‖z2‖M + ‖z1‖M )‖z2 − z1‖M
≤ const · d ‖z2 − z1‖M , z1, z2 ∈ Md.
Similar calculations of the rest of the terms in the difference F(z2) − F(z1)
prove Lemma 5.1.
6. Proof of Theorem 4.1
In this section we use representation (4.19) to obtain the estimates from The-
orem 4.1. First we deduce some properties of the Green function G (x, ξ, t) from
(4.16).
The Bessel function Iµ (z) has the series expansion
Iµ (z) =
∞∑
k=0
1
k!Γ (µ + k + 1)
(z
2
)µ+2k
, (6.1)
where Γ (x) is the Gamma function, and the asymptotic expansion for large z
Iµ (z) ∼
ez
√
2πz
(
1 +
C
z
+ . . .
)
. (6.2)
Here and below we will denote by C various positive constants. From these
representations it follows that
I−1/q ∼ C
{
z−1/q for z ≤ 1,
ezz−1/2 for z > 1.
(6.3)
Using (6.1)–(6.3), we can get the following estimates:
|G (x, ξ, t)| ≤ Ct−1/qu−2α/q
{
e−(u2+v2), uv ≤ 1,
e−γ(u−v)2 (uv)1/q−1/2 , uv > 1,
(6.4)
|Gt (x, ξ, t)| ≤ Ct−1−1/qu−2α/q
{
e−(u2+v2), uv ≤ 1,
e−γ(u−v)2 (uv)1/q−1/2 , uv > 1,
(6.5)
|Gx (x, ξ, t)| ≤ Ct−1/q u−2α/q
x
{
e−(u2+v2) (
v2 + u2v2
)
, uv ≤ 1,
e−γ(u−v)2 (1 + v) (uv)1/q−1/2 , uv > 1,
(6.6)
310 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
|Gxt (x, ξ, t)| ≤ Ct−1−1/q u−2α/q
x
{
e−(u2+v2) (
v2 + u2v2
)
, uv ≤ 1,
e−γ(u−v)2 (1 + v) (uv)1/q−1/2 , uv > 1,
(6.7)
|Gtt (x, ξ, t)| ≤ Ct−2−1/qu−2α/q
{
e−(u2+v2), uv ≤ 1,
e−γ(u−v)2 (uv)1/q−1/2 , uv > 1,
(6.8)
where γ is some positive constant.
To check, for example, the estimate of Gx (x, ξ, t) for uv ≤ 1 in (6.6) we note
that for small z
z1/qI−1/q (z) ∼ C
(
1 +
2− α
1− α
z2
4
+ . . .
)
,
and vx = Cv/x, zx = Cz/x, where z = 2uv, u, v — from (4.16). Therefore
Gx (x, ξ, t) ∼ −Ct−1/qu−2α/q2ve−(u2+v2) v
x
z1/qI−1/q (z)
+Ct−1/qu−2α/qe−(u2+v2) z
x
d
dz
(
z1/qI−1/q (z)
)
∼ Ct−1/qu−2α/q 1
x
e−(u2+v2) (
v2 + u2v2
)
.
Denote
J1 (v) =
∞∫
0
uae−γ(u−v)2du,
J2 (v) =
∞∫
1/2v
uae−γ(u−v)2du,
J3 (v) =
1/2v∫
0
uae−γ(u−v)2du.
Lemma 6.1. Let a > −1, γ > 0, v ≥ 0. The next inequalities are valid:
J1 (v) ≤ C
{
va for v ≥ 1,
1, for v < 1,
(6.9)
J2 (v) ≤ C
{
va for v ≥ 1,
e−γ1/v2
, for v < 1,
(6.10)
J3 (v) ≤ C
{
e−γ1v2
, for v ≥ 1,
1, for v < 1,
(6.11)
where 0 < γ1 ≤ γ.
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 311
B.V. Bazaliy and S.P. Degtyarev
P r o o f. To prove (6.9) we split the integral J1 (v)
J1 (v) =
v/2∫
0
+
3v/2∫
v/2
+
∞∫
3v/2
(
uae−γ(u−v)2du
)
≡ A1 (v) + A2 (v) + A3 (v) .
(6.12)
We have |u− v|2 ≥ v2/4 for the integrand in A1 and then
A1 (v) ≤
v/2∫
0
uae−γv2/4du ≤ Cva+1e−γv2/4 ≤ Ce−γv2/8.
Since u ∈ (v/2, 3v/2) in A2 (v) ,
A2 (v) ≤ Cva
3v/2∫
v/2
e−γ(u−v)2du ≤ Cva
∞∫
−∞
e−γ(u−v)2du ≤ Cva.
For a ≥ 0
A3 (v) =
∞∫
v/2
(v + z)a e−γz2
dz ≤ C
∞∫
−∞
(va + za) e−γz2
dz ≤ C (va + 1) ,
and for a ∈ (−1, 0)
A3 (v) =
∞∫
v/2
(v + z)a e−γz2
dz ≤ Cva
∞∫
−∞
e−γz2
dz ≤ Cva.
The estimates of Ai (v) , i = 1, 2, 3, give (6.9).
We first consider the integral J2 (v) for v ≤ 1/2. Then in J2 (v) u − v ≥
1
2v − v = 1−2v2
2v ≥ 1/4v and
J2 (v) =
∞∫
1/2v
uae−γ(u−v)2du ≤
∞∫
1/2v
uae−
γ
2
(u−v)2e−
γ
32
1
v2 du
≤ e−
γ
32v2
∞∫
0
uae−
γ
2
(u−v)2du ≤ Ce−
γ
32v2 va ≤ Ce−γ1/v2
,
where we used estimate (6.9). The estimates for J2 (v) for v > 1 and 1/2 < v < 1
follow from (6.9).
312 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
One can check that for v > 1 and u > 1/2v there is v − u ≥ v/2, then
J3 (v) ≤
1/2v∫
0
uae−γv2/4du ≤ e−γv2/4
1/2v∫
0
uadu ≤ Ce−γv2/4.
For v ≤ 1 we can estimate J3 (v) by (6.9). This completes the proof of (6.11) and
Lemma 6.1.
