General Boundary Value Problem for the Third Order Linear Differential Equation of Composite Type

The boundary value problem is considered for the linear two-dimensional integro-di®erential loaded third order equation of composite type with nonlocal terms in the boundary conditions. The principal part of the equation is a derivative of the two-dimensional Laplace equation with respect to the var...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Gharehgheshlaghi, A.D., Aliyev, N.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2012
Schriftenreihe:Журнал математической физики, анализа, геометрии
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/106713
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:General Boundary Value Problem for the Third Order Linear Differential Equation of Composite Type / A.D. Gharehgheshlaghi, N. Aliyev // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 2. — С. 119-134. — Бібліогр.: 24 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-106713
record_format dspace
spelling irk-123456789-1067132016-10-04T03:02:20Z General Boundary Value Problem for the Third Order Linear Differential Equation of Composite Type Gharehgheshlaghi, A.D. Aliyev, N. The boundary value problem is considered for the linear two-dimensional integro-di®erential loaded third order equation of composite type with nonlocal terms in the boundary conditions. The principal part of the equation is a derivative of the two-dimensional Laplace equation with respect to the variable x₂. Taking into account the ill-posedness of boundary value problems for hyperbolic di®erential equations, the principal part of the boundary conditions is chosen in a special form dictated by the obtained necessary conditions. Рассмотрена граничная задача для линейного двумерного интегро-дифференциального нагруженного уравнения композитного типа третьего порядка с нелокальными граничными условиями. Основная часть уравнения - производная по переменной от двумерного уравнения Лапласа относительно переменной x₂. Учитывая некорректность граничной задачи для гиперболических уравнений, главная часть граничных условий выбрана в специальной форме, продиктованной полученными необходимыми условиями. 2012 Article General Boundary Value Problem for the Third Order Linear Differential Equation of Composite Type / A.D. Gharehgheshlaghi, N. Aliyev // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 2. — С. 119-134. — Бібліогр.: 24 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106713 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The boundary value problem is considered for the linear two-dimensional integro-di®erential loaded third order equation of composite type with nonlocal terms in the boundary conditions. The principal part of the equation is a derivative of the two-dimensional Laplace equation with respect to the variable x₂. Taking into account the ill-posedness of boundary value problems for hyperbolic di®erential equations, the principal part of the boundary conditions is chosen in a special form dictated by the obtained necessary conditions.
format Article
author Gharehgheshlaghi, A.D.
Aliyev, N.
spellingShingle Gharehgheshlaghi, A.D.
Aliyev, N.
General Boundary Value Problem for the Third Order Linear Differential Equation of Composite Type
Журнал математической физики, анализа, геометрии
author_facet Gharehgheshlaghi, A.D.
Aliyev, N.
author_sort Gharehgheshlaghi, A.D.
title General Boundary Value Problem for the Third Order Linear Differential Equation of Composite Type
title_short General Boundary Value Problem for the Third Order Linear Differential Equation of Composite Type
title_full General Boundary Value Problem for the Third Order Linear Differential Equation of Composite Type
title_fullStr General Boundary Value Problem for the Third Order Linear Differential Equation of Composite Type
title_full_unstemmed General Boundary Value Problem for the Third Order Linear Differential Equation of Composite Type
title_sort general boundary value problem for the third order linear differential equation of composite type
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/106713
