On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric over Kählerian Manifold

We propose a fiber-wise deformation of the Sasaki metric on slashed and unit tangent bundles over the Kalerian manifold based on the Berger deformation of metric on a unit sphere. The geodesics of this metric have different projections on a base manifold for the slashed and unit tangent bundles in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
1. Verfasser: Yampolsky, A.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2012
Schriftenreihe:Журнал математической физики, анализа, геометрии
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/106717
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric over Kählerian Manifold / A. Yampolsky // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 2. — С. 117-189. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-106717
record_format dspace
spelling irk-123456789-1067172016-10-04T03:02:21Z On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric over Kählerian Manifold Yampolsky, A. We propose a fiber-wise deformation of the Sasaki metric on slashed and unit tangent bundles over the Kalerian manifold based on the Berger deformation of metric on a unit sphere. The geodesics of this metric have different projections on a base manifold for the slashed and unit tangent bundles in contrast to usual Sasaki metric. Nevertheless, the projections of geodesics of the unit tangent bundle over the locally symmetric K ahlerian manifold still preserve the property to have all geodesic curvatures constant. Предложена послойная деформация метрики Сасаки касательного без базы расслоения и единичного касательного расслоения Кэлерова многообразия, основанная на деформации Берже метрики на единичной сфере. В отличие от классической метрики Сасаки, геодезические этой деформированной метрики имеют разные проекции на базу касательного и единичного касательного расслоений. Однако проекции геодезических единичного расслоения над кэлеровим локально симметрическим многообразием все еще сохраняют свойство проектироваться в кривые с постоянными кривизнами. 2012 Article On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric over Kählerian Manifold / A. Yampolsky // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 2. — С. 117-189. — Бібліогр.: 10 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106717 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We propose a fiber-wise deformation of the Sasaki metric on slashed and unit tangent bundles over the Kalerian manifold based on the Berger deformation of metric on a unit sphere. The geodesics of this metric have different projections on a base manifold for the slashed and unit tangent bundles in contrast to usual Sasaki metric. Nevertheless, the projections of geodesics of the unit tangent bundle over the locally symmetric K ahlerian manifold still preserve the property to have all geodesic curvatures constant.
format Article
author Yampolsky, A.
spellingShingle Yampolsky, A.
On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric over Kählerian Manifold
Журнал математической физики, анализа, геометрии
author_facet Yampolsky, A.