Lemma 6.2. Let x, ξ > 0, q = 2− α, α ∈ (0, 1) .
i) For ξ > x
ξq/2 − xq/2 ≥ C
{
(ξ − x) xq/2−1, ξ − x ≤ x,
(ξ − x)q/2 , ξ − x > x.
(6.13)
ii) For ξ < x
xq/2 − ξq/2 ≥ C (x− ξ) xq/2−1. (6.14)
iii) For δ > 0, 2δ/q < 1, and f (x) ∈ C2δ/q (R+)
|f (x)− f (ξ)| ≤ C (x) |f |(2δ/q)
R+
∣∣∣xq/2 − ξq/2
∣∣∣
2δ/q
, (6.15)
where C(x) = const ·max
(
1, xαδ/q
)
.
P r o o f. In the case i) let A1 = ξq/2 − xq/2. Successively using the change
of variables η = x + z and y = z/ (ξ − x) , we get
A1 =
2
q
ξ∫
x
η
2
q
−1
dη =
2
q
ξ−x∫
0
(x + z)
2
q
−1
dz =
2
q
(ξ − x)
1∫
0
dy
(x + (ξ − x) y)1−q/2
.
For ξ − x > x
A1 =
2
q
(ξ − x)q/2
1∫
0
dy
(
x
ξ−x + y
)α/2
≥ 2
q
(ξ − x)q/2
1∫
0
dy
(1 + y)α/2
≥ C (ξ − x)q/2 .
For ξ − x ≤ x
A1 =
2
q
(ξ − x)
1∫
0
dy
xα/2
(
1 + ξ−x
x y
)α/2
≥ C (ξ − x)x−α/2.
These estimates prove (6.13).
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 313
B.V. Bazaliy and S.P. Degtyarev
In the case ii) let B (x, ξ) = xq/2 − ξq/2. Similarly to the case i), we have
B (x, ξ) =
2
q
(x− ξ)
1∫
0
dy
xα/2
(
1− x−ξ
x y
)α/2
≥ 2
q
(x− ξ) xq/2−1
1∫
0
dy = C (x− ξ) xq/2−1
and, hence, (6.14).
Let
F (x, ξ) =
|f (x)− f (ξ)|∣∣xq/2 − ξq/2
∣∣2δ/q
, ∆f = f (x)− f (ξ) .
We prove that F (x, ξ) is bounded if x is bounded. For ξ > x and ξ − x ≤ x by
(6.13)
F (x, ξ) ≤ C
|∆f |
(
(ξ − x) x−α/2
)2δ/q
≤ Cxαδ/q 〈f〉(2δ/q)
x .
For ξ > x and ξ − x > x again by (6.13)
F (x, ξ) ≤ C
|∆f |
(ξ − x)δ
≤ C 〈f〉(2δ/q)
x
|x− ξ|2δ/q
|x− ξ|δ
= C 〈f〉(2δ/q)
x |x− ξ|δα/q ,
and we obtain (6.15) under |x− ξ| ≤ 1. For |x− ξ| > 1
F (x, ξ) ≤ C max |f | .
Finally, for ξ < x
F (x, ξ) ≤ C
|∆f |
(
(x− ξ) x−α/2
)2δ/q
≤ Cxαδ/q 〈f〉(2δ/q)
x .
Lemma 6.2 is proved.
Lemma 6.3. Let f (x) ∈ C2δ/q (R+) , 2δ/q < 1. Then the following integral
exists and
lim
t→0
∞∫
0
G (x, ξ, t) (f (x)− f (ξ)) dξ = 0. (6.16)
P r o o f. In the integral
K (x, t) =
∞∫
0
G (x, ξ, t) (f (x)− f (ξ)) dξ
314 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
we change the variable according to ξ =
(
qt1/2u
)2/q
= C (q) t1/qu2/q. Below we
will frequently use this change ξ → u. Using (6.15) and (6.4), we get
|f (x)− f (ξ)| ≤ C (x) |f |(2δ/q)
R+ |v − u|2δ/q tδ/q
and
K (x, t) ≤ C (x) |f |(2δ/q)
R+ tδ/q (K1 (x, t) + K2 (x, t)) , (6.17)
K1 (x, t) =
1/v∫
0
e−(u2+v2)u−
2α
q
+ 2
q
−1 |v − u|2δ/q du,
K2 (x, t) =
∞∫
1/v
e−γ(u−v)2 (uv)1/q−1/2 u
− 2α
q
+ 2
q
−1 |v − u|2δ/q du.
To estimate K1 (x, t), we use the inequality |v − u|2δ/q ≤ C
(
v2δ/q + u2δ/q
)
and
(6.9), then
|K1 (x, t)| ≤ C
e−v2
1/v∫
0
e−u2
u
−α
q
+ 2δ
q du + e−v2
v2δ/q
1/v∫
0
e−u2
u−α/qdu
≤ const.
In the case of K2 (x, t) , we use (6.10) to obtain
|K2 (x, t)| ≤ C
∞∫
1/v
e−γ1(u−v)2 (uv)1/q−1/2 u
− 2α
q
+ 2
q
−1
du
= Cvα/2q
∞∫
1/v
e−γ1(u−v)2u−α/2qdu ≤ const.
Now Lemma 6.3 follows from (6.17).
Lemma 6.4. Let
w (x, t) =
∞∫
0
G (x, ξ, t) f (ξ) dξ, f (x) ∈ C2β/q
(
R+
)
, 2β/q < 1, β ∈ (0, 1) .
Then
〈w〉(β)
x,BR,T
+ 〈w〉(β/q)
t,BR,T
≤ C (R) |f |(2β/q)
R+ . (6.18)
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 315
B.V. Bazaliy and S.P. Degtyarev
P r o o f. Recall the notation: Ω̃T = ([0,∞) ∩BR)T . From (4.17) it follows
w (x, t) =
∞∫
0
G (x, ξ, t) [f (ξ)− f (x)] dξ + f (x) = z (x, t) + f (x) ,
so that we need to estimate the function z (x, t). First we evaluate the Hölder
constant of z (x, t) in t. Let 0 < t < t. We have
∣∣z (x, t)− z
(
x, t
)∣∣ ≤
∣∣∣∣∣∣∣
t∫
t
zτ (x, τ) dτ
∣∣∣∣∣∣∣
(6.19)
and from the representation of z (x, t) and Lemma 6.2
|zt| ≤ C (R) |f |(2β/q)
R+
∞∫
0
|Gt (x, ξ, t)|
∣∣∣xq/2 − ξq/2
∣∣∣
2β
q
dξ.