citation_txt General Boundary Value Problem for the Third Order Linear Differential Equation of Composite Type / A.D. Gharehgheshlaghi, N. Aliyev // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 2. — С. 119-134. — Бібліогр.: 24 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT gharehgheshlaghiad generalboundaryvalueproblemforthethirdorderlineardifferentialequationofcompositetype
AT aliyevn generalboundaryvalueproblemforthethirdorderlineardifferentialequationofcompositetype
first_indexed 2025-07-07T18:53:26Z
last_indexed 2025-07-07T18:53:26Z
_version_ 1837015402124673024
fulltext Journal of Mathematical Physics, Analysis, Geometry 2012, vol. 8, No. 2, pp. 119–134 General Boundary Value Problem for the Third Order Linear Differential Equation of Composite Type A. Delshad Gharehgheshlaghi Institute of Mathematics and Mechanics of NAS of Azerbaijan E-mail: ali-delshad@rambler.ru N. Aliyev Baku State University, Baku, Azerbaijan Received September 14, 2010, revised October 11, 2011 The boundary value problem is considered for the linear two-dimensional integro-differential loaded third order equation of composite type with non- local terms in the boundary conditions. The principal part of the equation is a derivative of the two-dimensional Laplace equation with respect to the variable x2. Taking into account the ill-posedness of boundary value prob- lems for hyperbolic differential equations, the principal part of the boundary conditions is chosen in a special form dictated by the obtained necessary con- ditions. Key words: composite type equations, nonlocal boundary conditions, global boundary conditions, necessary conditions, regularization, Fredholm property. Mathematics Subject Classification 2000: 35J25, 35J40. 1. Introduction It is well known that in the case of ordinary differential operators, the La- grange formula is the main tool [1] to solve the boundary value problems. But when the operator is generated by the boundary value problem for partial equa- tions, Green’s second formula [2, 3] becomes basic. For each concrete case [3–6], some potentials (with unknown densities) that are the solutions of the considered problems are derived proceeding from boundary conditions. The form of the kernel of the potential is determined by Green’s formula men- tioned above. The study of the properties of the constructed potentials enables to define the unknown densities of some integral equations. By studying the pro- perties of simple and double layers, it was possible to investigate the solutions of c© A. Delshad Gharehgheshlaghi and N. Aliyev, 2012 A. Delshad Gharehgheshlaghi and N. Aliyev Dirichlet and Neumann problems. Despite of being known, limit theorems both for normal derivatives of double layer potentials and tangential derivatives of simple and double layers [2] for some reasons were not often applied to boundary value problems. To solve the boundary value problems with oblique derivatives, a jump for- mula obtained in [6–8] is usually used. Notice that the problem under consideration is new. In the classic papers, boundary value problems are mainly considered for even-order elliptic equations. On the other hand, the mathematical model of the nuclear reactor in some cases is described by the integro-differential equation of first order with the boundary condition given on a part of the boundary [3]. As A.V. Bitsadze noted at one of the Steklov seminars, in connection with the Tricomi problems, the whole boundary should be present in the boundary condition. Therefore, the boundary condition given in [3] is not appropriate. If we replace the boundary condition given in [3] by the Dirichlet condition (given on the whole boundary), the obtained problem will have no solution. The boundary conditions given here (nonlocal conditions) correspond to the first-order derivative. The applied method is a continuation and generalization of the potential theory. The solution is sought in the form of Green’s discrete second formula. Therefore, in our case we always have jumps. If the potential of the simple layer is continuous, then we have