Hyers-Ulam Stability of Ternary (σ, t, ξ)-Derivations on C*-Ternary Algebras
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2012
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/106705 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Hyers-Ulam Stability of Ternary (σ, t, ξ)-Derivations on C*-Ternary Algebras / M.E. Gordji, R. Farrokhzad, S.A.R. Hosseinioun // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 1. — С. 3-20. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-106705 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1067052016-10-04T03:02:14Z Hyers-Ulam Stability of Ternary (σ, t, ξ)-Derivations on C*-Ternary Algebras Gordji, M.E. Farrokhzad, R. Hosseinioun, S.A.R. 2012 Article Hyers-Ulam Stability of Ternary (σ, t, ξ)-Derivations on C*-Ternary Algebras / M.E. Gordji, R. Farrokhzad, S.A.R. Hosseinioun // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 1. — С. 3-20. — Бібліогр.: 25 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106705 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
format |
Article |
author |
Gordji, M.E. Farrokhzad, R. Hosseinioun, S.A.R. |
spellingShingle |
Gordji, M.E. Farrokhzad, R. Hosseinioun, S.A.R. Hyers-Ulam Stability of Ternary (σ, t, ξ)-Derivations on C*-Ternary Algebras Журнал математической физики, анализа, геометрии |
author_facet |
Gordji, M.E. Farrokhzad, R. Hosseinioun, S.A.R. |
author_sort |
Gordji, M.E. |
title |
Hyers-Ulam Stability of Ternary (σ, t, ξ)-Derivations on C*-Ternary Algebras |
title_short |
Hyers-Ulam Stability of Ternary (σ, t, ξ)-Derivations on C*-Ternary Algebras |
title_full |
Hyers-Ulam Stability of Ternary (σ, t, ξ)-Derivations on C*-Ternary Algebras |
title_fullStr |
Hyers-Ulam Stability of Ternary (σ, t, ξ)-Derivations on C*-Ternary Algebras |
title_full_unstemmed |
Hyers-Ulam Stability of Ternary (σ, t, ξ)-Derivations on C*-Ternary Algebras |
title_sort |
hyers-ulam stability of ternary (σ, t, ξ)-derivations on c*-ternary algebras |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/106705 |
citation_txt |
Hyers-Ulam Stability of Ternary (σ, t, ξ)-Derivations on C*-Ternary Algebras / M.E. Gordji, R. Farrokhzad, S.A.R. Hosseinioun // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 1. — С. 3-20. — Бібліогр.: 25 назв. — англ. |
series |
Журнал математической физики, анализа, геометрии |
work_keys_str_mv |
AT gordjime hyersulamstabilityofternarystxderivationsoncternaryalgebras AT farrokhzadr hyersulamstabilityofternarystxderivationsoncternaryalgebras AT hosseiniounsar hyersulamstabilityofternarystxderivationsoncternaryalgebras |
first_indexed |
2025-07-07T18:52:42Z |
last_indexed |
2025-07-07T18:52:42Z |
_version_ |
1837015355191459840 |
fulltext |
Journal of Mathematical Physics, Analysis, Geometry
2012, v. 8, No. 1, pp. 3–20
Hyers–Ulam Stability of Ternary (σ, τ, ξ)-Derivations
on C∗-Ternary Algebras
M. Eshaghi Gordji
Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
Center of Excellence in Nonlinear Analysis and Applications (CENAA),
Semnan University, Iran
E-mail: madjid.eshaghi@gmail.com
R. Farrokhzad and S.A.R. Hosseinioun
Department of Mathematics, Shahid Beheshti University, Tehran, Iran
E-mail: razieh.farokhzad@yahoo.com
ahosseinioun@yahoo.com
Received October 8, 2009
Let q be a positive rational number and let A be a C∗-ternary algebra.
Let σ, τ and ξ be linear maps on A. We prove the generalized Hyers–Ulam
stability of Jordan ternary (σ, τ, ξ)-derivations, ternary (σ, τ, ξ)-derivations
and Lie ternary (σ, τ, ξ)-derivations in A for the following Euler–Lagrange
type additive mapping:
( n∑
i=1
f(
n∑
j=1
q(xi − xj))
)
+ nf(
n∑
i=1
qxi) = nq
n∑
i=1
f(xi).
Key words: C∗-ternary algebra, Hyers–Ulam stability, ternary Banach
algebra, Euler–Lagrange type additive mapping.
Mathematics Subject Classification 2000: 39B82, 39B52, 47C10, 17Cxx,
46L05.
1. Introduction
Ternary algebraic operations were considered in the XIX century by several
mathematicians such as A. Cayley who introduced the notion of cubic matrix
which in turn was generalized by Kapranov, Gelfand and Zelevinskii
in 1990. The comments on physical applications of ternary structures can be
found in [1]. A C∗-ternary algebra is a complex Banach space A, equipped with
a ternary product (x, y, z) → [xyz] of A3 into A, which is C-linear in the outer
c© M. Eshaghi Gordji, R. Farrokhzad, and S.A.R. Hosseinioun, 2012
M. Eshaghi Gordji, R. Farrokhzad, and S.A.R. Hosseinioun
variables, conjugate C-linear in the middle variable, and associative in the sense
that [xy[zwv]] = [x[wzy]v] = [[xyz]wv], and satisfies ‖[xyz]‖ ≤ ‖x‖.‖y‖.‖z‖ and
‖[xxx]‖ = ‖x‖3 (see [1, 2]). Every left Hilbert C∗-module is a C∗-ternary algebra
via the ternary product [xyz] := 〈x, y〉z.
If a C∗-ternary algebra (A, [...]) has an identity, i.e. an element e ∈ A such
that x = [xee] = [eex] for all x ∈ A, then it is routine to verify that A, endowed
with x ◦ y := [xey] and x∗ := [exe], is a unital C∗-algebra. Conversely, if (A, ◦) is
a unital C∗-algebra, then [xyz] := x ◦ y∗ ◦ z makes A into a C∗-ternary algebra
[3].