The change of variable ξ → u leads to
|zt| ≤ C (R) |f |(2β/q)
R+ t−1+β/q (K1 (x, t) + K2 (x, t)) ≤ C (R) |f |(2β/q)
R+ t−1+β/q,
where K1 (x, t) , K2 (x, t) were introduced in the proof of Lemma 6.3. Hence,
∣∣z (x, t)− z
(
x, t
)∣∣ ≤ C (R) |f |(2β/q)
R+
t∫
t
τ−1+β/qdτ ≤ C (R) |f |(2β/q)
R+
∣∣t− t
∣∣β/q
.
(6.20)
To estimate the Hölder constant of z(x, t) with respect to x we consider two
cases. Let ∆x = x − x > 0 and ∆x ≥ t1/q. By Lemma 6.3 z (x, 0) = 0 and by
(6.20), we get
|z (x, t)− z (x, t)|
|∆x|β
≤ |z (x, t)− z (x, 0)|
tβ/q
+
|z (x, t)− z (x, 0)|
tβ/q
≤ C (R) |f |(2β/q)
R+ ,
(6.21)
i.e., we have the required estimate.
In the case ∆x < t1/q we consider two possibilities. The first one is ∆x < x/2.
Then
z (x, t)− z (x, t) =
∞∫
0
(G (x, ξ, t)−G (x, ξ, t)) (f (ξ)− f (x)) dξ
316 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
+(f (x)− f (x))
∞∫
0
G (x, ξ, t) dξ = i1 (x, x, t) + i2 (x, x, t) .
Using (4.17), we can evaluate i2 (x, x, t)
|i2 (x, x, t)| ≤ |f | (2β/q)
R+ |x− x|2β/q = |f |(2β/q)
R+ |x− x|β |x− x|αβ/q
≤ |f |(2β/q)
R+ |x− x|β |∆x|αβ/q ≤ C (R) |f |(2β/q)
R+ |x− x|β . (6.22)
To estimate i1 (x, x, t) we apply the mean value theorem. Let θ ∈ [x, x] , then
|i1 (x, x, t)| ≤ C (R) |f |(2β/q)
R+
∞∫
0
Gθ (θ, ξ, t) |∆x|
∣∣∣xq/2 − ξq/2
∣∣∣
2β/q
dξ.
Due to ∆x < x/2 the values θ, x, x are equivalent. Therefore we change θ by x
below. We change ξ to u in the integral and use estimate (6.6) that gives
|i1 (x, x, t)| ≤ C (R) |f |(2β/q)
R+
∆x
x
tβ/q (i11 (x, x, t) + i12 (x, x, t)) ,
i11 (x, x, t) =
1/v∫
0
e−(u2+v2)v2
(
1 + u2
)
u
−α
q |v − u|2β/q du,
i12 (x, x, t) =
∞∫
1/v
e−γ(u−v)2 (1 + v) (uv)1/q−1/2 u
−α
q |v − u|2β/q du.
Since e−(u2+v2) |v − u|2β/q ≤ Ce−γ(u2+v2), 0 < γ < 1, we get
|i11 (x, x, t)| ≤ Cv2e−γv2
1/v∫
0
(
1 + u2
)
u
−α
q e−γu2
du,
and one can see that either the estimate
|i11 (x, x, t)| ≤ Cv (6.23)
or
|i11 (x, x, t)| ≤ Cv2 (6.24)
is valid.
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 317
B.V. Bazaliy and S.P. Degtyarev
Similarly, with Lemma 6.1
|i12 (x, x, t)| ≤ C (1 + v) v1/q−1/2
∞∫
1/v
e−γ(u−v)2u
−α
q du
≤ C (1 + v) vα/2q
{
v−α/2q, v ≥ 1,
e−δ1/v2
, v < 1,
and again
|i12 (x, x, t)| ≤ Cv, (6.25)
or
|i12 (x, x, t)| ≤ Cv2. (6.26)
Now we use estimates (6.23) and (6.25) and can write
|i1 (x, x, t)| ≤ C (R) |f |(2β/q)
R+
∆x
x
tβ/qv.
Note that in the case under consideration v = xq/2/qt1/2 and
|∆x|
|∆x|β
xq/2
xt1/2−β/q
=
∣∣∣∣
∆x
x
∣∣∣∣
1−q/2 (
∆x
t1/q
)q/2−β
≤ const.
It means
|i1 (x, x, t)| ≤ C (R) |f |(2β/q)
R+ |∆x|β . (6.27)
Thus for ∆x ≤ x/2 and ∆x ≤ t1/q
|z (x, t)− z (x, t)| ≤ C (R) |f |(2β/q)
R+ |∆x|β . (6.28)
Finally, we consider the case ∆x ≥ x/2 and ∆x ≤ t1/q . We have
|z (x, t)− z (x, t)|
|∆x|β
≤ C
( |z (x, t)− z (0, t)|
xβ
+
|z (x, t)− z (0, t)|
xβ
)
since 2∆x ≥ x and 3∆x ≥ x. We evaluate, as an example, the second term on
the right hand side. To this end we use the inequality
|z (x, t)− z (0, t)| ≤
∞∫
0
|G (x, ξ, t)−G (0, ξ, t)| |f (ξ)− f (x)| dξ
+
∣∣∣∣∣∣
∞∫
0
G (0, ξ, t) (f (0)− f (x)) dξ
∣∣∣∣∣∣
= i3 (x, x, t) + i4 (x, x, t) .
318 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
The term i4 (x, x, t) is evaluated by (4.17) and 2∆x ≥ x as follows:
|i4 (x, x, t)| ≤ |f (0)− f (x)| ≤ 〈f〉(2β/q)
x,R+ x2β/q = 〈f〉(2β/q)
x,R+ xβx2β/q−β
≤ C (R) 〈f〉(2β/q)
x,R+ |∆x|β . (6.29)
The term i3 (x, x, t) is similar to i1 (x, x, t) and to estimate it we use the mean
value theorem. Let θ ∈ [0, x] and v = θq/2/qt1/2. In this case we apply inequalities
(6.23) and (6.25) and get
|i3 (x, x, t)| ≤ C (R) |f |(2β/q)
R+
x
θ
tβ/qv2 ≤ C (R) |f |(2β/q)
R+ xβ
≤ C (R) |f |(2β/q)
R+ |∆x|β , (6.30)
since
x1−β
θ
tβ/q
(
θq/2
t1/2
)2
= x1−βt−1+β/qθq−1 ≤ t
1−β
q
−1+β
q
+ q−1
q = 1.