jumps because of the double layer potential. If the double layer is continuous, then we have a jump because of the simple layer potential. In the case of the problem with non-local conditions, both potentials have jumps. In the classic papers, in the case of inclined derivatives, if the inclination is tangential, then we do not have a jump, i.e., we get the Fredholm integral equation of first kind. In our case such difficulties do not arise. Therefore, we can consider a problem with oblique derivatives of arbitrary form. Notice that in our case the whole boundary is a support for each boundary condition. Finally, we consider an example corresponding to the stated problem. Here the problem is discretized in a certain sense, the system of 39 algebraic equations with 39 variables is solved, and the errors of the obtained solution are shown. 120 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 General Boundary Value Problem for the Third Order Linear Differential Equation 2. Problem Statement Let D be a bounded convex in the direction of x2 plane domain with a Lyapunov-type boundary Γ [3]. When the domain D is orthogonally projected on the axis x1 (parallel to x2), the boundary Γ is divided into the parts Γ1 and Γ2. The equations of these lines are denoted by x2 = γk (x1) , k = 1, 2; x1 ∈ [a1, b1]. Consider the boundary value problem lu ≡ ∂3u (x) ∂x3 2 + ∂3u (x) ∂x2 1∂x2 + 2∑ k=0 a2k (x) ∂2u (x) ∂xk 1∂x2−k 2 + 2∑ k=1 a1k (x) ∂u (x) ∂xk + a0 (x) u (x) + 2∑ m=0 2∑ n=1 ∫ b1 a1 K2mn (x, η1) ∂2u (η) ∂ηm 1 ∂η2−m 2 ∣∣∣∣ η2=γn(η1) dη1 + 2∑ m=1 2∑ n=1 ∫ b1 a1 K1mn (x, η1) ∂u (η) ∂ηm ∣∣∣∣ η2=γn(η1) dη1 + 2∑ n=1 ∫ b1 a1 K0n (x, η1) u (η1, γn (η1)) dη1 = f (x) , x ∈ D ⊂ R2, (1) lku ≡ ∂2u (x) ∂x2 2 ∣∣∣∣ x2=γk(x1) − 2∑ p=1 2∑ j=1 αkjp (x1) ∂u (x) ∂xj ∣∣∣∣ x2=γp(x1) − 2∑ p=1 αkp (x1)u (x1, γp (x1))− 2∑ p=1 2∑ j=1 ∫ b1 a1 αkjp (x1, η1) ∂u (η) ∂ηj ∣∣∣∣ η2=γp(η1) dη1 − 2∑ p=1 ∫ b1 a1 αkp (x1, η1) u (η1, γp (η1)) dη1 = fk (x1) , k = 1, 2; x1 ∈ [a1, b1] , (2) l3u ≡ ∂2u (x) ∂x2 1 ∣∣∣∣ x2=γ2(x1) − 2∑ p=1 2∑ j=1 α3jp (x1) ∂u (x) ∂xj ∣∣∣∣ x2=γp(x1) − 2∑ p=1 α3p (x1)u (x1, γp (x1)) + 2∑ p=1 2∑ j=1 ∫ b1 a1 α3jp (x1, η1) ∂u (η) ∂ηj ∣∣∣∣ η2=γp(η1) dη1 − 2∑ p=1 ∫ b1 a1 α3p (x1, η1) u (η1, γp (η1)) dη1 = f3 (x1) , x1 ∈ [a1, b1] , (3) Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 121 A. Delshad Gharehgheshlaghi and N. Aliyev where all data of equation (1) and boundary conditions (2), (3) are assumed to be continuous functions. If we consider the sufficiently smooth data of boundary value problem (1)–(3), then this problem reduces to the Fredholm integral equation of the second kind with respect to the function u (x). Otherwise, we get the system of the Fredholm integral equations of the second kind with respect to the unknown function u (x) and its derivatives. The kernels of these equations or of the obtained system have no singularities. 3. Fundamental Solutions and Their Basic Properties Applying the Fourier transformations [2, 3] for the principal part of equation (1), namely, for the first two terms, we get the fundamental solution in the form U (x− ξ) = 1 4π2 ∫ R2 ei(α,x−ξ) α2 ( α2 1 + α2 2 )dα, (4) where x− ξ = (x1 − ξ1, x2 − ξ2), and (α, x− ξ) = α1 (x1 − ξ1) + α2 (x2 − ξ2), R2 is a real plane. Then, by means of Hormander’s ladder method [9], for the integral (4) we obtain U (x− ξ) = x2 − ξ2 2π [ ln √ |x1 − ξ1|2 + (x2 − ξ2) 2 − 1 ] + |x1 − ξ1| 2π arctg x2 − ξ2 |x1 − ξ1| . (5) Differentiating (4) or (5), one can easily get ∂3U (x− ξ) ∂x3 2 + ∂3U (x− ξ) ∂x2 1∂x2 = δ (x− ξ) , (6) where ∂U (x− ξ) ∂x1 = e (x1 − ξ1) π arctg x2 − ξ2 |x1 − ξ1| , (7) ∂U (x− ξ) ∂x2 = 1 2π ln √ |x1 − ξ1|2 + (x2 − ξ2) 2 , (8) ∂2U (x− ξ) ∂x2 1 = e (x2 − ξ2) δ (x1 − ξ1)− 1 2π x2 − ξ2 |x1 − ξ1|2 + (x2 − ξ2) 2 , (9) ∆xU (x− ξ) = e (x2 − ξ2) δ (x1 − ξ1) . (10) Here e (t) is the symmetric Heaviside function, δ (x− ξ) = δ (x1 − ξ1) δ (x2 − ξ2) is a two-dimensional Dirac delta function [2, 3]. 