Let A be a C∗-ternary algebra and let σ, τ and ξ be linear maps on A. A
C-linear mapping δ : A → A is called a C∗-Jordan ternary (σ, τ, ξ)-derivation if
δ([xxx]) = [δ(x)τ(x)ξ(x)] + [σ(x)δ(x)ξ(x)] + [σ(x)τ(x)δ(x)]
for all x ∈ A. A C-linear mapping D : A → A is called a C∗-ternary (σ, τ, ξ)-
derivation if
D([xyz]) = [D(x)τ(y)ξ(z)] + [σ(x)D(y)ξ(z)] + [σ(x)τ(y)D(z)]
for all x, y, z ∈ A. A C-linear mapping L : A → A is called a C∗-Lie ternary
(σ, τ, ξ)-derivation if
L([xyz]) = [L(x)yz](σ,τ,ξ) + [L(y)xz](σ,τ,ξ) + [L(z)yx](σ,τ,ξ)
for all x, y, z ∈ A, where [xyz](σ,τ,ξ) = xτ(y)ξ(z)− σ(z)τ(y)x.
The stability problem of functional equations originated from a question of
Ulam [4] concerning the stability of group homomorphisms. Hyers [5] gave a first
affirmative partial answer to the question of Ulam for Banach spaces. Hyers’s
theorem was generalized by Aoki [6] for additive mappings and by Th.M. Rassias
[7] for linear mappings by considering an unbounded Cauchy difference as follows.
Theorem 1.1. Let f : E −→ E′ be a mapping from a normed vector space E
into a Banach space E′ subject to the inequality
‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (1.1)
for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then there
exists a unique additive mapping T : E −→ E′ such that
‖f(x)− T (x)‖ ≤ 2ε
2− 2p
‖x‖p (1.2)
for all x ∈ E. If p < 0, then inequality (1.1) holds for all x, y 6= 0, and (1.2) for
x 6= 0. Also, if the function t 7→ f(tx) from R into E′ is continuous in real t for
each fixed x ∈ E, then T is linear.
4 Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1
Hyers–Ulam Stability of Ternary (σ, τ, ξ)-Derivations on C∗-Ternary Algebras
Th.M. Rassias [8] during the 27th international Symposium on Functional
Equations asked the question whether such a theorem can also be proved for
p ≥ 1. Gajda [9], following the same approach as in Th.M. Rassias’ [7], gave an
affirmative solution to this question for p > 1. It was shown by Gajda [9], as well
as by Th.M. Rassias and P. S̆emrl [10], that one cannot prove a Th.M. Rassias
type theorem when p = 1.
A generalization of the Th.M. Rassias theorem was obtained by Găvrtua [11]
by replacing the unbounded Cauchy difference by the general control function in
the spirit of Th.M. Rassias’ approach.
On the other hand, J.M. Rassias [12] generalized the Hyers stability result
by presenting a weaker condition controlled by a product of different powers of
norms. During the last three decades, a number of papers and research mono-
graphs have been published on various generalizations and applications of the
generalized Hyers–Ulam stability to a number of functional equations and map-
pings (see [13–19]).
The purpose of the present paper is to study the generalized Hyers–Ulam
stability of some functional equations on C∗-ternary algebras related to the Euler–
Lagrange type additive mapping
( n∑
i=1
f(
n∑
j=1
q(xi − xj))
)
+ nf(
n∑
i=1
qxi) = nq
n∑
i=1
f(xi),
whose solution is said to be additive mapping of Euler–Lagrange type. The reader
is referred to [20–22] for essential work in the subject.
In Sec. 2, we prove the generalized Hyers–Ulam stability of C∗-Jordan ternary
(σ, τ, ξ)-derivations in C∗-ternary algebras for the Euler–Lagrange type additive
mapping (see [23]).
In Sec. 3, we prove the generalized Hyers–Ulam stability of C∗-ternary (σ, τ, ξ)-
derivations in C∗-ternary algebras for the Euler–Lagrange type additive mapping.
In Sec. 4, we prove the generalized Hyers–Ulam stability of C∗-Lie ternary
(σ, τ, ξ)-derivations in C∗-ternary algebras for the Euler–Lagrange type additive
mapping.
Throughout this paper, assume that A is a C∗-ternary algebra with norm
‖.‖A, σ, τ and ξ are linear maps on A. Let q be a positive rational number. For
a given mapping f : A → A and a given µ ∈ C, we define Dµf : An → A by
Dµf(x1, . . . , xn) :=
( n∑
i=1
f(
n∑
j=1
qµ(xi − xj))
)
+ nf(
n∑
i=1
qµxi)− nqµ
n∑
i=1
f(xi)
for all x1, . . . , xn ∈ A.
Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1 5
M. Eshaghi Gordji, R. Farrokhzad, and S.A.R. Hosseinioun
2. Stability of C∗-Jordan Ternary (σ, τ, ξ)-Derivations
In this section our aim is to establish the Hyers–Ulam stability of C∗-Jordan
ternary (σ, τ, ξ)-derivations in C∗-ternary algebras for the Euler–Lagrange type
additive mapping.
Theorem 2.1. Let n ∈ N. Assume that r > 3 if nq > 1 and that 0 < r < 1 if
nq < 1. Let θ be a positive real number, and let f : A → A be an odd mapping
for which there exist mappings g, h, k : A → A with g(0) = h(0) = k(0) = 0 such
that
‖Dµf(x1, . . . , xn)‖ ≤ θ
n∑
j=1
‖xj‖r, (2.1)
‖f([xxx])− [f(x)h(x)k(x)]− [g(x)f(x)k(x)]− [g(x)h(x)f(x)]‖ ≤ 3θ‖x‖r, (2.2)
‖g(qµx1 + . . .+qµxn)−qµg(x1)− . . .−qµg(xn)‖ ≤ θ(‖x1‖r + . . .+‖xn‖r), (2.3)
‖h(qµx1+ . . .+qµxn)−qµh(x1)− . . . .−qµh(xn)‖ ≤ θ(‖x1‖r + . . .+‖xn‖r), (2.4)
‖k(qµx1 + . . .+ qµxn)− qµk(x1)− . . .− qµk(xn)‖ ≤ θ(‖x1‖r + . . .+‖xn‖r) (2.5)
for all µ ∈ T1 := {λ ∈ C||λ| = 1} and all x1, . . . , xn, x ∈ A. Then there exist
unique linear mappings σ, τ, and ξ from A to A and a unique C∗-Jordan ternary
(σ, τ, ξ)-derivation δ : A → A satisfying
‖g(x)− σ(x)‖ ≤ nθ
(nq)r − nq
‖x‖r, (2.6)
‖h(x)− τ(x)‖ ≤ nθ
(nq)r − nq
‖x‖r, (2.7)
‖k(x)− ξ(x)‖ ≤ nθ
(nq)r − nq
‖x‖r, (2.8)
‖f(x)− δ(x)‖ ≤ θ
(nq)r − nq
‖x‖r (2.9)
for all x ∈ A.