Inequalities (6.20), (6.21), (6.28), (6.29), and (6.30) lead to inequality (6.18).
Lemma 6.4 is proved.
R e m a r k 6.1. The reader will see that in our subsequent evaluations in
Lemmas 6.5–6.8 we will apply the approach which is analogous to the approach
used in the proof of Lemma 6.4. We will use the change of variable ξ → u, split
the integration domain according to the small and large values of z = 2uv, and
apply the estimates of the Green function.
Lemma 6.5. Let
w (x, t) =
∞∫
0
G (x, ξ, t) f (ξ, t) dξ, f (x, t) ∈ Cβ,β/q
(
R+
T
)
, f (x, 0) = 0. (6.31)
Then
〈w〉(β)
x,R+
T
+ 〈w〉(β/q)
t,R+
T
≤ C 〈f〉(β/q)
t,R+
T
. (6.32)
P r o o f. First we estimate the Hölder constant of w (x, t) in t. Let 0 < t < t,
∆t = t − t. In the case of ∆t > t/2 it follows that ∆t = t − t > t − 2∆t. Then
∆t > t/3 and hence
∣∣w (
x, t
)− w (x, t)
∣∣
|∆t|β/q
≤ C
(∣∣w (
x, t
)∣∣
t
β/q
+
|w (x, t)|
tβ/q
)
.
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 319
B.V. Bazaliy and S.P. Degtyarev
Taking into account f (x, 0) = 0, we can estimate the terms on the right hand
side. For example, by (4.17)
|w (x, t)|
tβ/q
≤
∞∫
0
G (x, ξ, t)
|f (ξ, t)|
tβ/q
dξ ≤ 〈f〉(β/q)
t,R+
T
∞∫
0
G (x, ξ, t) dξ ≤ 〈f〉(β/q)
t,R+
T
.
Therefore in this case
〈w〉(β/q)
t,R+
T
≤ C 〈f〉(β/q)
t,R+
T
. (6.33)
Let now ∆t < t/2 < t/2. We use the representation
w
(
x, t
)− w (x, t) =
∞∫
0
G
(
x, ξ, t
) [
f
(
ξ, t
)− f (ξ, t)
]
dξ
+
∞∫
0
[
G
(
x, ξ, t
)−G (x, ξ, t)
]
f (ξ, t) dξ = w1 (x, t) + w2 (x, t) .
For the function w1 (x, t) we obtain
|w1 (x, t)| ≤ 〈f〉(β/q)
t,R+
T
|∆t|β/q
∞∫
0
∣∣G (
x, ξ, t
) ∣∣ dξ = 〈f〉(β/q)
t,R+
T
|∆t|β/q . (6.34)
We apply the mean value theorem to estimate w2 (x, t) and note that estimate
(6.5) means |Gt (x, ξ, t)| ≤ Ct−1 |G (x, ξ, t) | . Moreover, the inequality ∆t < t/2
implies that for any θ ∈ [
t, t
]
the values θ, t, and t are equivalent, θ ∼ t ∼ t.
Then
|w2 (x, t)| ≤ C
∆t
θ
〈f〉(β/q)
t,R+
T
tβ/q
∞∫
0
|G (x, ξ, θ) | dξ ≤ C
∆t
t
〈f〉(β/q)
t,R+
T
tβ/q
= C 〈f〉(β/q)
t,R+
T
|∆t|β/q |∆t|1−β/q
t1−β/q
≤ C 〈f〉(β/q)
t,R+
T
|∆t|β/q . (6.35)
From (6.33)–(6.35) it follows that
〈w〉(β/q)
t,R+
T
≤ C 〈f〉(β/q)
t,R+
T
(6.36)
in all cases.
320 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
Our next step is to evaluate the Hölder constant of w (x, t) with respect to x.
Let 0 < ∆x = x− x. For ∆x > t1/q due to w (x, 0) = 0 we obtain
|w (x, t)− w (x, t)|
|∆x|β
≤ |w (x, t)− w (x, 0)|
tβ/q
+
|w (x, t)− w (x, 0)|
tβ/q
≤ 2 〈w〉(β/q)
t,R+
T
≤ C 〈f〉(β/q)
t,R+
T
. (6.37)
Next we suppose ∆x ≤ t1/q and ∆x ≤ x/2. Consider the difference
w (x, t)− w (x, t) =
∞∫
0
[G (x, ξ, t)−G (x, ξ, t)] f (ξ, t) dξ. (6.38)
The mean value theorem gives
G (x, ξ, t)−G (x, ξ, t) = Gx (θ, ξ, t) (x− x) , θ ∈ [x, x] ,
and since θ ∼ x ∼ x for ∆x ≤ x/2
G (x, ξ, t)−G (x, ξ, t) ≤ C |Gx (x, ξ, t)| |∆x| .
We use this inequality in (6.38) and arrive at the situation which we already en-
countered in the proof of Lemma 6.4 (see inequalities (6.23) and (6.25)). There-
fore
|w (x, t)− w (x, t)| ≤ C 〈f〉(β/q)
t,R+
T
∆x
x
tβ/q xq/2
t1/2
= C 〈f〉(β/q)
t,R+
T
|∆x|β |∆x|1−β
x
xq/2tβ/q−1/2
= C 〈f〉(β/q)
t,R+
T
|∆x|β
(
∆x
x
)1−q/2 (
∆x
t1/q
)q/2−β
≤ C 〈f〉(β/q)
t,R+
T
|∆x|β . (6.39)
In the case ∆x > x/2 and ∆x ≤ t1/q we use the inequality
|w (x, t)− w (x, t)|
|∆x|β
≤ C
{ |w (x, t)− w (0, t)|
xβ
+
|w (x, t)− w (0, t)|
xβ
}
,
and, for instance, the second term on the right hand side is estimated as follows
(see the estimate of i3 in the proof of Lemma 6.4):
|w (x, t)− w (0, t)|
xβ
≤ C 〈f〉(β/q)
t,R+
T
x
xβ
tβ/q
∞∫
0
|Gx (θ, ξ, t)| dξ
≤ C 〈f〉(β/q)
t,R+
T
x1−βtβ/q 1
θ
(
θq/2
t1/2
)2
≤ C 〈f〉(β/q)
t,R+
T
.