122 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 General Boundary Value Problem for the Third Order Linear Differential Equation 4. Basic Relations Using fundamental solution (5), its property (6) and considering equations (1), we get Green’s second formula [2–6]. From these formulas we get representations for any solution of equation (1) and expressions for the boundary values of this solution ∫ Γ ∂2u (x) ∂x2 2 U (x− ξ) cos (ν, x2) dx + ∫ Γ ∂2u (x) ∂x2 1 U (x− ξ) cos (ν, x2) dx − ∫ Γ ∂u (x) ∂x2 ∂U (x− ξ) ∂x2 cos (ν, x2) dx− ∫ Γ ∂u (x) ∂x1 ∂U (x− ξ) ∂x2 cos (ν, x1) dx + ∫ Γ u (x) ∂2U (x− ξ) ∂x1∂x2 cos (ν, x1) dx + ∫ Γ u (x) ∂2U (x− ξ) ∂x2 2 cos (ν, x2) dx + ∫ D l0u · U (x− ξ) dx− ∫ D f (x) U (x− ξ) dx =    u (ξ) , ξ ∈ D, 1 2 u (ξ) , ξ ∈ Γ, (11) where l0u ≡ 2∑ k=0 a2k (x) ∂2u (x) ∂xk 1∂x2−k 2 + 2∑ k=1 a1k (x) ∂u (x) ∂xk + a0 (x) u (x) + 2∑ m=0 2∑ n=1 ∫ b1 a1 K2mn (x, η1) ∂2u (η) ∂ηm 1 ∂η2−m 2 ∣∣∣∣ η2=γn(η1) dη1 + 2∑ m=1 2∑ n=1 ∫ b1 a1 K1mn (x, η1) ∂u (η) ∂ηm ∣∣∣∣ η2=γn(η1) dη1+ 2∑ n=1 ∫ b1 a1 K0n (x, η1) u (η1, γn (η1)) dη1 . (12) Then applying the schemes used in [10–14], we obtain the remaining basic relations that give representations for the derivative of the unknown function and the boundary values of these derivatives − ∫ Γ ∂2u (x) ∂x2 2 ∂U (x− ξ) ∂x2 cos (ν, x2) dx− ∫ Γ ∂2u (x) ∂x1∂x2 ∂U (x− ξ) ∂x2 cos (ν, x1) dx + ∫ Γ ∂u (x) ∂x2 ∂2U (x− ξ) ∂x2 2 cos (ν, x2) dx + ∫ Γ ∂u (x) ∂x2 ∂2U (x− ξ) ∂x1∂x2 cos (ν, x1) dx − ∫ D l0u · ∂U (x− ξ) ∂x2 dx + ∫ D f (x) ∂U (x− ξ) ∂x2 dx =    ∂u (ξ) ∂ξ2 , ξ ∈ D, 1 2 ∂u (ξ) ∂ξ2 , ξ ∈ Γ, (13) Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 123 A. Delshad Gharehgheshlaghi and N. Aliyev − ∫ Γ ∂2u (x) ∂x2 2 ∂U (x− ξ) ∂x1 cos (ν, x2) dx− ∫ Γ ∂2u (x) ∂x2 1 ∂U (x− ξ) ∂x1 cos (ν, x2) dx + ∫ Γ ∂u (x) ∂x2 ∂2U (x− ξ) ∂x1∂x2 cos (ν, x2) dx + ∫ Γ ∂u (x) ∂x1 ∂2U (x− ξ) ∂x1∂x2 cos (ν, x1) dx − ∫ Γ ∂u (x) ∂x2 ∂2U (x− ξ) ∂x2 2 cos (ν, x1) dx− ∫ Γ ∂u (x) ∂x1 ∂2U (x− ξ) ∂x2 2 cos (ν, x1) dx − ∫ D l0u · ∂U (x− ξ) ∂x1 dx + ∫ D f (x) ∂U (x− ξ) ∂x1 dx =    ∂u (ξ) ∂ξ1 , ξ ∈ D, 1 2 ∂u (ξ) ∂ξ1 , ξ ∈ Γ, (14) ∫ Γ ∂2u (x) ∂x2 2 ∂2U (x− ξ) ∂x2 1 cos (ν, x2) dx + ∫ Γ ∂2u (x) ∂x2 1 ∂2U (x− ξ) ∂x2 1 cos (ν, x2) dx − ∫ Γ ∂2u (x) ∂x2 2 ∂2U (x− ξ) ∂x1∂x2 cos (ν, x1) dx + ∫ Γ ∂2u (x) ∂x1∂x2 ∂2U (x− ξ) ∂x1∂x2 cos (ν, x2) dx − ∫ Γ ∂2u (x) ∂x1∂x2 ∂2U (x− ξ) ∂x2 2 cos (ν, x1) dx + ∫ Γ ∂2u (x) ∂x2 1 ∂2U (x− ξ) ∂x2 2 cos (ν, x2) dx + ∫ D l0u · ∂2U (x− ξ) ∂x2 1 dx− ∫ D f (x) ∂2U (x− ξ) ∂x2 1 dx =    ∂2u (ξ) ∂ξ2 1 , ξ ∈ D, 1 2 ∂2u (ξ) ∂ξ2 1 , ξ ∈ Γ. (15) Notice that in the remaining two expressions (see also [9–11]) the derivatives higher than third order in the domain D (both for u (x) and for U (x− ξ)) and the derivatives higher than second order on the boundary Γ do not appear in the integrand, i.e., ∫ Γ ∂2u (x) ∂x2 2 ∂U2 (x− ξ) ∂x2 2 cos (ν, x2) dx + ∫ Γ ∂2u (x) ∂x1∂x2 ∂2U (x− ξ) ∂x2 2 cos (ν, x1) dx − ∫ Γ ∂2u (x) ∂x1∂x2 ∂2U (x− ξ) ∂x1∂x2 cos (ν, x2) dx + ∫ Γ ∂2u (x) ∂x2 2 ∂2U (x− ξ) ∂x1∂x2 cos (ν, x1) dx + ∫ D l0u · ∂2U (x− ξ) ∂x2 2 dx− ∫ D f (x) ∂2U (x− ξ) ∂x2 2 dx =    ∂2u (ξ) ∂ξ2 2 , ξ ∈ D, 1 2 ∂2u (ξ) ∂ξ2 2 , ξ ∈ Γ, (16) 124 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 General Boundary Value Problem for the Third Order Linear Differential Equation ∫ Γ ∂2u (x) ∂x2 2 ∂2U (x− ξ) ∂x1∂x2 cos (ν, x2) dx + ∫ Γ ∂2u (x) ∂x1∂x2 ∂2U (x− ξ) ∂x1∂x2 cos (ν, x1) dx − ∫ Γ ∂2u (x) ∂x2 2 ∂2U (x− ξ) ∂x2 2 cos (ν, x1) dx + ∫ Γ ∂2u (x) ∂x1∂x2 ∂2U (x− ξ) ∂x2 2 cos (ν, x2) dx + ∫ D l0u · ∂2U (x− ξ) ∂x1∂x2 dx− ∫ D f (x) ∂2U (x− ξ) ∂x1∂x2 dx =    ∂2u (ξ) ∂ξ1∂ξ2 , ξ ∈ D, 1 2 ∂2u (ξ) ∂ξ1∂ξ2 , ξ ∈ Γ. (17) Thus we establish the following Theorem 1. If D ⊂ R2 is a bounded convex domain with Lyapunov boundary Γ, the data of equation (1), a2k (x) , k = 0, 2, x ∈ D; a1k (x) , k = 1, 2, x ∈ D; a0 (x) , x ∈ D; K2mn (x, η1) , m = 0, 2, n = 1, 2, x ∈ D, η1 ∈ (a1, b1) ; K1mn (x, η1) , m = 1, 2, n = 1, 2, x ∈ D, η1 ∈ (a1, b1) ; Kon (x, η1) , x ∈ D, η1 ∈ (a1, b1), f (x) , x ∈ D are continuous functions, then every solution of equation (1) determined in the domain D satisfies basic relations (11), (13)–(17). 