author_sort Yampolsky, A.
title On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric over Kählerian Manifold
title_short On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric over Kählerian Manifold
title_full On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric over Kählerian Manifold
title_fullStr On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric over Kählerian Manifold
title_full_unstemmed On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric over Kählerian Manifold
title_sort on geodesics of tangent bundle with fiberwise deformed sasaki metric over kählerian manifold
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/106717
citation_txt On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric over Kählerian Manifold / A. Yampolsky // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 2. — С. 117-189. — Бібліогр.: 10 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT yampolskya ongeodesicsoftangentbundlewithfiberwisedeformedsasakimetricoverkahlerianmanifold
first_indexed 2025-07-07T18:53:45Z
last_indexed 2025-07-07T18:53:45Z
_version_ 1837015423136038912
fulltext Journal of Mathematical Physics, Analysis, Geometry 2012, vol. 8, No. 2, pp. 177�189 On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric over K�ahlerian Manifold A. Yampolsky Department of Mechanics and Mathematics, V.N. Karazin Kharkiv National University 4 Svobody Sq., Kharkiv 61077, Ukraine E-mail: alexymp@gmail.com Received February 24, 2011 We propose a �ber-wise deformation of the Sasaki metric on slashed and unit tangent bundles over the K�alerian manifold based on the Berger deformation of metric on a unit sphere. The geodesics of this metric have di�erent projections on a base manifold for the slashed and unit tangent bundles in contrast to usual Sasaki metric. Nevertheless, the projections of geodesics of the unit tangent bundle over the locally symmetric K�ahlerian manifold still preserve the property to have all geodesic curvatures constant. Key words: Sasaki metric, K�ahlerian manifold, tangent bundle, geode- sics. Mathematics Subject Classi�cation 2000: 53B20, 53B25 (primary); 53B21 (secondary). Introduction Let (M, g) be a Riemannian manifold. Denote by TM and T1M the tangent bundle and the unit tangent bundle of (M, g) with the Sasaki metric. It is easy to prove that if π is a bundle projection π : TM → M and Γ(σ) is a non-vertical geodesic on TM or T1M, then the projected curve γ(σ) = (π ◦Γ)(σ) on M is the same. In other words, the non-vertical geodesic lines on TM or T1M are generated by di�erent vector �elds along the same set of the curves on the base manifold. For the case of the base manifold of constant curvature, S. Sasaki [1] and K. Sato [2] gave a complete description of the curves and vector �elds along them which generated non-vertical geodesics on T1M n and TMn, respectively. They proved that the projected curves have constant (possibly zero) �rst and second geodesic curvatures while the others vanish. P. Nagy [3] generalized these results to the c© A. Yampolsky, 2012 A. Yampolsky case of locally symmetric base manifold and proved that the projected