P r o o f. Letting µ = 1 and x1 = . . . = xn = x in (2.1), we get
‖nf(nqx)− n2qf(x)‖ ≤ nθ‖x‖r
for all x ∈ A. So
‖f(x)− nqf(
x
nq
)‖ ≤ θ
(nq)r
‖x‖r
6 Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1
Hyers–Ulam Stability of Ternary (σ, τ, ξ)-Derivations on C∗-Ternary Algebras
for all x ∈ A. So
‖(nq)lf(
x
(nq)l
)− (nq)l+mf(
x
(nq)l+m
)‖
≤
l+m−1∑
j=l
‖(nq)jf(
x
(nq)j
)− (nq)j+1f(
x
(nq)j+1
)‖
≤ θ
(nq)r
l+m−1∑
j=l
(nq)j
(nq)rj
‖x‖r (2.10)
for all nonnegative integers m and l and all x ∈ A. It follows from (2.10) that
the sequence {(nq)mf( x
(nq)m )} is a Cauchy sequence for all x ∈ A. Since A is
complete, then the sequence {(nq)mf( x
(nq)m )} converges. So one can define the
mapping δ : A → A by
δ(x) := lim
m→∞(nq)mf(
x
(nq)m
)
for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (2.10), we
get
‖f(x)− δ(x)‖ ≤ θ
(nq)r
∞∑
j=0
(nq)j
(nq)rj
‖x‖r
for all x ∈ A. So (2.9) holds for all x ∈ A.
It follows from (2.1) that
‖D1δ(x1, . . . , xn)‖ = lim
m→∞(nq)m‖D1f(
x1
(nq)m
, . . . ,
xn
(nq)m
)‖
≤ lim
m→∞
(nq)mθ
(nq)mr
n∑
j=1
‖xj‖r
for all x1, . . . , xn ∈ A. Hence,
D1δ(x1, . . . , xn) = 0
for all x1, . . . , xn ∈ A. By Lemma 3.1 of [24], the mapping δ : A → A is Cauchy
additive. By the same reasoning as in the proof of Theorem 2.1 of [25], the
mapping δ : A → A is linear.
Also letting µ = 1 and x1 = . . . = xn = x in (2.3), we get
‖g(qnx)− qng(x)‖ ≤ nθ‖x‖r
for all x ∈ A. So
‖g(x)− qng(
x
nq
)‖ ≤ nθ
(nq)r
‖x‖r
Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1 7
M. Eshaghi Gordji, R. Farrokhzad, and S.A.R. Hosseinioun
for all x ∈ A. We easily prove that by induction that
‖(nq)lg(
x
(nq)l
)− (nq)l+mg(
x
(nq)l+m
)‖
≤
l+m−1∑
j=l
‖(nq)jg(
x
(nq)j
)− (nq)j+1g(
x
(nq)j+1
)‖
≤ nθ
(nq)r
l+m−1∑
j=l
(nq)j
(nq)rj
‖x‖r (2.11)
for all nonnegative integers m and l with x ∈ A. It follows from (2.11) that
the sequence {(nq)mg( x
(nq)m )} is a Cauchy sequence for all x ∈ A. Since A is
complete, the sequence {(nq)mg( x
(nq)m )} converges. So one can define the mapping
σ : A → A by
σ(x) := lim
m→∞(nq)mg(
x
(nq)m
)
for all x ∈ A. We easily prove by (2.3) that σ(µx + µy) = µσ(x) + µσ(y) and by
letting l = 0 and taking the limit m →∞ in (2.11), we get
‖g(x)− σ(x)‖ ≤ nθ
(nq)r
∞∑
j=0
(nq)j
(nq)rj
‖x‖r
for all x ∈ A. So (2.6) holds for all x ∈ A. Similarly, there exist linear mappings
τ and ξ on A satisfying (2.7) and (2.8), respectively.
It follows from (2.2) that
‖δ([xxx])− [δ(x)τ(x)ξ(x)]− [σ(x)δ(x)ξ(x)]− [σ(x)τ(x)δ(x)]‖
= lim
m→∞(nq)3m‖f(
[xxx]
(nq)3m
)− [f(
x
(nq)m
)h(
x
(nq)m
)k(
x
(nq)m
)]
− [g(
x
(nq)m
)f(
x
(nq)m
)k(
x
(nq)m
)]− [g(
x
(nq)m
)h(
x
(nq)m
)f(
x
(nq)m
)]‖
≤ lim
m→∞
3(nq)3mθ
(nq)mr
(‖x‖r) = 0
for all x ∈ A. So
δ([xxx]) = [δ(x)τ(x)ξ(x)] + [σ(x)δ(x)ξ(x)] + [σ(x)τ(x)δ(x)]
for all x ∈ A.
8 Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1
Hyers–Ulam Stability of Ternary (σ, τ, ξ)-Derivations on C∗-Ternary Algebras
Now, let δ′ : A → A be another mapping satisfying (2.1) and (2.9). Then we have
‖δ(x)− δ′(x)‖ = (nq)m‖δ( x
(nq)m
)− δ′(
x
(nq)m
)‖
≤ (nq)m‖δ( x
(nq)m
)− f(
x
(nq)m
)‖+ ‖δ′( x
(nq)m
)− f(
x
(nq)m
)‖
≤ 2(nq)mθ
((nq)r − nq)(nq)mr
‖x‖r,
which tends to zero as m →∞ for all x ∈ A. So we can conclude that δ(x) = δ′(x)
for all x ∈ A. This proves the uniqueness property of δ. Thus the mapping
δ : A → A is a unique C∗-Jordan ternary (σ, τ, ξ)-derivation satisfying (2.9).