5. Necessary conditions Considering the second expressions of basic relations (11), (13)–(17) and pass- ing from the integrals over the boundary Γ to those over its parts Γk (k = 1, 2) , one obtains u (ξ1, γk (ξ1)) = 2 ∫ Γ ∂2u(x) ∂x2 2 U(x1 − ξ1, x2 − γk(ξ1)) cos(ν, x2)dx +2 ∫ Γ ∂2u(x) ∂x2 1 U(x1 − ξ1, x2 − γk(ξ1)) cos(ν, x2)dx − 2 ∫ Γ ∂u(x) ∂x2 ∂U(x−ξ) ∂x2 ∣∣∣∣ ξ2=γk(ξ1) cos(ν, x2)dx− 2 ∫ Γ ∂u(x) ∂x1 ∂U(x−ξ) ∂x2 ∣∣∣∣ ξ2=γk(ξ1) cos(ν, x1)dx +2 ∫ Γ u(x)∂2u(x−ξ) ∂x1∂x2 ∣∣∣∣ ξ2=γk(ξ1) cos(ν, x1)dx + 2 ∫ Γ u(x)∂2U(x−ξ) ∂x2 2 ∣∣∣∣ ξ2=γk(ξ1) cos(ν, x2)dx +2 ∫ D l0uU(x1 − ξ1, x2 − γk(ξ1))dx −2 ∫ D f(x)U(x1 − ξ1, x2 − γk(ξ1))dx, k = 1, 2, ξ1 ∈ [a1, b1], (18) Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 125 A. Delshad Gharehgheshlaghi and N. Aliyev ∂u(ξ) ∂ξ1 ∣∣∣ ξ2=γk(ξ1) = − 2 ∫ Γ ∂2u(x) ∂x2 2 ∂U(x−ξ) ∂x1 ∣∣∣∣ ξ2=γk(ξ1) cos(ν, x2)dx −2 ∫ Γ ∂2u(x) ∂x2 1 ∂U(x−ξ) ∂x1 ∣∣∣∣ ξ2=γk(ξ1) cos(ν, x2)dx + 2 ∫ Γ ∂u(x) ∂x2 ∂2U(x−ξ) ∂x1∂x2 ∣∣∣∣ ξ2=γk(ξ1) cos(ν, x2)dx +2 ∫ Γ ∂u(x) ∂x1 ∂2U(x−ξ) ∂x1∂x2 ∣∣∣∣ ξ2=γk(ξ1) cos(ν, x1)dx− 2 ∫ Γ ∂u(x) ∂x2 ∂2U(x−ξ) ∂x2 2 ∣∣∣∣ ξ2=γk(ξ1) cos(ν, x1)dx − 2 ∫ Γ ∂u(x) ∂x1 ∂2U(x−ξ) ∂x2 2 ∣∣∣∣ ξ2=γk(ξ1) cos(ν, x1)dx− 2 ∫ D l0u ∂U(x−ξ) ∂x1 dx +2 ∫ D f(x)∂U(x−ξ) ∂x1 dx, k = 1, 2, ξ1 ∈ [a1, b1] (19) and ∂u(ξ) ∂ξ2 ∣∣∣ ξ2=γk(ξ1) = −2 ∫ Γ ∂2u(x) ∂x2 2 ∂U(x−ξ) ∂x2 ∣∣∣∣ ξ2=γk(ξ1) cos(ν, x2)dx −2 ∫ Γ ∂2u(x) ∂x1∂x2 ∂U(x−ξ) ∂x2 ∣∣∣∣ ξ2=γk(ξ1) cos(ν, x1)dx + ∫ Γ ∂u(x) ∂x2 ∂U2(x−ξ) ∂x2 2 ∣∣∣∣ ξ2=γk(ξ1) cos(ν, x2)dx + 2 ∫ Γ ∂u(x) ∂x2 ∂U2(x−ξ) ∂x1∂x2 ∣∣∣∣ ξ2=γk(ξ1) cos(ν, x1)dx− 2 ∫ D l0u ∂U(x−ξ) ∂x2 ∣∣∣∣ ξ2=γk(ξ1) dx + 2 ∫ D f(x)∂U(x−ξ) ∂x2 ∣∣∣∣ ξ2=γk(ξ1) dx, k = 1, 2, ξ1 ∈ [a1, b1], (20) where ξ2 = γk (ξ1) , k = 1, 2, are the equations of Γk, and the “dots” denote the sums of nonsingular terms. As it is seen from the fundamental solution (5), for the boundary values of the second derivative we have ∂2U (x− ξ) ∂x2 2 ∣∣∣∣x2=γp(x1) ξ2=γp(ξ1) = 1 2π γ′p (σp (x1, ξ1)) (x1 − ξ1) [ 1 + γ′2p (σp) ] , p = 1, 2; (21) ∂2U (x− ξ) ∂x1∂x2 ∣∣∣∣x2=γp(x1) ξ2=γp(ξ1) = 1 2π 1 (x1 − ξ1) [ 1 + γ′2p (σp) ] , p = 1, 2; (22) ∂2U (x− ξ) ∂x2 1 ∣∣∣∣x2=γp(x1) ξ2=γp(ξ1) = − 1 2π γ′p (σp) (x1 − ξ1) [ 1 + γ′2p (σp) ] , p = 1, 2; (23) ∂2U (x− ξ) ∂x2 1 ∣∣∣∣x2=γp(x1) ξ2=γq(ξ1) = δ (x1 − ξ1) e (γp (x1)− γq (ξ1)) , p, q = 1, 2; p 6= q, (24) where σp (x1, ξ1) is located between x1 and ξ1. 126 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 General Boundary Value Problem for the Third Order Linear Differential Equation ∂u2(ξ) ∂ξ2 2 ∣∣∣ ξ2=γk(ξ1) = −2 b1∫ a1 ∂2u(x) ∂x2 2 ∣∣∣ x2=γ1(x1) ∂2U(x−ξ) ∂x2 2 ∣∣∣ x2=γ1(x1) ξ2=γk(ξ1) dx1 +2 b1∫ a1 ∂2u(x) ∂x2 2 ∣∣∣ x2=γ2(x1) ∂2U(x−ξ) ∂x2 2 ∣∣∣ x2=γ2(x1) ξ2=γk(ξ1) dx1 +2 b1∫ a1 ∂2u(x) ∂x1∂x2 ∣∣∣ x2=γ1(x1) ∂2U(x−ξ) ∂x2 2 ∣∣∣ x2=γ1(x1) ξ2=γk(ξ1) γ′1(x1)dx1 −2 b1∫ a1 ∂2u(x) ∂x1∂x2 ∣∣∣ x2=γ2(x1) ∂2U(x−ξ) ∂x2 2 ∣∣∣ x2=γ2(x1) ξ2=γk(ξ1) γ′2(x1)dx1 +2 b1∫ a1 ∂2u(x) ∂x1∂x2 ∣∣∣ x2=γ1(x1) ∂2U(x−ξ) ∂x1∂x2 ∣∣∣ x2=γ1(x1) ξ2=γk(ξ1) dx1 −2 b1∫ a1 ∂2u(x) ∂x1∂x2 ∣∣∣ x2=γ2(x1) ∂2U(x−ξ) ∂x1∂x2 ∣∣∣ x2=γ2(x1) ξ2=γk(ξ1) dx1 +2 b1∫ a1 ∂2u(x) ∂x2 2 ∣∣∣ x2=γ1(x1) ∂2U(x−ξ) ∂x1∂x2 ∣∣∣ x2=γ1(x1) ξ2=γk(ξ1) γ′1(x1)dx1 −2 b1∫ a1 ∂2u(x) ∂x2 2 ∣∣∣ x2=γ2(x1) ∂2U(x−ξ) ∂x1∂x2 ∣∣∣ x2=γ2(x1) ξ2=γk(ξ1) γ′2(x1)dx1 +2 ∫ D l0u ∂2U(x−ξ) ∂x2 2 dx + 2 ∫ D f(x)∂2U(x−ξ) ∂x2 2 dx = (−1)k−1 π b1∫ a1 ∂2u(x) ∂x1∂x2 ∣∣∣ x2=γk(x1) dx1 x1−ξ1 + · · · , k = 1, 2. (25) ∂2u(ξ) ∂ξ2 1 ∣∣∣ ξ2=γk(ξ1) = −2 b1∫ a1 ∂2u(x) ∂x2 2 ∣∣∣ x2=γ1(x1) ∂2U(x−ξ) ∂x2 1 ∣∣∣ x2=γ1(x1) ξ2=γk(ξ1) dx1 +2 b1∫ a1 ∂2u(x) ∂x2 2 ∣∣∣ x2=γ2(x1) ∂2U(x−ξ) ∂x2 1 ∣∣∣ x2=γ2(x1) ξ2=γk(ξ1) dx1 −2 b1∫ a1 ∂2u(x) ∂x2 1 ∣∣∣ x2=γ1(x1) ∂2U(x−ξ) ∂x2 1 ∣∣∣ x2=γ1(x1) ξ2=γk(ξ1) dx1 +2 b1∫ a1 ∂2u(x) ∂x2 1 ∣∣∣ x2=γ2(x1) ∂2U(x−ξ) ∂x2 1 ∣∣∣ x2=γ2(x1) ξ2=γk(ξ1) dx1 −2 b1∫ a1 ∂2u(x) ∂x2 2 ∣∣∣ x2=γ1(x1) ∂2U(x−ξ) ∂x1∂x2 ∣∣∣ x2=γ1(x1) ξ2=γk(ξ1) γ′1(x1)dx1 +2 b1∫ a1 ∂2u(x) ∂x2 2 ∣∣∣ x2=γ2(x1) ∂2U(x−ξ) ∂x1∂x2 ∣∣∣ x2=γ2(x1) ξ2=γk(ξ1) γ′2(x1)dx1 −2 b1∫ a1 ∂2u(x) ∂x1∂x2 ∣∣∣ x2=γ1(x1) ∂2U(x−ξ) ∂x1∂x2 ∣∣∣ x2=γ1(x1) ξ2=γk(ξ1) dx1 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 127 A. Delshad Gharehgheshlaghi and N. Aliyev +2 b1∫ a1 ∂2u(x) ∂x1∂x2 ∣∣∣ x2=γ2(x1) ∂2U(x−ξ) ∂x1∂x2 ∣∣∣ x2=γ2(x1) ξ2=γk(ξ1) dx1 −2 b1∫ a1 ∂2u(x) ∂x1∂x2 ∣∣∣ x2=γ1(x1) ∂2U(x−ξ) ∂x1∂x2 ∣∣∣ x2=γ1(x1) ξ2=γk(ξ1) γ′1(x1)dx1 +2 b1∫ a1 ∂2u(x) ∂x1∂x2 ∣∣∣ x2=γ2(x1) ∂2U(x−ξ) ∂x2 2 ∣∣∣ x2=γ2(x1) ξ2=γk(ξ1) γ′2(x1)dx1 −2 b1∫ a1 ∂2u(x) ∂x2 1 ∣∣∣ x2=γ1(x1) ∂2U(x−ξ) ∂x2 2 ∣∣∣ x2=γ1(x1) ξ2=γk(ξ1) dx1 +2 b1∫ a1 ∂2u(x) ∂x2 1 ∣∣∣ x2=γ2(x1) ∂2U(x−ξ) ∂x2 2 ∣∣∣ x2=γ2(x1) ξ2=γk(ξ1) dx1 +2 ∫ D l0u ∂2U(x−ξ) ∂x2 1 dx− 2 ∫ D