curves have all geodesic curvatures constant. The Sasaki metric weakly inherits the base manifold properties. Under most considerations it behaves just as a general Riemannian metric. That is why a number of authors proposed to deform the Sasaki metric in order to get some kind of "�exibility" of its properties (see [4�8] and others). Using the concept of natural transformation of the Riemannian metric on the manifold to its tangent bundle, M.T.K. Abbassi and M. Sarih [6] proposed a much more general metric on the tangent and the unit tangent bundles which includes the Sasaki metric, the Cheeger�Gromoll metric and some others as partial cases. This metric uses some kind of "deformation" of the Sasaki metric in the direction of the "tangent bundle point". In present paper we propose another natural way of deforming the Sasaki metric in the presence of almost complex structure J . If the base manifold (M, g) of dimension 2n is endowed with almost complex structure J , then the unit sphere S2n−1 x in the tangent space TxM carries the Hopf vector �eld Jξ, where ξ is a unit normal vector �eld on the sphere. Applying the Berger metric deformation to each tangent sphere, we get the unit tangent bundle over M with the Berger metric spheres as �bers. In a wider scope, one can deform the Sasaki metric on the slashed manifold TM0 := TM\M in the direction of Jξ such that the restriction of the deformed metric on the unit tangent bundle gives the construction described. The main result of the paper is the following. Theorem 2.1.Let Γ be a geodesic on the unit tangent bundle with the Berger- type deformed Sasaki metric over K�ahlerian locally symmetric manifold M and γ = π ◦ Γ be its projection to the base. Then all geodesic curvatures of γ are constant. If Γ is a geodesic on the slashed tangent bundle TM0, then the projected curve γ = π ◦ Γ does not possess this property. For the speci�c case of the K�ahlerian manifold of constant holomorphic cur- vature, Theorem 2.1 can be improved. Theorem 2.2.Let Γ be a geodesic of the unit tangent bundle with the Berger- type deformed Sasaki metric over K�ahlerian manifold M2n (n ≥ 3) of constant holomorphic curvature. Then the geodesic curvatures of γ = π ◦Γ are all constant and k6 = · · · = kn−1 = 0. 1. Basic Properties of the Berger-Type Deformed Sasaki Metric Let (M, g) be an n-dimensional Riemannian manifold with metric g. Denote by 〈·, ·〉 a scalar product with respect to g. 178 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric It is well known that at each point Q = (q, ξ) ∈ TM the tangent space TQTM splits into vertical and horizontal parts: TQTM = HQTM ⊕ VQTM. The vertical part VQTM is tangent to the �ber, while the horizontal part is transversal to it. Denote by (x1, . . . , xn; ξ1, . . . , ξn) the natural induced local coordinate system on TM . Denote ∂i = ∂/∂xi, ∂n+i = ∂/∂ξi. Then for X̃ ∈ TQTMn we have X̃ = X̃i∂i + X̃n+i∂n+i. Denote by π : TM → M the tangent bundle projection. The mapping π∗ de�nes a point-wise linear isomorphism between HQTM and TqM . Notice that kerπ∗|Q = VQ. The so-called connection mapping K : TQTM → TqM acts on X̃ by KX̃ = (X̃n+i + Γi jkξ jX̃k)∂i and de�nes a point-wise linear isomorphism between VQTM and TqM . Here Γi jk are the Christo�el symbols of g. Notice that kerK|Q = HQ. The images π∗X̃ and KX̃ are called horizontal and vertical projections of X̃, respectively. The operations inverse to the projections are called lifts. Namely, if X ∈ TqM n, then Xh = Xi∂i − Γi jkξ jXk∂n+i is in HQTM and is called the horizontal lift of X, and Xv = Xi∂n+i is in VQTM and is called the vertical lift of X. Let X̃, Ỹ ∈ TQTM. The standard Sasaki metric on TM is de�ned at each point Q = (q, ξ) ∈ TM by the scalar product 〈〈 X̃, Ỹ 〉〉∣∣ Q = 〈 π∗X̃, π∗Ỹ 〉∣∣ q + 〈 KX̃,KỸ 〉∣∣ q . The horizontal and vertical subspaces are mutually orthogonal with respect to the Sasaki metric. The Sasaki metric can be completely de�ned by a scalar product of various combinations of lifts by 〈〈 Xh, Y h 〉〉 = 〈 X, Y 〉 , 〈〈 Xh, Y v 〉〉 = 0, 〈〈 Xv, Y v 〉〉 = 〈 X,Y 〉 . Let (M, g, J) be a Hermitian manifold of dimension 2n with an almost complex structure J , i.e. the (1, 1)-tensor �eld satisfying J2 = −id. Denote by TM0 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 179 A. Yampolsky a slashed tangent bundle, i.e. the tangent bundle with zero section deleted. De�ne a �ber-wise Berger-type deformation of the Sasaki metric on TM0 by 〈〈 Xh, Y h 〉〉 = 〈 X,Y 〉 , 〈〈 Xh, Y v 〉〉 = 0, 〈〈 Xv, Y v 〉〉 = 〈 X,Y 〉 + δ2 〈 X, Jξ 〉〈 Y, Jξ 〉 , (1) where δ is some constant. In what follows we restrict the considerations to the case of the K�ahlerian base manifold. In this case J has no torsion and ∇J = 0. The following formulas are independent from the choice of the tangent bundle metric and are known as Dombrowski formulas. Lemma 1.1. At each point (q, ξ) ∈ TM the brackets of lifts of vector �elds from M to TM are [ Xh, Y h ] = [ X, Y ]h − ( R(X, Y )ξ )v , [ Xh, Y v ] = (∇XY )v , [ Xv, Y v ] = 0, where ∇ is the connection on M and R is its curvature tensor. Denote by ∇̃ the Levi�Civita connection of metric (1). The following lemma contains the Kowalski-type formulas [9] and it is the main tool for further consid- erations. Lemma 1.2. Let (M, g, J) be a K�ahlerian manifold. The Levi�Civita connec- tion of the Berger-type deformed Sasaki metric (1) on the slashed tangent bundle TM0 is completely de�ned by ∇̃XhY h = (∇XY )h − 1 2 ( R(X, Y )ξ )v , ∇̃XhY v = 1 2 ( R(ξ, Y )X + δ2 〈Y, Jξ〉R(ξ, Jξ)X )h + ( ∇XY )v , ∇̃XvY h = 1 2 ( R(ξ, X)Y + δ2 〈X,Jξ〉R(ξ, Jξ)Y )h ∇̃XvY v = δ2 ( 〈X,Jξ〉 JY + 〈Y, Jξ〉 JX− δ2 1+δ2|ξ|2 ( 〈Y, ξ〉 〈X, Jξ〉+ 〈X, ξ〉 〈Y, Jξ〉 )Jξ )v , where ∇ is the Levi-Civita connection on M and R is its curvature tensor. P r o o f. The proof is based on the following rules of di�erentiations: Xh 〈〈 Y h, Zh 〉〉 = 〈∇XY, Z 〉 + 〈 Y,∇XZ 〉 , Xh 〈〈 Y v, Zv 〉〉 = 〈〈 (∇XY )v, Zv 〉〉 + 〈〈 Y v, (∇XZ)v 〉〉 , Xv 〈〈 Y h, Zh 〉〉 = 0, Xv 〈〈 Y v, Zv 〉〉 = δ2 (〈 Y, JX 〉〈 Z, Jξ 〉 + 〈 Y, Jξ 〉〈 Z, JX 〉) . (2) 180 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric (2)1: Indeed, keeping in mind (1), we have Xh 〈〈 Y h, Zh 〉〉 = Xh 〈 Y, Z 〉 = 〈∇XY, Z 〉 + 〈 Y,∇XZ 〉 . (2)2: In a similar way, Xh 〈〈 Y v, Zv 〉〉 = Xh (〈 Y, Z 〉 + δ2 〈 Y, Jξ 〉〈 Z, Jξ 〉) = 〈∇XY,Z 〉 + 〈 Y,∇XZ 〉 + δ2Xh (〈 Y, Jξ 〉〈 Z, Jξ 〉) . As M is