Similarly, we can prove the uniqueness properties of σ, τ and ξ on A, and the
proof of the theorem is complete.
Theorem 2.2. Let n ∈ N. Assume that 0 < r < 1 if nq > 1 and that r > 3 if
nq < 1. Let θ be a positive real number, and let f : A → A be an odd mapping for
which there exist mappings g, h, k : A → A with g(0) = h(0) = k(0) = 0 satisfying
(2.1)–(2.5). Then there exist unique linear mappings σ, τ, and ξ from A to A and
a unique C∗-Jordan ternary (σ, τ, ξ)-derivation δ : A → A satisfying
‖g(x)− σ(x)‖ ≤ nθ
nq − (nq)r
‖x‖r, (2.12)
‖h(x)− τ(x)‖ ≤ nθ
nq − (nq)r
‖x‖r, (2.13)
‖k(x)− ξ(x)‖ ≤ nθ
nq − (nq)r
‖x‖r, (2.14)
‖f(x)− δ(x)‖ ≤ θ
nq − (nq)r
‖x‖r (2.15)
for all x ∈ A.
P r o o f. Letting µ = 1 and x1 = . . . = xn = x in (2.1), we get
‖nf(nqx)− n2qf(x)‖ ≤ nθ‖x‖r
for all x ∈ A. So
‖f(x)− 1
nq
f(nqx)‖ ≤ θ
nq
‖x‖r
Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1 9
M. Eshaghi Gordji, R. Farrokhzad, and S.A.R. Hosseinioun
for all x ∈ A. So
‖ 1
(nq)l
f((nq)lx)− 1
(nq)l+m
f((nq)l+mx)‖
≤
l+m−1∑
j=l
‖ 1
(nq)j
f((nq)jx)− 1
(nq)j+1
f((nq)j+1x)‖
≤ θ
nq
l+m−1∑
j=l
(nq)rj
(nq)j
‖x‖r (2.16)
for all nonnegative integers m and l with x ∈ A. It follows from (2.16) that
the sequence { 1
(nq)m f((nq)mx)} is a Cauchy sequence for all x ∈ A. Since A
is complete, the sequence { 1
(nq)m f((nq)mx)} converges. So one can define the
mapping δ : A → A by
δ(x) := lim
m→∞
1
(nq)m
f((nq)mx)
for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (2.16), we
get
‖f(x)− δ(x)‖ ≤ θ
nq
∞∑
j=0
(nq)rj
(nq)j
‖x‖r
for all x ∈ A. So (2.15) holds for all x ∈ A.
The rest of the proof is similar to the proof of Theorem 2.1.
Theorem 2.3. Let n ∈ N. Assume that r > 1 if nq > 1 and that 0 < nr < 1
if nq < 1. Let θ be a positive real number, and let f : A → A be an odd mapping
for which there exist mappings g, h, k : A → A with g(0) = h(0) = k(0) = 0
satisfying (2.3)–(2.5) such that
‖Dµf(x1, . . . , xn)‖ ≤ θ
n∏
j=1
‖xj‖r (2.17)
‖f([xxx])− [f(x)h(x)k(x)]− [g(x)f(x)k(x)]− [g(x)h(x)f(x)]‖ ≤ θ‖x‖3r (2.18)
for all µ ∈ T1 := {λ ∈ C||λ| = 1} and all x1, . . . , xn, x ∈ A. Then there exist
unique linear mappings σ, τ, and ξ from A to A and a unique C∗-Jordan ternary
(σ, τ, ξ)-derivation δ : A → A satisfying (2.6)–(2.8) such that
‖f(x)− δ(x)‖ ≤ θ
n((nq)nr − nq)
‖x‖nr (2.19)
for all x ∈ A.
10 Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1
Hyers–Ulam Stability of Ternary (σ, τ, ξ)-Derivations on C∗-Ternary Algebras
P r o o f. Letting µ = 1 and x1 = . . . = xn = x in (2.17), we get
‖nf(nqx)− n2qf(x)‖ ≤ θ‖x‖nr
for all x ∈ A. So
‖f(x)− nqf(
x
nq
)‖ ≤ θ
n(nq)nr
‖x‖nr
for all x ∈ A. So
‖(nq)lf(
x
(nq)l
)− (nq)l+mf(
x
(nq)l+m
)‖
≤
l+m−1∑
j=l
‖(nq)jf(
x
(nq)j
)− (nq)j+1f(
x
(nq)j+1
)‖
≤ θ
n(nq)nr
l+m−1∑
j=l
(nq)j
(nq)nrj
‖x‖nr (2.20)
for all nonnegative integers m and l with x ∈ A. It follows from (2.20) that the
sequence {(nq)mf( x
(nq)m )} is a Cauchy sequence for all x ∈ A. Since A is com-
plete, the sequence {(nq)mf( x
(nq)m )} converges. So one can define the mapping
δ : A → A by
δ(x) := lim
m→∞(nq)mf(
x
(nq)m
)
for all x ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (2.20),
we get (2.19). The proof of uniqueness property of δ, σ, τ and ξ is similar to the
proof of Theorem 2.1.
It follows from (2.18) that
‖δ([xxx])− [δ(x)τ(x)ξ(x)]− [σ(x)δ(x)ξ(x)]− [σ(x)τ(x)δ(x)]‖
= lim
m→∞(nq)3m‖f(
[xxx]
(nq)3m
)− [f(
x
(nq)m
)h(
x
(nq)m
)k(
x
(nq)m
)]
− [g(
x
(nq)m
)f(
x
(nq)m
)k(
x
(nq)m
)]− [g(
x
(nq)m
)h(
x
(nq)m
)f(
x
(nq)m
)]‖
≤ lim
m→∞
(nq)3mθ
(nq)3mr
(‖x‖3r) = 0
for all x ∈ A. So
δ([xxx]) = [δ(x)τ(x)ξ(x)] + [σ(x)δ(x)ξ(x)] + [σ(x)τ(x)δ(x)]
for all x ∈ A, and the proof of the theorem is complete.
Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1 11
M. Eshaghi Gordji, R. Farrokhzad, and S.A.R. Hosseinioun
Theorem 2.4. Let n ∈ N. Assume that r > 1 if nq < 1 and that 0 < nr < 1 if
nq > 1. Let θ be a positive real number, and let f : A → A be an odd mapping for
which there exist mappings g, h, k : A → A with g(0) = h(0) = k(0) = 0 satisfying
(2.3)–(2.5), (2.17) and (2.18). Then there exist unique linear mappings σ, τ, and
ξ from A to A and a unique C∗J-ordan ternary (σ, τ, ξ)-derivation δ : A → A
satisfying (2.12)–(2.14) such that
‖f(x)− δ(x)‖ ≤ θ
n(nq − (nq)nr)
‖x‖nr (2.21)
for all x ∈ A.
P r o o f. Letting µ = 1 and x1 = . . . = xn = x in (2.17), we get
‖nf(nqx)− n2qf(x)‖ ≤ θ‖x‖nr
for all x ∈ A. So
‖f(x)− 1
nq
f(nqx)‖ ≤ θ
n2q
‖x‖nr
for all x ∈ A. So
‖ 1
(nq)l
f((nq)lx)− 1
(nq)l+m
f((nq)l+mx)‖
≤
l+m−1∑
j=l
‖ 1
(nq)j
f((nq)jx)− 1
(nq)j+1
f((nq)j+1x)‖
≤ θ
n2q
l+m−1∑
j=l
(nq)nrj
(nq)j
‖x‖nr (2.22)
for all nonnegative integers m and l with x ∈ A. It follows from (2.22) that the
sequence { 1
(nq)m f((nq)mx)} is a Cauchy sequence for all x ∈ A. Since A is com-
plete, the sequence { 1
(nq)m f((nq)mx)} converges. So one can define the mapping
δ : A → A by
δ(x) := lim
m→∞
1
(nq)m
f((nq)mx)
for all x ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (2.22),
we get (2.21). The proof of uniqueness property of δ, σ, τ and ξ is similar to the
proof of Theorem 2.1.
12 Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1
Hyers–Ulam Stability of Ternary (σ, τ, ξ)-Derivations on C∗-Ternary Algebras
It follows from (2.18) that
‖δ([xxx])− [δ(x)τ(x)ξ(x)]− [σ(x)δ(x)ξ(x)]− [σ(x)τ(x)δ(x)]‖
= lim
m→∞
1
(nq)3m
‖f((nq)3m[xxx])− [f((nq)mx)h((nq)mx)k((nq)mx)]
− [g((nq)mx)f((nq)mx)k((nq)mx)]− [g((nq)mx)h((nq)mx)f((nq)mx)]‖
≤ lim
m→∞
(nq)3mrθ
(nq)3m
(‖x‖3r) = 0
for all x ∈ A. So
δ([xxx]) = [δ(x)τ(x)ξ(x)] + [σ(x)δ(x)ξ(x)] + [σ(x)τ(x)δ(x)]
for all x ∈ A, and the proof of the theorem is complete.
3. Stability of C∗-Ternary (σ, τ, ξ)-Derivations
We prove the generalized Hyers–Ulam stability of C∗-ternary (σ, τ, ξ)-derivations
in C∗-ternary algebras for the Euler–Lagrange type additive mapping.
Theorem 3.1. Let n ∈ N. Assume that r > 3 if nq > 1 and that 0 < r < 1 if
nq < 1. Let θ be a positive real number, and let f : A → A be an odd mapping for
which there exist mappings g, h, k : A → A with g(0) = h(0) = k(0) = 0 satisfying
(2.1) and (2.3)–(2.5) such that
‖f([xyz])−[f(x)h(y)k(z)]−[g(x)f(y)k(z)]−[g(x)h(y)f(z)]‖≤θ(‖x‖r+‖y‖r+‖z‖r)
(3.1)
for all x, y, z ∈ A. Then there exist unique linear mappings σ, τ, and ξ from A to
A and a unique C∗-ternary (σ, τ, ξ)-derivation D : A → A satisfying (2.6)–(2.8)
such that
‖f(x)−D(x)‖ ≤ θ
(nq)r − nq
‖x‖r. (3.2)
P r o o f. By the same reasoning as in the proof of Theorem 2.1, there exist
unique linear mappings σ, τ and ξ on A and a unique linear mapping D : A → A
satisfying (2.6)–(2.8) and (3.2). The mapping D : A → A is defined by
D(x) := lim
m→∞(nq)mf(
x
(nq)m
)
for all x ∈ A.
Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1 13
M. Eshaghi Gordji, R. Farrokhzad, and S.A.R. Hosseinioun
It follows from (3.1) that
‖D([xyz])− [D(x)τ(y)ξ(z)]− [σ(x)D(y)ξ(z)]− [σ(x)τ(y)D(z)]‖
= lim
m→∞(nq)3m‖f(
[xyz]
(nq)3m
)− [f(
x
(nq)m
)h(
y
(nq)m
)k(
z
(nq)m
)]
− [g(
x
(nq)m
)f(
y
(nq)m
)k(
z
(nq)m
)]− [g(
x
(nq)m
)h(
y
(nq)m
)f(
z
(nq)m
)]‖
≤ lim
m→∞
(nq)3mθ
(nq)mr
(‖x‖r + ‖y‖r + ‖z‖r) = 0
for all x, y, z ∈ A. So
D([xyz]) = [D(x)τ(y)ξ(z)] + [σ(x)D(y)ξ(z)] + [σ(x)τ(y)D(z)]
for all x, y, z ∈ A.
The rest of the proof is similar to the proof of Theorem 2.1.