f(x)∂2U(x−ξ) ∂x2 1 dx, k = 1, 2, ξ1 ∈ [a1, b1]. (26) Then the remaining necessary conditions take the form ∂2u(ξ) ∂ξ2 1 ∣∣∣ ξ2=γ1(ξ1) − ∂2u(ξ) ∂ξ2 1 ∣∣∣ ξ2=γ2(ξ1) − ∂2u(ξ) ∂ξ2 2 ∣∣∣ ξ2=γ2(ξ1) = − 1 π ∫ b1 a1 ∂2u(x) ∂x1∂x2 ∣∣∣ x2=γ1(x1) dx1 x1−ξ1 + . . . (27) ∂2u(ξ) ∂ξ2 1 ∣∣∣ ξ2=γ2(ξ1) − ∂2u(ξ) ∂ξ2 1 ∣∣∣ ξ2=γ1(ξ1) − ∂2u(ξ) ∂ξ2 2 ∣∣∣ ξ2=γ1(ξ1) = 1 π ∫ b1 a1 ∂2u(x) ∂x1∂x2 ∣∣∣ x2=γ2(x1) dx1 x1−ξ1 + . . . (28) ∂2u(ξ) ∂ξ1∂ξ2 ∣∣∣ ξ2=γk(ξ1) = −2 b1∫ a1 ∂2u(x) ∂x2 2 ∣∣∣ x2=γ1(x1) ∂2U(x−ξ) ∂x1∂x2 ∣∣∣ x2=γ1(x1) ξ2=γk(ξ1) dx1 +2 b1∫ a1 ∂2u(x) ∂x2 2 ∣∣∣ x2=γ2(x1) ∂2U(x−ξ) ∂x1∂x2 ∣∣∣ x2=γ2(x1) ξ2=γk(ξ1) dx1 +2 b1∫ a1 ∂2u(x) ∂x1∂x2 ∣∣∣ x2=γ1(x1) ∂2U(x−ξ) ∂x1∂x2 ∣∣∣ x2=γ1(x1) ξ2=γk(ξ1) γ′1(x1)dx1 −2 b1∫ a1 ∂2u(x) ∂x1∂x2 ∣∣∣ x2=γ2(x1) ∂2U(x−ξ) ∂x1∂x2 ∣∣∣ x2=γ2(x1) ξ2=γk(ξ1) γ′2(x1)dx1 −2 b1∫ a1 ∂2u(x) ∂x2 2 ∣∣∣ x2=γ1(x1) ∂2U(x−ξ) ∂x2 2 ∣∣∣ x2=γ1(x1) ξ2=γk(ξ1) γ′1(x1)dx1 128 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 General Boundary Value Problem for the Third Order Linear Differential Equation +2 b1∫ a1 ∂2u(x) ∂x2 2 ∣∣∣ x2=γ2(x1) ∂2U(x−ξ) ∂x2 2 ∣∣∣ x2=γ2(x1) ξ2=γk(ξ1) γ′2(x1)dx1 −2 b1∫ a1 ∂2u(x) ∂x1∂x2 ∣∣∣ x2=γ1(x1) ∂2U(x−ξ) ∂x2 2 ∣∣∣ x2=γ1(x1) ξ2=γk(ξ1) dx1 +2 b1∫ a1 ∂2u(x) ∂x1∂x2 ∣∣∣ x2=γ2(x1) ∂2U(x−ξ) ∂x2 2 ∣∣∣ x2=γ2(x1) ξ2=γk(ξ1) dx1 +2 ∫ D l0u ∂2U(x−ξ) ∂x1∂x2 dx− 2 ∫ D f(x)∂2U(x−ξ) ∂x1∂x2 dx = (−1)k π b1∫ a1 ∂2u(x) ∂x2 2 ∣∣∣ x2=γk(x1) dx1 x1−ξ1 + · · · , k = 1, 2, ξ1 ∈ [a1, b1]. (29) Thus we obtained the following statements. Theorem 2. Under the conditions of Theorem 1 every solution of equation (1) satisfies the necessary regular conditions (18)–(20). Theorem 3. Under the conditions of Theorem 1 every solution of equation (1) satisfies the necessary singular conditions (25)–(29). 6. Fredholm Property Considering the necessary singular conditions (29) and taking into account the boundary conditions (2), we get ∂2u (ξ) ∂ξ1∂ξ2 ∣∣∣∣ ξ2=γk(ξ1) = (−1)k π ∫ b1 a1 dx1 x1 − ξ1   fk (x1) + 2∑ p=1 2∑ j=1 αkjp (x1) ∂u (x) ∂xj ∣∣∣∣ x2=γp(x1) + 2∑ p=1 αkp (x1)u (x1, γp (x1)) + 2∑ p=1 2∑ j=1 ∫ b1 a1 αkjp (x1, η1) ∂u (η) ∂ηj ∣∣∣∣ η2=γp(η1) + 2∑ p=1 ∫ b1 a1 αkp (x1, η1) u (η1, γp (η1)) dη1    . (30) The first term in the right-hand side is easily regularized if fk (x) ∈ C(1) [a1, b1] , fk (a1) = fk (b1) = 0, k = 1, 2, (31) as shown in [15]. Concerning the second and the third terms in the right-hand side of (30), they are regularized by using (18)–(20). Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 129 A. Delshad Gharehgheshlaghi and N. Aliyev After substituting (18)–(20) into (30), it suffices to replace the regular inte- grals in (18)–(20) by the singular integrals from (30). For the last two terms in the right-hand side of (30) it suffices to replace the integrals contained in it. Finally, consider the necessary condition (27). Its right-hand side contains singular integrals, and we substitute ∂2u (x) ∂x1∂x2 ∣∣∣∣ x2=γ1(x1) by its regular expression obtained by means of (30). Then in the left-hand side of expression (27), instead of ∂2u (ξ) ∂ξ2 1 ∣∣∣∣ ξ2=γ2(ξ1) and ∂2u (ξ) ∂ξ2 2 ∣∣∣∣ ξ2=γ2(ξ1) we use their expressions from the bound- ary conditions (2) and (3). Thus we get the regular relation for ∂2u (ξ) ∂ξ2 1 ∣∣∣∣ ξ2=γ1(ξ1) as well. Thus we proved. Theorem 4. Under the conditions of Theorem 1, (31) and if αkjp (x1), k = 1, 3, j = 1, 2, p = 1, 2; αkp (x1), k = 1, 3, p = 1, 2, x1 ∈ [a1, b1] ; αkjp (x1, η1), k = 1, 3, j = 1, 2, p = 1, 2; x1 ∈ [a1, b1] , η1 ∈ [a1, b1] ; αkp (x1, η1), k = 1, 3, p = 1, 2; x1 ∈ [a1, b1] , η1 ∈ [a1, b1] and f3 (x1), x1 ∈ [a1, b1] are continuous functions, then for the boundary values of u (x) and its derivatives up to the second order we get a normal system of the second order integral equations whose Fredholm kernel formulas do not contain singularities (i.e., the singularity in the trace formula is weak). If all boundary values up to the second order are determined by the above mentioned system of integral equations, then after substitution these boundary values into the left-hand side of (11), (13)–(17), we obtain for the unknown function u (x) and its derivatives up to the second order, inclusively for ξ ∈ D, the system of the Fredholm integral equations of the second kind with regular kernels. Theorem is proved. Theorem 5. Under the conditions of Theorem 4, the stated boundary value problem is reduced to the system of the Fredholm integral equations of the second kind whose Fredholm kernel does not contain singular integrals. A boundary value problem for the second order equation of composite type was studied in [16–21]. Various special cases of boundary value problems for the composite type equa- tions of third order were considered in [22–24]. 