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 321
B.V. Bazaliy and S.P. Degtyarev
In this case we obtain
|w (x, t)− w (x, t)| ≤ C 〈f〉(β/q)
t,R+
T
|∆x|β . (6.40)
Inequalities (6.36), (6.37), (6.39), and (6.40) give (6.32). Lemma 6.5 is proved.
Corollary 6.1. Let f (x, t) ∈ Cβ,β/q
(
R+
T
)
, f (x, 0) ∈ C2β/q(R+),
w (x, t) =
∞∫
0
G (x, ξ, t) f (ξ, t) dξ.
The inequality
〈w〉(β)
x,BR,T
+ 〈w〉(β/q)
t,BR,T
≤ C (R)
(
〈f〉(β/q)
t,R+
T
+ |f (x, 0)|(2β/q)
R+
)
(6.41)
is valid.
Inequality (6.41) is the consequence of (6.18) and (6.32).
Lemma 6.6. (The potential of the initial data)
Let
w (x, t) =
∞∫
0
G (x, ξ, t) u0 (ξ) dξ, xαu0xx ∈ C2β/q
(
R+
)
. (6.42)
Then
〈wt〉(β)
x,Ω̃T
+ 〈wt〉(β/q)
t,Ω̃T
+ 〈wx〉(β+1−α)/q
t,Ω̃T
≤ C (R) |xαu0xx|2β/q
R+ . (6.43)
P r o o f. We can consider the case of u0 (0) = u0x (0) = 0 since otherwise
we can introduce the function v (x, t) = u (x, t) − u0 (0) − u0x (0)x in problem
(4.10)–(4.12). Using (4.18) and integrating by parts, we get
wt (x, t) =
∞∫
0
Gt (x, ξ, t) u0 (ξ) dξ =
∞∫
0
(ξαG (x, ξ, t))ξξ u0 (ξ) dξ
=
∞∫
0
G (x, ξ, t) ξαu0ξξ (ξ) dξ.
Lemma 6.4 gives the estimates of wt(x, t), and the estimate of wx(x, t) can be
obtained similarly.
322 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
Lemma 6.7. (The volume potential)
Let
w (x, t) =
t∫
0
dτ
∞∫
0
G (x, ξ, t− τ) f (ξ, τ) dξ, f (x, t) ∈ Cβ,β/q
(
R+
T
)
, (6.44)
f (x, 0) ∈ C2β/q
(
R+
)
.
Then
〈wt〉(β)
x,BR,T
+ 〈wt〉(β/q)
t,BR,T
+ 〈wx〉(β+1−α)/q
t,Ω̃T
≤ C (R)
(
〈f〉(β/q)
t,R+
T
+ |f (x, 0)|(2β/q)
R+
)
.
(6.45)
P r o o f. First we derive the representation for wt (x, t) . Let
wh (x, t) =
t−h∫
0
dτ
∞∫
0
G (x, ξ, t− τ) f (ξ, τ) dξ,
then
∂wh
∂t
(x, t) =
t−h∫
0
dτ
∞∫
0
Gt (x, ξ, t− τ) f (ξ, τ) dξ +
∞∫
0
G (x, ξ, h) f (ξ, t− h) dξ
=
t−h∫
0
dτ
∞∫
0
Gt (x, ξ, t− τ) [f (ξ, τ)− f (ξ, t)] dξ
−
∞∫
0
dξf (ξ, t)
t−h∫
0
dτGτ (x, ξ, t− τ)
+
∞∫
0
G (x, ξ, h) f (ξ, t− h) dξ =
t−h∫
0
dτ
∞∫
0
Gt (x, ξ, t− τ) [f (ξ, τ)− f (ξ, t)] dξ
−
∞∫
0
G (x, ξ, h) f (ξ, t) dξ +
∞∫
0
G (x, ξ, t) f (ξ, t) dξ +
∞∫
0
G (x, ξ, h) f (ξ, t− h) dξ.
Now we go to the limit as h → 0 and get
∂w
∂t
(x, t) =
t∫
0
dτ
∞∫
0
Gt (x, ξ, t− τ) [f (ξ, τ)− f (ξ, t)] dξ +
∞∫
0
G (x, ξ, t) f (ξ, t) dξ
= w1 (x, t) + w2 (x, t) . (6.46)
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 323
B.V. Bazaliy and S.P. Degtyarev
The estimate of the function w2 (x, t) is given by (6.41).
Since
f (ξ, τ)− f (ξ, t) = (f (ξ, τ)− f (ξ, 0))− (f (ξ, t)− f (ξ, 0)) ,
we can assume that in the representation of w1 (x, t), f (x, t) has the property
f (x, 0) = 0.
Consider the smoothness of w1 (x, t) with respect to x. Let 0 < ∆x = x − x
and ∆x ≤ x/2. We have
w1 (x, t)− w1 (x, t)
=
t∫
t−(∆x)q
dτ
∞∫
0
Gt (x, ξ, t− τ) [f (ξ, τ)− f (ξ, t)] dξ
−
t∫
t−(∆x)q
dτ
∞∫
0
Gt (x, ξ, t− τ) [f (ξ, τ)− f (ξ, t)] dξ
+
t−(∆x)q∫
0
dτ
∞∫
0
[Gt (x, ξ, t− τ)−Gt (x, ξ, t− τ)] [f (ξ, τ)− f (ξ, t)] dξ
= i1 (x, x, t) + i2 (x, x, t) + i3 (x, x, t) . (6.47)
The comparison of (6.4) and (6.5) gives |Gt| ≤ Ct−1 |G| . With this remark and
(4.17) we have
|i1 (x, x, t)| ≤ C 〈f〉(β/q)
t,R+
T
t∫
t−(∆x)q
dτ
∞∫
0
(t− τ)−1+β/q |G (x, ξ, t− τ)| dξ
≤ C 〈f〉(β/q)
t,R+
T
t∫
t−(∆x)q
dτ (t− τ)−1+β/q ≤ C 〈f〉(β/q)
t |∆x|β .