Theorem 3.2. Let n ∈ N. Assume that 0 < r < 1 if nq > 1 and that r > 3 if
nq < 1. Let θ be a positive real number, and let f : A → A be an odd mapping for
which there exist mappings g, h, k : A → A with g(0) = h(0) = k(0) = 0 satisfying
(2.1), (2.3)–(2.5) and (3.1). Then there exist unique linear mappings σ, τ, and ξ
from A to A and a unique C∗-ternary (σ, τ, ξ)-derivation D : A → A satisfying
(2.12)–(2.14) such that
‖f(x)−D(x)‖ ≤ θ
nq − (nq)r
‖x‖r. (3.3)
P r o o f. By the same reasoning as in the proof of Theorem 2.2, there exist
unique linear mappings σ, τ and ξ on A and a unique linear mapping D : A → A
satisfying (2.12)–(2.14) and (3.3). The mapping D : A → A is defined by
D(x) := lim
m→∞
1
(nq)m
f((nq)mx)
for all x ∈ A.
The rest of the proof is similar to the proof of Theorem 3.1.
Theorem 3.3. Let n ∈ N. Assume that r > 1 if nq > 1 and that 0 < nr < 1
if nq < 1. Let θ be a positive real number, and let f : A → A be an odd mapping
for which there exist mappings g, h, k : A → A with g(0) = h(0) = k(0) = 0
satisfying (2.3)–(2.5) and (2.17) such that
‖f([xyz])− [f(x)h(y)k(z)]− [g(x)f(y)k(z)]− [g(x)h(y)f(z)]‖ ≤ θ‖x‖r‖y‖r‖z‖r
(3.4)
14 Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1
Hyers–Ulam Stability of Ternary (σ, τ, ξ)-Derivations on C∗-Ternary Algebras
for all x, y, z ∈ A. Then there exist unique linear mappings σ, τ, and ξ from A to
A and a unique C∗-ternary (σ, τ, ξ)-derivation D : A → A satisfying (2.6)–(2.8)
such that
‖f(x)−D(x)‖ ≤ θ
n((nq)nr − nq)
‖x‖nr. (3.5)
P r o o f. By the same reasoning as in the proof of Theorem 2.3, there exist
unique linear mappings σ, τ and ξ on A and a unique linear mapping D : A → A
satisfying (2.6)–(2.8) and (3.5). The mapping D : A → A is defined by
D(x) := lim
m→∞(nq)mf(
x
(nq)m
)
for all x ∈ A.
It follows from (3.4) that
‖D([xyz])− [D(x)τ(y)ξ(z)]− [σ(x)D(y)ξ(z)]− [σ(x)τ(y)D(z)]‖
= lim
m→∞(nq)3m‖f(
[xyz]
(nq)3m
)− [f(
x
(nq)m
)h(
y
(nq)m
)k(
z
(nq)m
)]
− [g(
x
(nq)m
)f(
y
(nq)m
)k(
z
(nq)m
)]− [g(
x
(nq)m
)h(
y
(nq)m
)f(
z
(nq)m
)]‖
≤ lim
m→∞
(nq)3mθ
(nq)3mr
(‖x‖r.‖y‖r.‖z‖r) = 0
for all x ∈ A. So
D([xyz]) = [D(x)τ(y)ξ(z)] + [σ(x)D(y)ξ(z)] + [σ(x)τ(y)D(z)]
for all x, y, z ∈ A, and the proof of the theorem is complete.
Theorem 3.4. Let n ∈ N. Assume that r > 1 if nq < 1 and that 0 < nr < 1
if nq > 1. Let θ be a positive real number, and let f : A → A be an odd mapping
for which there exist mappings g, h, k : A → A with g(0) = h(0) = k(0) = 0
satisfying (2.3)–(2.5), (2.17) and (3.4). Then there exist unique linear mappings
σ, τ, and ξ from A to A and a unique C∗-ternary (σ, τ, ξ)-derivation D : A → A
satisfying (2.12)–(2.14) such that
‖f(x)− δ(x)‖ ≤ θ
n(nq − (nq)nr)
‖x‖nr. (3.6)
P r o o f. By the same reasoning as in the proof of Theorem 2.4, there exist
unique linear mappings σ, τ and ξ on A and a unique linear mapping D : A → A
satisfying (2.12)–(2.14) and (3.6). The mapping D : A → A is defined by
D(x) := lim
m→∞
1
(nq)m
f((nq)mx)
for all x ∈ A.
Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1 15
M. Eshaghi Gordji, R. Farrokhzad, and S.A.R. Hosseinioun
It follows from (3.4) that
‖D([xyz])− [D(x)τ(y)ξ(z)]− [σ(x)D(y)ξ(z)]− [σ(x)τ(y)D(z)]‖
= lim
m→∞
1
(nq)3m
‖f((nq)3m[xyz])− [f((nq)mx)h((nq)my)k((nq)mz)]
− [g((nq)mx)f((nq)my)k((nq)mz)]− [g((nq)mx)h((nq)my)f((nq)mz)]‖
≤ lim
m→∞
(nq)3mrθ
(nq)3m
(‖x‖r.‖y‖r.‖z‖r) = 0
for all x, y, z ∈ A. So
D([xyz]) = [D(x)τ(y)ξ(z)] + [σ(x)D(y)ξ(z)] + [σ(x)τ(y)D(z)]
for all x ∈ A, and the proof of the theorem is complete.
4. Stability of C∗-Lie Ternary (σ, τ, ξ)-Derivations
We are going to study the stability of C∗-Lie ternary (σ, τ, ξ)-derivations in
C∗-ternary algebras, associated with the generalized Hyers–Ulam for the Euler–
Lagrange type additive mapping.