130 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 General Boundary Value Problem for the Third Order Linear Differential Equation 7. Example Consider the domain D in the upper half-plane enclosed by the abscissa axis (x2 = 0) and the parabola (x2 = 1− x2 1), D = { x = (x1, x2), x2 ∈ (0, 1− x2 1), x1 ∈ (−1, 1) } . Consider the boundary value problem with the solution u(x) = x1(x2 2 − x2 1) ∂3u(x) ∂x3 2 + ∂3u(x) ∂x2 1∂x2 = 0, x ∈ D, (32) under the boundary conditions ∂2u(x) ∂x2 2 ∣∣∣∣ x2=0 = 2x1, (33) ∂2u(x) ∂x2 2 ∣∣∣∣ x2=1−x2 1 = 2x1, (34) and ∂2u(x) ∂x2 1 ∣∣∣∣ x2=1−x2 1 = −6x1. (35) Notice that for discretization we use the following pattern. If discretization is performed at the point m,n, then it is necessary to know the values of this function on the four layers (m,n− 1); (m− 1, n), (m,n), (m + 1, n); (m− 1, n + 1), (m, n + 1), (m + 1, n + 1); (m,n + 2). (36) Then equation (32) yields the following discrete equations at the point (m,n): ym+1,n+1 − ym+1,n + ym,n+2 − 5ym,n+1 + 5ym,n − ym,n−1 + ym−1,n+1 − ym−1,n = 0, (37) where, m = −3, 3 , n = 1; m = −2, 2 , n = 2. Similarly, the equations obtained from the boundary condition (33) are in the form (notice that here h = 1 4 , x1 = 1 4m) ym,n+1 − 2ym,n + ym,n−1 = 1 32 m, (38) where, m = −4, 4 , n = 1. Equations (38) are obtained from the boundary condition (34) with m = −3, n = 2;m = −2, 2, n = 3;m = 3, n = 2. Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 131 A. Delshad Gharehgheshlaghi and N. Aliyev Finally, the algebraic equations are obtained from the boundary condition (35) ym+1,n − 2ym,n + ym−1,n = − 3 32 m. (39) Here m = −3, n = 0, 2;m = 3, n = 0, 2;m = −1, 1, n = 4;m = −2, 2, n = 3 are obtained. So, we get a system of 39 variables and 39 linear algebraic equations. Since, u(x) = x1(x2 2 − x2 1), then, ym,n = y(mh, nh) = mh(n2h2 −m2h2) = mh3(n2 −m2) = m 64 (n2 −m2). (40) In the considered example we give the exact values at the knot points of the domain, the approximate values of the solution of the system of linear algebraic equations, and finally their absolute error in the table below. It should be noted that here e = |y(Exact)− y(App)|. Table ym,n Exact App Err y−4,0 1 0.1107 0.8893 y−3,0 0.4218 0.1141 0.3077 y−2,0 0.125 -0.0076 0.1326 y−1,0 0.0126 -0.1461 0.1617 y0,0 0 -0.0511 0.0511 y1,0 -0.0156 -0.0497 0.0341 y2,0 -0.125 -0.1422 0.0172 y3,0 -0.4218 -0.1166 0.3052 y4,0 -1 0.0072 1.0072 y−4,1 0.9375 0.0684 0.8691 y−3,1 0.375 0.0677 0.3073 y−2,1 0.0937 0.0045 0.0892 y−1,1 0 -0.0852 0.0852 y0,1 0 -0.0271 0.0271 y1,1 0 -0.0002 0.0002 y2,1 -0.0937 -0.0023 0.9347 y3,1 -0.375 -0.0357 0.3393 y4,1 -0.9375 0.0399 0.9774 y−4,2 0.75 0.0256 0.7244 y−3,2 0.2343 0.0113 0.223 y−2,2 0 0.0099 0.0099 y−1,2 -0.0468 0.0084 0.0552 y0,2 0 0.1650 0.1550 y1,2 0.0468 0.0852 0.3828 132 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 General Boundary Value Problem for the Third Order Linear Differential Equation y2,2 0 0.0367 0.0367 y3,2 -0.2343 0.0488 0.2831 y4,2 -0.75 0.0922 0.8422 y−3,3 0 0.1964 0.1964 y−2,3 -0.1562 0.1192 0.2754 y−1,3 -0.125 0.1045 0.2295 y0,3 0 0.1597 0.1597 y1,3 0.125 0.2773 0.1523 y2,3 0.1562 -0.0343 0.1905 y3,3 0 -0.0225 0.0225 y−2,4 -0.375 0.0831 0.4581 y1,4 -0.2343 0.2823 0.5176 y0,4 0 -0.4307 0.4307 y1,4 0.2343 -0.2748 0.5088 y2,4 0.375 0.0061 0.3689 As it is seen from the table, for the given test the errors are as given in the table. It should also be noted that the maximal error is 1.0072 and the minimal error is 0.0002. Subsequently this problem will be reduced to the integral equation and solved approximately, and the error will be found. Finally, the errors obtained