The integral i2 (x, x, t) is evaluated in a similar way. To estimate i3 (x, x, t) , we
change the integration variable ξ → u, use inequality (6.7), and note that due to
∆x ≤ x/2 the values θ ∈ [x, x] , x, and x are equivalent. As the result, we obtain
|i3 (x, x, t)| ≤ C 〈f〉(β/q)
t,R+
T
|∆x|
t−(∆x)q∫
0
(t− τ)β/q dτ
∞∫
0
|Gtx (θ, ξ, t− τ)| dξ
324 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
≤ C 〈f〉(β/q)
t,R+
T
|∆x|
x
t−(∆x)q∫
0
(t− τ)−1+β/q dτe−v2
v2
1/v∫
0
e−u2 (
1 + u2
)
u−α/qdu
+ C 〈f〉(β/q)
t,R+
T
|∆x|
x
t−(∆x)q∫
0
(t− τ)−1+β/q dτv1/q−1/2
× (1 + v)
∞∫
1/v
u1/q−1/2−α/qe−γ(v−u)2du.
We drop the estimates of the internal integrals (see, for example, the proof of
Lemma 6.4) and write down
|i3 (x, x, t)| ≤ C 〈f〉(β/q)
t,R+
T
|∆x|
x
t−(∆x)q∫
0
(t− τ)−1+β/q xq/2
(t− τ)1/2
dτ
≤ C 〈f〉(β/q)
t,R+
T
|∆x|
x
xq/2
∞∫
|∆x|q
y−1−1/2+β/qdy.
The last integral exists since, under our assumptions, 1
2 − β
q > 0 . Finally we get
|i3 (x, x, t)| ≤ C 〈f〉(β/q)
t,R+
T
|∆x|
x
xq/2 |∆x|q(−1/2+β/q)
= C 〈f〉(β/q)
t,R+
T
|∆x|β
(
∆x
x
)1−q/2
≤ C 〈f〉(β/q)
t |∆x|β .
Now let ∆x ≥ x/2. In this case we use the equality
w1 (x, t)− w1 (x, t) = [w1 (x, t)− w1 (0, t)] + [w1 (x, t)− w1 (0, t)] .
To estimate the second term on the right hand side, we represent it analogously
to the way it was done in (6.47)
w1 (x, t)− w1 (0, t) = a1 (x, t) + a2 (x, t) + a3 (x, t) .
The values of a1 (x, t) , a2 (x, t) are estimated similarly to i1 (x, x, t) , and a3 (x, t)
is estimated similarly to i3 (x, x, t) , but in the case of a3 (x, t) we use the inequal-
ities in (6.23) and (6.25). We arrive at
|w1 (x, t)− w1 (x, t)| ≤ C 〈f〉(β/q)
t,R+
T
|∆x|β .
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 325
B.V. Bazaliy and S.P. Degtyarev
So, we have proved that
〈w1 (x, t)〉(β)
x,R+
T
≤ C 〈f〉(β/q)
t,R+
T
. (6.48)
To evaluate the Hölder constant of the function w1 (x, t) with respect to t we
use the representation (0 < ∆t = t− t)
w1
(
x, t
)− w1 (x, t)
=
t∫
t−2∆t
dτ
∞∫
0
Gt
(
x, ξ, t− τ
) [
f (ξ, τ)− f
(
ξ, t
)]
dξ
−
t∫
t−∆t
dτ
∞∫
0
Gt (x, ξ, t− τ) [f (ξ, τ)− f (ξ, t)] dξ
+
t−∆t∫
0
dτ
∞∫
0
[
Gt
(
x, ξ, t− τ
)−Gt (x, ξ, t− τ)
]
[f (ξ, τ)− f (ξ, t)] dξ
+
t−∆t∫
0
dτ
∞∫
0
Gt
(
x, ξ, t− τ
) [
f (ξ, τ)− f
(
ξ, t
)]
dξ
= A1
(
x, t, t
)
+ A2
(
x, t, t
)
+ A3
(
x, t, t
)
+ A4
(
x, t, t
)
. (6.49)
We can estimate A4
(
x, t, t
)
as follows:
∣∣A4
(
x, t, t
)∣∣ ≤
∣∣∣∣∣∣
∞∫
0
[
f (ξ, t)− f
(
ξ, t
)]
dξ
t−∆t∫
0
dτGτ
(
x, ξ, t− τ
)
∣∣∣∣∣∣
≤ C 〈f〉(β/q)
t,R+
T
∣∣t− t
∣∣β/q
∞∫
0
[∣∣G (
x, ξ, t
)∣∣ + |G (x, ξ, ∆t)|] dξ ≤ C 〈f〉(β/q)
t,R+
T
|∆t|β/q .
The integrals A1
(
x, t, t
)
, A2
(
x, t, t
)
are estimated similarly
∣∣A1
(
x, t, t
)∣∣ ≤ C 〈f〉(β/q)
t,R+
T
t∫
t−2∆t
(
t− t
)−1+β/q
dτ
∞∫
0
∣∣G (
x, ξ, t− τ
)∣∣ dξ
326 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
≤ C 〈f〉(β/q)
t,R+
T
t∫
t−2∆t
(
t− t
)−1+β/q
dτ ≤ C 〈f〉(β/q)
t,R+
T
|∆t|β/q .
In the integral A3
(
x, t, t
)
it is natural to assume ∆t ≤ t. With this condition for
any θ ∈ [
t, t
]
the values θ, t, t are equivalent, so that if we apply the mean value
theorem, we obtain
Gt
(
x, ξ, t− τ
)−Gt (x, ξ, t− τ) = Gtt (x, ξ, θ − τ)∆t ∼ Gtt (x, ξ, t− τ) ∆t.
We observe that from (6.8) and (6.4) it follows that
|Gtt (x, ξ, t− τ)| ≤ C |t− τ |−2 |G (x, ξ, t− τ)| .