Theorem 4.1. Let n ∈ N. Assume that r > 3 if nq > 1 and that 0 < r < 1 if
nq < 1. Let θ be a positive real number, and let f : A → A be an odd mapping for
which there exist mappings g, h, k : A → A with g(0) = h(0) = k(0) = 0 satisfying
(2.1) and (2.3)–(2.5) such that
‖f([xyz])−[f(x)yz](g,h,k)−[f(y)xz](g,h,k)−[f(z)yx](g,h,k)‖ ≤ θ(‖x‖r+‖y‖r+‖z‖r)
(4.1)
for all x, y, z ∈ A. Then there exist unique linear mappings σ, τ, and ξ from
A to A and a unique C∗-Lie ternary (σ, τ, ξ)-derivation L : A → A satisfying
(2.6)–(2.8) such that
‖f(x)− L(x)‖ ≤ θ
(nq)r − nq
‖x‖r. (4.2)
P r o o f. By the same reasoning as in the proof of Theorem 2.1, there exist
unique linear mappings σ, τ and ξ on A and a unique linear mapping L : A → A
satisfying (2.6)–(2.8) and (4.2). The mapping L : A → A is defined by
L(x) := lim
m→∞(nq)mf(
x
(nq)m
)
for all x ∈ A.
16 Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1
Hyers–Ulam Stability of Ternary (σ, τ, ξ)-Derivations on C∗-Ternary Algebras
It follows from (4.1) that
‖L([xyz])− [L(x)yz](σ,τ,ξ) − [L(y)xz](σ,τ,ξ) − [L(z)yx](σ,τ,ξ)‖
= lim
m→∞(nq)3m‖f(
[xyz]
(nq)3m
)− [f(
x
(nq)m
)
y
(nq)m
z
(nq)m
](g,h,k)
− [f
y
(nq)m
)
x
(nq)m
z
(nq)m
](g,h,k) − [f(
z
(nq)m
)
y
(nq)m
x
(nq)m
](g,h,k)‖
≤ lim
m→∞
(nq)3mθ
(nq)mr
(‖x‖r + ‖y‖r + ‖z‖r) = 0
for all x, y, z ∈ A. So
L([xyz]) = [L(x)yz](σ,τ,ξ) + [L(y)xz](σ,τ,ξ) + [L(z)yx](σ,τ,ξ)
for all x, y, z ∈ A.
The rest of the proof is similar to the proof of Theorem 2.1.
Theorem 4.2. Let n ∈ N. Assume that 0 < r < 1 if nq > 1 and that r > 3 if
nq < 1. Let θ be a positive real number, and let f : A → A be an odd mapping for
which there exist mappings g, h, k : A → A with g(0) = h(0) = k(0) = 0 satisfying
(2.1), (2.3)–(2.5) and (4.1). Then there exist unique linear mappings σ, τ, and ξ
from A to A and a unique C∗-Lie ternary (σ, τ, ξ)-derivation L : A → A satisfying
(2.12)–(2.14) such that
‖f(x)− L(x)‖ ≤ θ
nq − (nq)r
‖x‖r. (4.3)
P r o o f. By the same reasoning as in the proof of Theorem 2.2, there exist
unique linear mappings σ, τ and ξ on A and a unique linear mapping L : A → A
satisfying (2.1), (2.3)–(2.5). The mapping L : A → A is defined by
L(x) := lim
m→∞
1
(nq)m
f((nq)mx)
for all x ∈ A.
The rest of the proof is similar to the proof of Theorem 4.1.
Theorem 4.3. Let n ∈ N. Assume that r > 1 if nq > 1 and that 0 < nr < 1
if nq < 1. Let θ be a positive real number, and let f : A → A be an odd mapping
for which there exist mappings g, h, k : A → A with g(0) = h(0) = k(0) = 0
satisfying (2.3)–(2.5) and (2.17) such that
‖f([xyz])− [f(x)yz](g,h,k) − [f(y)xz](g,h,k) − [f(z)yx](g,h,k)‖ ≤ θ‖x‖r‖y‖r‖z‖r
(4.4)
Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1 17
M. Eshaghi Gordji, R. Farrokhzad, and S.A.R. Hosseinioun
for all x, y, z ∈ A. Then there exist unique linear mappings σ, τ, and ξ from
A to A and a unique C∗-Lie ternary (σ, τ, ξ)-derivation L : A → A satisfying
(2.6)–(2.8) such that
‖f(x)− L(x)‖ ≤ θ
n((nq)nr − nq)
‖x‖nr. (4.5)
P r o o f. By the same reasoning as in the proof of Theorem 2.3, there exist
unique linear mappings σ, τ and ξ on A and a unique linear mapping L : A → A
satisfying (2.6)–(2.8) and (4.5). The mapping L : A → A is defined by
L(x) := lim
m→∞(nq)mf(
x
(nq)m
)
for all x ∈ A.
It follows from (4.4) that
‖L([xyz])− [L(x)yz](σ,τ,ξ) − [L(y)xz](σ,τ,ξ) − [L(z)yx](σ,τ,ξ)‖
= lim
m→∞(nq)3m‖f(
[xyz]
(nq)3m
)− [f(
x
(nq)m
)
y
(nq)m
z
(nq)m
](g,h,k)
− [f(
y
(nq)m
)
x
(nq)m
z
(nq)m
](g,h,k) − [f(
z
(nq)m
)
y
(nq)m
x
(nq)m
](g,h,k)‖
≤ lim
m→∞
(nq)3mθ
(nq)3mr
(‖x‖r.‖y‖r.‖z‖r) = 0
for all x ∈ A. Hence,
L([xyz]) = [L(x)yz](σ,τ,ξ) + [L(y)xz](σ,τ,ξ) + [L(z)yx](σ,τ,ξ)
for all x, y, z ∈ A, and the proof of the theorem is complete.
Theorem 4.4. Let n ∈ N. Assume that r > 1 if nq < 1 and that 0 < nr < 1
if nq > 1. Let θ be a positive real number, and let f : A → A be an odd mapping
for which there exist mappings g, h, k : A → A with g(0) = h(0) = k(0) = 0
satisfying (2.3)–(2.5), (2.17) and (4.4). Then there exist unique linear mappings
σ, τ, and ξ from A to A and a unique C∗-ternary (σ, τ, ξ)-derivation D : A → A
satisfying (2.12)–(2.14) such that
‖f(x)− δ(x)‖ ≤ θ
n(nq − (nq)nr)
‖x‖nr. (4.6)
P r o o f. By the same reasoning as in the proof of Theorem 2.4, there exist
unique linear mappings σ, τ and ξ on A and a unique linear mapping L : A → A
satisfying (2.12)–(2.14) and (4.6). The mapping L : A → A is defined by
L(x) := lim
m→∞
1
(nq)m
f((nq)mx)
for all x ∈ A.