K�ahlerian and hence ∇XJ = 0, we have Xh 〈 Y, Jξ 〉 = −Xh 〈 JY, ξ 〉 = −Xi∂i 〈 JY, ξ 〉 + Γs jkξ jXk∂n+s 〈 JY, ξ 〉 = −Xi 〈 J∇iY, ξ 〉−Xiξk 〈 JY, Γs ki∂s 〉 + Γs kiξ kXi 〈 JY, ∂s 〉 = 〈∇XY, Jξ 〉 . Therefore, Xh 〈〈 Y v, Zv 〉〉 = 〈∇XY, Z 〉 + 〈 Y,∇XZ 〉 + δ2 〈∇XY, Jξ 〉〈 Z, Jξ 〉 δ2 〈 Y, Jξ 〉〈∇XZ, Jξ 〉 = + 〈〈 (∇XY )v, Zv 〉〉 + 〈〈 Y v, (∇XZ)v 〉〉 . (2)3: We have Xv 〈〈 Y h, Zh 〉〉 = Xv 〈 Y, Z 〉 = Xi∂n+i 〈 Y,Z 〉 = 0. (2)4: Finally, Xv 〈 Y, Jξ 〉 = Xi∂n+i 〈 Y, Jξ 〉 = 〈 Y, JX 〉 , and therefore Xv 〈〈 Y v, Zv 〉〉 = Xv (〈 Y, Z 〉 + δ2 〈 Y, Jξ 〉〈 Z, Jξ 〉) = δ2 (〈 Y, JX 〉〈 Z, Jξ 〉 + 〈 Y, Jξ 〉〈 Z, JX 〉) . Now we can prove the lemma relatively easy by applying Lemma 1.1 and the Kozsul formula for the Levi�Civita connection 2 〈∇AB,C 〉 = A 〈 B, C 〉 + B 〈 A, C 〉− C 〈 A,B 〉 + 〈 [A,B], C 〉 + 〈 [C,A], B 〉− 〈 [B, C], A 〉 . • Take A = Xh, B = Y h, C = Zh. Then 2 〈〈∇̃XhY h, Zh 〉〉 = 2 〈∇XY, Z 〉 = 2 〈〈 (∇XY )h, Zh 〉〉 . Take A = Xh, B = Y h, C = Zv. Then 2 〈〈∇̃XhY h, Zv 〉〉 = −Zv 〈〈 Xh, Y h 〉〉 + 〈〈 [Xh, Y h], Zv 〉〉 = −〈〈 (R(X, Y )ξ)v, Zv 〉〉 . Hence ∇̃XhY h = (∇XY )h − 1 2 ( R(X, Y )ξ )v . Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 181 A. Yampolsky • Take A = Xh, B = Y v, C = Zh. Then 2 〈〈∇̃XhY v, Zh 〉〉 = 〈〈 [Zh, Xh], Y v 〉〉 = 〈〈 (R(X,Z)ξ)v, Y v 〉〉 = 〈 R(X, Z)ξ, Y 〉 + δ2 〈 R(X, Z)ξ, Jξ 〉〈 Y, Jξ 〉 = 〈 R(ξ, Y )X, Z 〉 + δ2 〈 Y, Jξ 〉〈 R(ξ, Jξ)X, Z 〉 = 〈〈( R(ξ, Y )X + δ2 〈 Y, Jξ 〉 R(ξ, Jξ)X )h , Zh 〉〉 . Take A = Xh, B = Y v, C = Zv. Then by (2), we have 2 〈〈∇̃XhY v, Zv 〉〉 = Xh 〈〈 Y v, Zv 〉〉 + 〈〈 [Xh, Y v], Zv 〉〉 + 〈〈 [Zv, Xh], Y v 〉〉 = 〈〈 (∇XY )v, Zv 〉〉 + 〈〈 Y v, (∇XZ)v 〉〉 + 〈〈 (∇XY )v, Zv 〉〉− 〈〈 (∇XZ)v, Y v 〉〉 = 2 〈〈 (∇XY )v, Zv 〉〉 . So, we see that ∇̃XhY v = 1 2 ( R(ξ, Y )X + δ2 〈Y, Jξ〉R(ξ, Jξ)X )h + ( ∇XY )v . • Take A = Xv, B = Y h, C = Zh. Then 2 〈〈∇̃XvY h, Zh 〉〉 = Xv 〈〈 Y h, Zh 〉〉 + 〈〈 [Xv, Y h], Zh 〉〉 + 〈〈 [Zh, Xv], Y h 〉〉 − 〈〈 [Y h, Zh], Xv 〉〉 = 〈〈 (R(Y,Z)ξ)v, Xv 〉〉 = 〈 R(Y, Z)ξ,X 〉 + δ2 〈 R(Y, Z)ξ, Jξ 〉〈 X, Jξ 〉 = 〈 R(ξ, X)Y, Z 〉 + δ2 〈 X,Jξ 〉〈 R(ξ, Jξ)Y, Z 〉 = 〈〈 (R(ξ,X)Y + δ2 〈 X, Jξ 〉 R(ξ, Jξ)Y )h, Zh 〉〉 . Take A = Xv, B = Y h, C = Zv. Then 2 〈〈∇̃XvY h, Zv 〉〉 = Y h 〈〈 Zv, Xv 〉〉 + 〈〈 [Xv, Y h], Zv 〉〉− 〈〈 [Y h, Zv], Xv 〉〉 = 〈〈 (∇Y Z)v, Xv 〉〉 + 〈〈 Zv, (∇Y X)v 〉〉 − 〈〈 (∇Y X)v, Zv 〉〉− 〈〈 (∇Y Z)v, Xv 〉〉 = 0. So, we have ∇̃XvY h = 1 2 ( R(ξ, X)Y + δ2 〈X,Jξ〉R(ξ, Jξ)Y )h . • Take A = Xv, B = Y v, C = Zh. Then we have 2 〈〈∇̃XvY v, Zh 〉〉 = −Zh 〈〈 Xv, Y v 〉〉 + 〈〈 [Zh, Xv], Y v 〉〉 − 〈〈 [Y v, Zh], Xv 〉〉 = −〈〈 (∇ZX)v, Y v 〉〉− 〈〈 Xv, (∇ZY )v 〉〉 + 〈〈 (∇ZX)v, Y v 〉〉 + 〈〈 (∇ZY )v, Xv 〉〉 = 0. 182 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric Finally, take A = Xv, B = Y v, C = Zv. Then 2 〈〈∇̃XvY v, Zv 〉〉 = Xv 〈〈 Y v, Zv 〉〉 + Y v 〈〈 Xv, Zv 〉〉− Zv 〈〈 Xv, Y v 〉〉 = δ2 (〈 Y, JX 〉〈 Z, Jξ 〉 + 〈 Y, Jξ 〉〈 Z, JX 〉 + 〈 X, JY 〉〈 Z, Jξ 〉 + 〈 X, Jξ 〉〈 Z, JY 〉− 〈 X, JZ 〉〈 Y, Jξ 〉− 〈 X, Jξ 〉〈 Y, JZ 〉) = 2δ2 (〈 Y, Jξ 〉〈 JX, Z 〉 + 〈 X, Jξ 〉〈 JY, Z 〉) . Thus, we see that 〈〈∇̃XvY v, Zv 〉〉 = δ2 (〈 Y, Jξ 〉〈 JX,Z 〉 + 〈 X,Jξ 〉〈 JY, Z 〉) . On the other hand, 〈〈 (JY )v, Zv 〉〉 = 〈 JY, Z 〉 + δ2 〈 Y, ξ 〉〈 Z, Jξ 〉 and 〈〈 (Jξ)v, Zv 〉〉 = 〈 Jξ, Z 〉 + δ2 〈 Z, Jξ 〉|ξ|2 = (1 + δ2|ξ|2)〈Z, Jξ 〉 . Therefore, 〈 Z, Jξ 〉 = 1 1 + δ2|ξ|2 〈〈 (Jξ)v, Zv 〉〉 and, as a consequence, 〈 JY, Z 〉 = 〈〈 (JY )v, Zv 〉〉− δ2 〈 Y, ξ 〉 1 1 + δ2|ξ|2 〈〈 (Jξ)v, Zv 〉〉 = 〈〈 (JY )v − δ2 1 + δ2|ξ|2 〈 Y, ξ 〉 (Jξ)v, Zv 〉〉 . So, we have 〈〈∇̃XvY v, Zv 〉〉 = δ2 〈〈 [〈 X, Jξ 〉( JY − δ2 1 + δ2|ξ|2 〈 Y, ξ 〉 Jξ ) + 〈 Y, Jξ 〉( JX − δ2 1 + δ2|ξ|2 〈 X, ξ 〉 Jξ )]v , Zv 〉〉 . Finally, ∇̃XvY v = δ2 (〈 X, Jξ 〉 JY + 〈 Y, Jξ 〉 JX − δ2 1 + δ2|ξ|2 (〈 Y, ξ 〉〈 X,Jξ 〉 + 〈 X, ξ 〉〈 Y, Jξ 〉) Jξ )v . The lemma is proved. Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 183 A. Yampolsky 2. Geodesics of the Berger-Type Deformed Sasaki Metric Consider a non-vertical curve Γ on the tangent bundle with metric (1). Geometri- cally, Γ = {x(σ), ξ(σ)}, where x(σ) is a curve on M and ξ(σ) is a vector �eld along this curve. Let σ be an arc length parameter on Γ. Then Γ′ = ( dx dσ )h + (∇ dx dσ ξ)v. Introduce the notations x′ = dx dσ and ξ′ = ∇ dx dσ ξ. Then Γ′ = (x′)h + (ξ′)v. Now we can easily derive the di�erential equations of geodesic lines of metric (1). Lemma 2.1. Let (M, g, J) be a K�ahlerian manifold and TM0 be its slashed tangent bundle with the Berger-type deformed Sasaki metric. The curve Γ = {x(σ), ξ(σ)} is a geodesic on TM0 if and only if x(σ) and ξ(σ) satisfy x′′ +R(ξ, ξ′)x′ = 0 ξ′′ + 2δ2 〈 ξ′, Jξ 〉( Jξ′ − δ2 1+δ2|ξ|2 〈 ξ′, ξ 〉 Jξ ) = 0, (3) where R(ξ, ξ′) = R(ξ, ξ′) + δ2 〈 ξ′, Jξ 〉 R(ξ, Jξ), and R is the curvature operator of the base manifold M . P r o o f. Using Lemma 1.2, �nd the derivative Γ′′ and equalize it to zero Γ′′ = ∇̃(x′)h+(ξ′)v ( (x′)h + (ξ′)v ) = ( x′′ + R(ξ, ξ′)x′ + δ2 〈 ξ′, Jξ 〉 R(ξ, Jξ)x′ )h + ( ξ′′ + 2δ2 (〈 ξ′, Jξ 〉 Jξ′ − δ2 1 + δ2|ξ|2 〈 ξ′, ξ 〉〈 ξ′, Jξ 〉) Jξ )v = ( x′′ + ( R(ξ, ξ′) + δ2 〈 ξ′, Jξ 〉 R(ξ, Jξ) ) x′ )h + ( ξ′′ + 2δ2 〈 ξ′, Jξ 〉( Jξ′ − δ2 1 + δ2|ξ|2 〈 ξ′, ξ 〉) Jξ )v = 0. The lemma is proved. Consider now the unit tangent bundle T1M . Lemma 2.2. Let (M2n, g, J) be a K�ahlerian manifold and T1M be its unit tangent bundle with the Berger-type deformed Sasaki metric. Set c = |ξ′|, µ =〈 ξ′, Jξ 〉 . The curve Γ = {x(σ), ξ(σ)} is a geodesic on T1M if and only if 184 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric (a) c = const, µ = const; (b) x(σ) and ξ(σ) satisfy the equations x′′ +R(ξ, ξ′)x′ = 0 ξ′′ + c2ξ + 2δ2µ(Jξ′ + µξ) = 0, (4) where R(ξ, ξ′) = R(ξ, ξ′) + δ2µR(ξ, Jξ) and R is the curvature operator of the base manifold M . P r o o f. At each point (q, ξ) ∈ T1M , the unit normal to T1M is ξv. Indeed, with respect to metric (1), we have 〈〈 Xh, ξv 〉〉 = 0 for all X tangent to M,〈〈 Xv, ξv 〉〉 = 0 for all X ∈ ξ⊥ . As T1M is a hypersurface in TM , the curve on T1M is geodesic i� its second covariant derivative in TM is collinear to the unit normal, i.e. to ξv. That is why, to �nd the equations of geodesics on T1M , it is su�cient to set |ξ| = 1 in (3) and to suppose the left-hand side of (3)2 to be collinear ξ. Thus, we get x′′ +R(ξ, ξ′)x′ = 0 ξ′′ + 2δ2 〈 ξ′, Jξ 〉 Jξ′ = ρξ, (5) where ρ is some function. Put c = |ξ′|. Then c = const, since 〈 ξ′′, ξ′ 〉 = 0 directly from (5)2. Put µ = 〈 ξ′, Jξ 〉 . Then µ = const, since µ′ = 〈 ξ′′, Jξ 〉 = 0 . Multiplying (5)2 by ξ, we �nd −ρ = c2 + 2δ2µ2 = const. After substituting it into (5), we get what was claimed. The di�erence in the description of solutions