Therefore
∣∣A3
(
x, t, t
)∣∣ ≤ C 〈f〉(β/q)
t,R+
T
∆t
t−∆t∫
0
dτ (t− τ)−2+β/q
≤ C 〈f〉(β/q)
t,R+
T
∆t
t−∆t∫
−∞
dτ (t− τ)−2+β/q ≤ C 〈f〉(β/q)
t,R+
T
(∆t)β/q .
Thus it is proved that
〈w1 (x, t)〉(β/q)
t,R+
T
≤ C 〈f〉(β/q)
t,R+
T
. (6.50)
The inequalities (6.48), (6.50) together with the estimate of the function
w2 (x, t) give (6.45) for wt(x, t). The estimate of wx(x, t) is obtained in a similar
way. This completes the proof.
R e m a r k 6.2. Since the function w (x, t) from (6.44) is a solution of the
equation wt − xαwxx = f (x, t) , we get
〈xαwxx〉(β)
x,BR,T
+ 〈xαwxx〉(β/q)
t,BR,T
≤ C (R)
(
〈f〉(β/q)
t,R+
T
+ |f (x, 0)|(2β/q)
R+
)
(6.51)
The kernel of the simple layer potential in (4.19) is
g (x, t) = G (x, ξ, t) ξα |ξ=0= Ct−1+1/qe
− xq
q2t . (6.52)
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 327
B.V. Bazaliy and S.P. Degtyarev
Lemma 6.8. (The simple layer potential)
Let
w (x, t) =
t∫
0
g (x, t− τ) f1 (τ) dτ, f1 (t) ∈ C
1+β−α
q ([0, T ]) , f1 (0) = 0. (6.53)
Then
〈wt〉(β)
x + 〈wt〉(β/q)
t + 〈wx〉(β+1−α)/q
t ≤ C 〈f1〉
(
1+β−α
q
)
t . (6.54)
P r o o f. To prove Theorem 4.1 it is sufficient to consider the case of
f1 (0) = 0 since otherwise we can introduce the other unknown function as it was
proposed in the proof of Lemma 6.7. We represent the derivative wt (x, t) in the
form
wt (x, t) =
t∫
0
gt (x, t− τ) f1 (τ) dτ
=
t∫
0
gt (x, t− τ) [f1 (τ)− f1 (t)] dτ − f1 (t)
t∫
0
gτ (x, t− τ) dτ
=
t∫
0
gt (x, t− τ) [f1 (τ)− f1 (t)] dτ − f1 (t) g (x, t) = w1 (x, t) + w2 (x, t) . (6.55)
For the function w2 (x, t) the Hölder constant in t is obtained as follows. We
represent w2 (x, t) as
w2 (x, t) = g1 (t) g2 (x, t) , g1 (t) = f1 (t) /t(1−α)/q, g2 (x, t) = e
− xq
q2t
and use the inequality
〈w2 (x, t)〉(β/q)
t ≤ 〈g1 (t)〉(β/q)
t max |g2 (x, t)|+ max |g1 (t)| 〈g2 (x, t)〉(β/q)
t . (6.56)
The value 〈g2 (x, t)〉(β/q)
t can be evaluated as follows:
〈g2 (x, t)〉(β/q)
t ≤ t1−β/q max |g2t| ≤ Ct1−β/qt−1 = Ct
−β
q .
Since g1 (t) ≤ 〈f1〉
(
1+β−α
q
)
t tβ/q,
max |g1 (t)| 〈g2 (x, t)〉(β/q)
t ≤ C 〈f1〉
(
1+β−α
q
)
t .
328 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
The term 〈g1 (t)〉(β/q)
t max |g2 (x, t)| is estimated similarly, thus
〈w2 (x, t)〉(β/q)
t ≤ C 〈f1〉
(
1+β−α
q
)
t . (6.57)
For the function w1 (x, t) we consider the difference
w1
(
x, t
)− w1 (x, t) =
t∫
t−2∆t
gt
(
x, t− τ
) [
f1 (τ)− f1
(
t
)]
dτ
−
t∫
t−∆t
gt (x, t− τ) [f1 (τ)− f1 (t)] dτ
+
t−∆t∫
0
[
gt
(
x, t− τ
)− gt (x, t− τ)
]
[f1 (τ)− f1 (t)] dτ
+
[
f1 (t)− f1
(
t
)] t−∆t∫
0
gt
(
x, t− τ
)
dτ =
4∑
k=1
bk
(
x, t, t
)
. (6.58)
The estimate of b1
(
x, t, t
)
has the form
∣∣b1
(
x, t, t
)∣∣ ≤ C 〈f1〉
(
1+β−α
q
)
t
t∫
t−2∆t
(
t− τ
)−2+ 1
q
+ 1+β−α
q e
− xq
q2(t−τ) dτ
≤ C 〈f1〉
(
1+β−α
q
)
t
2∆t∫
0
y
−2+ 2
q
+β−α
q dy ≤ C 〈f1〉
(
1+β−α
q
)
t |∆t|β/q .
The integral b2
(
x, t, t
)
is estimated in the same way. It is natural to assume that
∆t ≤ t in b3
(
x, t, t
)
, otherwise this integral is absent. The application of the
mean value theorem leads to (γ = const > 0)
∣∣b3
(
x, t, t
)∣∣ ≤ C 〈f1〉
(
1+β−α
q
)
t |∆t|
t−∆t∫
0
(t− τ)−3+ 1
q
+ 1+β−α
q e
−γ xq
q2(t−τ) dτ
≤ C 〈f1〉
(
1+β−α
q
)
t |∆t|
t∫
∆t
y
−3+ 1
q
+ 1+β−α
q dy ≤ C 〈f1〉
(
1+β−α
q
)
t |∆t|β/q .
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 329
B.V. Bazaliy and S.P. Degtyarev
Finally,
∣∣b4
(
x, t, t
)∣∣ ≤ C 〈f1〉
(
1+β−α
q
)
t |∆t| 1+β−α
q
t−∆t∫
0
(t− τ)−2+1/q dτ
≤ C 〈f1〉
(
1+β
q
)
t |∆t| 1+β−α
q
∞∫
∆t
y
−2+ 1
q dy ≤ C 〈f1〉
(
1+β−α
q
)
t |∆t|β/q .