in this way will be compared. References [1] M.A. Naimark, Linear Differential Operators. Moscow, 1969. (Russian) [2] R. Courant and D. Hilbert, Methods of Mathematical Physics. Partial Differential Equations, No. 2, Interscience, 1969. [3] V.S. Vladimirov, Equations of Mathematical Physics. Mir Publishers, Moscow, 1984. [4] A.V. Bitsadze, Equations of Mathematical Physics. Mir Publishers, Moscow, 1980. [5] S.G. Mikhlin, Mathematical Physics. North-Holland, Amsterdam, 1980. [6] I.G. Petrovskii, Lectures on Partial Differential Equations. Willy-Intersciense, New York, 1955. [7] A.V. Bitsadze, To the problem on oblique derivative for harmonic function in three- dimensional domains. Materials of the Joint Soviet-American Symposium on Partial Equations. Siberian branch of AS of the USSR, Novosibirsk, 1963. [8] A.V. Bitsadze, Some Classes of Partial Equations. Nauka, Moscow, 1981. [9] G.E. Shilov, Mathematical Analysis. Second Special Course. Nauka, Moscow, 1969. [10] N.A. Aliev and M. Jahanshahi, Solution of Poisson’s Equation with Global, Local and Nonlocal Boundary Conditions. — Int. J. Math. Educ. Sci. Technol. 33 (2002), No. 2, 241–247. Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 133 A. Delshad Gharehgheshlaghi and N. Aliyev [11] N.A. Aliyev and S.M. Hosseini, An Analysis of a Parabolic Problem with a General (Nonlocal and Global) Supplementary Linear Conditions-II. — Italian J. Pure Appl. Math. (2003), No. 13, 116–127. [12] A.M. Aliyev and N.A. Aliyev, On Boundary Value Problem with Nonlocal Boundary Conditions. 37-th Annual Iranian Mathematics Conference, 2006, pp. 265–268. [13] A.V. Bitsadze and M.S. Salahaddinov, About the Theory of Mixed and Composite Equation. — SMJ 2 (1961), No. 1, 7–19. [14] S.M. Hosseini and N.A. Aliyev, Sufficient Conditions for the Reduction of a BVP for PDE with Nonlocal and Global Boundary Conditions to Fredholm Integral Equa- tions (on a rectangular domain). — Appl. Math. Comput. 147 (2004), 669–686. [15] F.O. Gakhov, Boundary Value Problems. Pergamon, 1966. [16] N.A. Aliyev and Mahammad Jahanshahi, Sufficient Conditions for Reduction of the BVP Including a Mixed PDE with Nonlocal Boundary Conditions to Fredholm Integral Equations. — Int. J. Math. Educ. Sci. Technol. 28 (1997), No. 3, 419–425. [17] A.M. Aliyev and N.A. Aliyev, On Fredholm Property of a Boundary Value Problem for Composite Type Equation. Contemporary Problems of Computational Mathe- matics and Mathematical Physics. To the 90-th anniversary of acad. A.A. Samarskii, Moscow, 2009, pp. 117–118. (Russian) [18] N. Aliyev, Sh. Rezapour, and M. Jahanshahi, On a Mixed Problem for Navier–Stokes System in the Unit Cube. — Math. Moravica 13-1 (2009), 13–24. [19] A.Y. Delshad Gharehgheshlaghi, Investigation of Boundary Value Problems for a Composite Type Integro-differential Equation with Non-local and Golobal Terms in the Boundary Conditions. — Proc. NAS Azerbaijan 31 (2009), 23–30. [20] M.R. Fatemi and N.A. Aliyev, General Linear Boundary Value Problem for the Second-Order Integro-Differential Loaded Equation with Boundary Conditions Con- taining Both Nonlocal and Global Terms. — Abstr. Appl. Anal. Vol. 2010 (2010) Article ID 547526, 12 pp., doi:10.1155/2010/547526. [21] M. Jahanshahi, N.A. Aliyev, and S.M. Hosseini, An Analytic Method for Investi- gation and Solving Two-Dimensional Steady State Navier–Stokes Equations (I). — Southeast Asian Bulletin of Mathematics 33 (2009), No. 6, 1075–1089. [22] A.M. Aliyev and A.A. Niftiyev, The Inverse Boundary Problem Relative Domain for the Composition Type Equation and its Solving Algoritm. — J. Math. Phys. (2006), No. 6, 358. [23] F. Bahrami, N. Aliev, and S.M. Hosseini, A Method for the Reduction of Four Dimensional Mixed Problems with General Boundary Conditions to a System of Second kind Fredholm Integral Equations. — Italian J. Pure Appl. Math. (2005), No. 17, 91–104. [24] A.Y. Delshad Gharehgheshlaghi and N.A. Aliyev, A Problem for a Composite Type Equation of Third Order with General Linear Boundary Conditions. — Transact. NAS Azerbaijan 29 (2009), No. 4, 36–46. 134 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2