of (3) and (4) follows from dif- ferent behavior of the operator R(ξ, ξ′) along π ◦ Γ. Proposition 2.1. Let Γ be a geodesic of the slashed or unit tangent bundle over K�ahlerian locally symmetric manifold M and γ = π ◦ Γ. Then R(ξ, ξ′) is parallel along γ for the case of T1M and non-parallel for the case of TM0. P r o o f. First, consider the case of T1M . Using (4), we get R′(ξ, ξ′) = R(ξ, ξ′′) + δ2µR(ξ′, Jξ) + δ2µR(ξ, Jξ′) = −2δ2µR(ξ, Jξ′)− δ2µR(Jξ′, ξ) + δ2µR(ξ, Jξ′) = 0. Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 185 A. Yampolsky Here we also used the fact that R(JX, JY ) = R(X, Y ). A similar but longer calculation shows that for the of case of TM0 R′(ξ, ξ′) = 2δ6 〈 ξ′, Jξ 〉〈 ξ′, ξ 〉( 1− |ξ|2) 1 + δ2|ξ|2 R(ξ, Jξ), which completes the proof. Theorem 2.1. Let Γ be a geodesic of the unit tangent bundle with the Berger- type deformed Sasaki metric over the K�ahlerian locally symmetric manifold M, and γ = π ◦ Γ. Then all geodesic curvatures of γ are constant. P r o o f. For the case of T1M, Proposition 2.1 implies that if Γ is a geodesic on T1M , then along each curve γ = π ◦ Γ x(p+1)(σ) = −R(ξ, ξ′) x(p)(σ) p ≥ 1. (6) On the other hand, it is rather evident that 〈R(ξ, ξ′)X, Y 〉 = −〈R(ξ, ξ′)Y, X 〉 . This fact and (6) imply |x(p)(σ)| = const for all p ≥ 1. (7) Indeed, d dσ |x(p)(σ)| 2 = 2 〈 x(p+1)(σ), x(p)(σ) 〉 = −2 〈R(ξ, ξ′) x(p)(σ), x(p)(σ) 〉 = 0. Denote by s an arc length parameter on γ. Then x′σ = x′s ds dσ , and therefore 1 = ‖Γ′‖2 = ∣∣∣ ds dσ ∣∣∣ 2 + |ξ′|2 + δ2 〈 ξ′, Jξ 〉2 = ∣∣∣ ds dσ ∣∣∣ 2 + c2 + δ2µ2. Hence ds dσ = √ 1− c2 − δ2µ2 = √ 1− λ2, (8) where λ2 = c2 + δ2µ2 = const. Denote by ν1, . . . , ν2n−1 the Frenet frame along γ and by k1, . . . , k2n−1 the geodesic curvatures of γ. Then, keeping in mind (8), we have x′ = √ 1− λ2 ν1, x′′ = (1− λ2)k1ν2. Now (7) implies k1 = const. Next, x(3) = (1− λ2)3/2 k1(−k1ν1 + k2ν3), and again (7) implies k2 = const. By continuing the process, we �nish the proof. 186 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric As proven in [10], for the case of T1CPn and TCPn with the Sasaki metric, the curvatures of γ = π◦Γ are zeroes starting from k6. It is rather remarkable that this property is still valid for the case of the Berger-deformed Sasaki metric on the unit tangent bundle over the K�ahlerian manifold of constant holomorphic curvature. It is well known that the complete simply connected K�ahlerian manifold of the constant holomorphic sectional curvature k is isometric to: the complex projective space CPn for k > 0; the open ball Dn ⊂ Cn for k < 0; Cn for k = 0. Theorem 2.2. Let Γ be a geodesic of the unit tangent bundle with the Berger- type deformed Sasaki metric over K�ahlerian manifold M2n (n ≥ 3) of the constant holomorphic curvature. Then the geodesic curvatures of γ = π◦Γ are all constant, and k6 = · · · = k2n−1 = 0. P r o o f. For the case of the K�ahlerian manifold of constant holomorphic curvature k we have R(X, Y )Z = k 4 (〈 Y,Z 〉 X − 〈 X, Z 〉 Y + 〈 JY, Z 〉 JX − 〈 JX,Z 〉 JY + 2 〈 X, JY 〉 JZ ) . Rewrite equations (4) as follows: x′′ = −k 4 (〈 ξ′, x′ 〉 ξ − 〈 ξ, x′ 〉 ξ′ + 〈 Jξ′, x′ 〉 Jξ − 〈 Jξ, x′ 〉 Jξ′ + 2 〈 ξ, Jξ′ 〉 Jx′ ) − 1 