As the result, we have shown that
〈wt〉(β/q)
t ≤ C 〈f1〉
(
1+β−α
q
)
t . (6.59)
To estimate the Hölder constant for wt (x, t) in x we set 0 < ∆x = x−x and
first consider the case of ∆x ≥ t1/q. Since wt (x, 0) = 0, we can write
|wt (x, t)− wt (x, t)|
|∆x|β
≤ |wt (x, t)|
tβ/q
+
|wt (x, t)|
tβ/q
≤ C 〈f1〉
(
1+β−α
q
)
t
by using (6.59). Now we consider the case of ∆x < t1/q, first for the function
w2 (x, t) . By the mean value theorem
g (x, t)− g (x, t) = Ct−1+1/q
[
e
− xq
q2t − e
− xq
q2t
]
= Ct−1+1/q∆x
θq−1
t
e
− θq
q2t , θ ∈ [x, x] ,
so that
|w2 (x, t)− w2 (x, t)| ≤ C 〈f1〉
(
1+β−α
q
)
t ∆xt
−1+ 1+β−α
q
≤ C 〈f1〉
(
1+β−α
q
)
t |∆x|β t
−1+ 1+β−α
q
+ 1−β
q
≤ C 〈f1〉
(
1+β−α
q
)
t |∆x|β .
For the function w1 (x, t) we study the difference
w1 (x, t)− w1 (x, t) =
t∫
t−(∆x)q
gt (x, t− τ) (f1 (τ)− f1 (t)) dτ
−
t∫
t−(∆x)q
gt (x, t− τ) (f1 (τ)− f1 (t)) dτ
330 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem
+
t−(∆x)q∫
0
[gt (x, t− τ)− gt (x, t− τ)] (f1 (τ)− f1 (t)) dτ =
3∑
k=1
ak (x, x, t) .
It is easy to estimate a1 (x, x, t) and a2 (x, x, t) , for example, taking into account
∆x < t1/q,
|a1 (x, x, t)| ≤ 〈f1〉
(
1+β−α
q
)
t
t∫
t−(∆x)q
(t− τ)
1+β−α
q
−2+ 1
q e
− xq
q2(t−τ) dτ
≤ C 〈f1〉
(
1+β−α
q
)
t
(∆x)q∫
0
y
1+β−α
q
−2+ 1
q dy ≤ C 〈f1〉
(
1+β−α
q
)
t |∆x|β .
Finally we estimate a3 (x, x, t) by the mean value theorem
|a3 (x, x, t)| ≤ C 〈f1〉
(
1+β−α
q
)
t ∆x
t−(∆x)q∫
0
(t− τ)−2+ 1+β−α
q e
−γ θq
q2(t−τ) dτ
≤ C 〈f1〉
(
1+β−α
q
)
t ∆x
∞∫
(∆x)q
y
−2+ 1+β−α
q dy
≤ C 〈f1〉
(
1+β−α
q
)
t ∆x
1+q
(
−1+ 1+β−α
q
)
≤ C 〈f1〉
(
1+β−α
q
)
t |∆x|β .
Thus
〈wt〉(β)
x ≤ C 〈f1〉
(
1+β−α
q
)
t . (6.60)
The estimates of the function wt(x, t) are proved by inequalities (6.59), (6.60).
The estimate of wx(x, t) is obtained in a similar way.
Theorem 4.1 is the consequence of Lemmas 6.6–6.8.
References
[1] B.V. Bazaliy and S.P. Degtyarev, Solvability of a Problem with an Unknown Bound-
ary Between the Domains of a Parabolic and an Elliptic Equations. — Ukr. Math. J.
41 (1989), No. 10, 1155–1160.
[2] B.V. Bazaliy and S.P. Degtyarev, On the Classical Solvability of the Multidimen-
sional Stefan Problem for Convective Motion of a Viscous Incompressible Fluid. —
Math. USSR Sb. 60 (1988), No. 1, 11–17.
Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 331
B.V. Bazaliy and S.P. Degtyarev
[3] B.V. Bazaliy and A. Friedman, A Free Boundary Problem for an Elliptic-Parabolic
System: Application to a Model of Tumor Growth. — Commun. Part. Diff. Eq. 28
(2003), Nos. 3–4, 517–560.
[4] M. Bertsch and J. Hulshof, Regularity Results for an Elliptic-Parabolic Free Bound-
ary Problem. — Trans. Amer. Math. Soc. 297 (1986), No. 1, 337–350.
[5] C.J. Van Duijn, Nonstationary Filtration in Partially Saturated Porous Media:
Contunuity of the Free Boundary. — Arch. Rational Mech. Anal. 79 (1982), No. 3,
261–265.
[6] C.J. Van Duijn and J. Hulshof, An Elliptic-Parabolic Free Boundary Problem with
a Nonlocal Boundary Condition. — Arch. Rational Mech. Anal. 99 (1987), No. 1,
61–73.
[7] C.J. Van Duijn and L.A. Peletier, Nonstationary Filtration in Partially Saturated
Porous Media. — Arch. Rational Mech. Anal. 78 (1982), No. 2, 173–198.
[8] A. Fasano and M. Primicerio, Liquid Flow in Partially Saturated Porous Media.
— J. Inst. Math. Appl. 23 (1979), No. 4, 503–517.
[9] I.S. Gradshteyn, and I.M. Ryzhik, Table of Integrals, Series, and Products. Trans-
lated from the fourth Russian edition. Fifth edition. Academic Press, Inc., Boston,
MA, 1994. xlviii+1204 pp.
[10] J. Hulshof, An Elliptic-Parabolic Free Boundary Problem: Continuity of the Inter-
face. — Proc. Royal Soc. Edinburg 106A (1987), No. 3, 327–339.
[11] J. Hulshof and L.A. Peletier, An Elliptic-Parabolic Free Boundary Problem. —
Nonlinear Anal: Theory, Method Appl. 10 (1986), No. 12, 1327–1346.
[12] O.A. Ladyzhenskaya, V.A. Solonnikov, and N.N. Ural’tceva, Linear and Guasilinear
Equations of Parabolic Type. Translations of Mathematical Monographs, Vol. 23.
AMS, Providence, R.I., 1967.
[13] P. Mannucci and J.L. Vazquez, Viscosity Solutions for Elliptic-Parabolic Problems.
— Nonlinear Differ. Equ. Appl. 14 (2007), Nos. 1–2, 75–90.
332 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4
|