18 Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1
Hyers–Ulam Stability of Ternary (σ, τ, ξ)-Derivations on C∗-Ternary Algebras
It follows from (4.4) that
‖L([xyz])− [L(x)yz](σ,τ,ξ) − [L(y)xz](σ,τ,ξ) − [L(z)yx](σ,τ,ξ)‖
= lim
m→∞
1
(nq)3m
‖f((nq)3m[xyz])− [f((nq)mx)(nq)my(nq)mz](g,h,k)
− [f((nq)my)(nq)mx(nq)mz)](g,h,k) − [f((nq)mz)(nq)my(nq)mx](g,h,k)‖
≤ lim
m→∞
(nq)3mrθ
(nq)3m
(‖x‖r.‖y‖r.‖z‖r) = 0
for all x, y, z ∈ A. So
L([xyz]) = [L(x)yz](σ,τ,ξ) + [L(y)xz](σ,τ,ξ) + [L(z)yx](σ,τ,ξ)
for all x ∈ A, and the proof of the theorem is complete.
Acknowledgements. The authors would like to extend their thanks to the
referee for his/her valuable comments and suggestions which helped simplify and
improve the results of the paper.
References
[1] H. Zettl, A Characterization of Ternary Rings of Operators. — Adv. Math. 48
(1983), 117–143.
[2] M. Amyari and M.S. Moslehian, Approximately Homomorphisms of Ternary Semi-
groups. — Lett. Math. Phys. 77 (2006), 1–9.
[3] C. Park, Generalized Hyers–Ulam Stability of C∗-Ternary Algebtra Homomor-
phisms. — Math. Anal. 16 (2009), 67–79.
[4] S.M. Ulam, A Collection of the Mathematical Problems. Interscience Publ. New
York, 1960.
[5] D.H. Hyers, On the Stability of the Linear Functional Equation. — Proc. Nat.
Acad. Sci. U.S.A. 27 (1941), 222–224.
[6] T. Aoki, On the Stability of the Linear Transformation in Banach Spaces. —
J. Math. Soc. Japan 2 (1950), 64–66.
[7] Th.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces. — Proc.
Amer. Math. Soc. 72 (1978), 297–300.
[8] Th.M. Rassias, Problem 16; 2, Report of the 27th International Symp. On Func-
tional Equations. — Aequationes Math. 39 (1990), 292–293; 309.
[9] Z. Gajda, On Stability of Additive Mappings. — Int. J. Math. Math. Sci. 14 (1991),
431–434.
[10] Th.M. Rassias and P. Šemrl, On the Behaviour of Mappins which do not Satisfy
Hyers–Ulam Stability. — Proc. Amer. Math. Soc. 114 (1992), 989–993.
Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1 19
M. Eshaghi Gordji, R. Farrokhzad, and S.A.R. Hosseinioun
[11] P. Gǎvrtua, A Generalization of the Hyers–Ulam–Rassias Stability of Approximately
Additive Mappings. — J. Math. Anal. Appl. 184 (1994), 431–436.
[12] J.M. Rassias, On Approximation of Approximately Linear Mapping by Linear Map-
pings. — Bull. Sci. Math. 108 (1984), 445–446.
[13] S. Czerwik, Functional Equations and Inequalities in Several Variables. World
Scientific Publishing Company, New Jersey, Hoong Kong, Singapore and London,
2002.
[14] M. Eshaghi Gordji, A. Ebadian, and S. Zolfaghari, Stability of a Functional Equation
Deriving from Cubic and Quartic Functions. — Abstr. Appl. Anal. 2008 (2008),
Art. ID 801904.
[15] M. Eshaghi Gordji and H. Khodaei, Solution and Stability of Generalized Mixed
Type Cubic, Quadratic and Additive Functional Equation in Quasi-Banach Spaces.
— Nonlinear Analysis 71 (2009), 5629–5643.
[16] D.H. Hyers, G. Isac, and Th.M. Rassias, Stability of Functional Equations in
Several Variable. Birkhäuser, Basel, 1998.
[17] S.M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical
Analysis. Hadronic press, Palm Harbor, Florida, 2001.
[18] C. Park, Lie *-Homomorphisms between Lie C∗-Algebras. — J. Math. Anal. Appl.
293 (2004), 419–434.
[19] C. Park, Homomorphisms between Lie JC∗-Algebras and Cauchy–Rassias Stability
of Lie JC∗-Algebra Derivations. — J. Lie Theory 15 (2005), 393–414.
[20] J.M. Rassias, On the Stability of the Euler–Lagrange Functional Equation. —
Chinese J. Math. 20 (1992), 185–190.
[21] J.M. Rassias, Solution of the Ulam Stability Problem for Euler–Lagrange Quadratic
Mappings. — J. Math. Anal. Appl. 220 (1998), 1613–639.
[22] J.M. Rassias and M.J. Rassias, On the Ulam Stability for Euler–Lagrange Type
Quadratic Functional Equations. — Austral. J. Math. Anal. Appl. 2 (2005), 1–10.
[23] M. Bavand Savadkouhi, M. Eshaghi Gordji, J.M. Rassias, and N. Ghobadipour,
Approximate Ternary Jordan Derivations on Banach Ternary Algebras. — J. Math.
Phys. 50, (2009), No. 4.
[24] C. Park, Homomorphisms between Poisson JC∗-Algebras. — Bull. Braz. Math.
Soc. 36 (2005), 79–97.
[25] C. Park, Hyers–Ulam–Rassias Stability of a Generalized Euler–Lagrange Type Ad-
ditive Mapping and Isomorphisms between C∗-Algebras. — Bull. Belgian Math.
Soc.-Simon Stevin 13 (2006), 619–631.
20 Journal of Mathematical Physics, Analysis, Geometry, 2012, v. 8, No. 1
|