2 δ2µ (〈 Jξ, x′ 〉 ξ − 〈 ξ, x′ 〉 Jξ − Jx′ ) (9) ξ′′ = −(c2 + 2δ2µ2)ξ − 2δ2µJξ′. (10) Equation (9) shows that x′′ is a linear combination of at most ξ, ξ′, Jξ, Jξ′ and Jx′. Therefore, Jx′′ is a linear combination of at most Jξ, Jξ′, ξ, ξ′, x′. Equation (10) shows that ξ′′ is a linear combination of at most ξ and Jξ′. Therefore, Jξ′′ is a linear combination of at most Jξ and ξ′. For the sake of brevity, denote a point-wise linear combination of the corre- sponding vectors by l.c.(·, ·, . . . ). Then we can write x′′ = l.c.(ξ, ξ′, Jξ, Jξ′, Jx′), Jx′′ = l.c.(Jξ, Jξ′, ξ, ξ′, x′), ξ′′ = l.c.(ξ, Jξ′), Jξ′′ = l.c.(Jξ, ξ′). Hence x′′′ = l.c.(ξ′, ξ′′, Jξ′, Jξ′′, Jx′′) = l.c. ( ξ′, l.c.(ξ, Jξ′), Jξ′, l.c.(Jξ, ξ′), l.c.(Jξ, Jξ′, ξ, ξ′, x′) ) = l.c.(ξ, ξ′, Jξ, Jξ′, x′). Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 187 A. Yampolsky In a similar way, x(4) = l.c.(ξ, ξ′, Jξ, Jξ′, Jx′). Continuing the process, we conclude that x(p) = l.c.(ξ, ξ′, x′, Jξ, Jξ′, Jx′) for all p. This means that no more than the �rst six derivatives could be linearly independent, and hence at least x(7) = l.c.(x′, x′′, . . . , x(6)). (11) On the other hand, the Frenet formulas yield x′ = √ 1− λ2 ν1 x′′ = (1− λ2)k1ν2, x′′′ = (1− λ2)3/2(−k2 1ν1 + k1k2ν3) and, in general, x(2m) = l.c.(ν2, . . . , ν2m−2) + (1− λ2)m k1 . . . k2m−1 ν2m, x(2m+1) = l.c.(ν1, . . . , ν2m−1) + (1− λ2)m+1/2 k1 . . . k2m ν2m+1, where λ is given by (8). For m = 3, we have x(7) = l.c.(ν1, . . . , ν5) + (1− λ2)7/2 k1 . . . k6 ν7. Notice that for all p ≤ 6, x(p) = l.c.(ν1, . . . , ν6). From (11) it follows that (1− λ2)7/2 k1 . . . k6 ν7 = l.c.(ν1, . . . , ν6), and therefore, at least k6 = 0. Acknowledgement. The author thanks Professor P.T. Nagy for the idea of considering the deformation proposed and a hospitality during the visit to the University of Debrecen (Hungary). References [1] S. Sasaki, Geodesics on the Tangent Sphere Bundle over Space Forms. � J. Reine Angew. Math. 288 (1976), 106�120. [2] K. Sato, Geodesics on the Tangent Bundle over Space Forms. � Tensor 32 (1978), 5�10. 188 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric [3] P.T. Nagy, Geodesics on the Tangent Sphere Bundle of a Riemannian Manifold. � Geom. Dedic. 7 (1978), No. 2, 233�244. [4] J. Cheeger and D. Gromoll, On the Structure of Complete Manifolds of Nonnegative Curvature. � Ann. Math. 96 (1972), 413�443. [5] M. Sekizawa, Curvatures of Tangent Bundles with Cheeger�Gromoll Metric. � Tokyo J. Math. 14 (1991), No. 2, 407�417. [6] M.T.K. Abbassi and M. Sarih, On Riemannian g-Natural Metrics of the Form ags +bgh +cgv on the Tangent Bundle of a Riemannian Manifold (M, g). � Mediter. J. Math. 2 (2005), 19�43. [7] V. Oproiu, A K�ahler Einstein Structure on the Tangent Bundle of a Space Form. � Int. J. Math. Math. Sci. 25 (2001), 183�195. [8] M. Munteanu, Cheeger Gromoll Type Metrics on the Tangent Bundle. arXiv:math.DG/0610028 (30 Sept. 2006). [9] O. Kowalski, Curvature of the Induced Riemannian Metric on the Tangent Bundle of a Riemannian Manifold. � J. Reine Angew. Math. 250 (1971), 124�129. [10] A. Yampolsky, On Characterisation of Projections of Geodesics of Sasaki Metric TCPn and T1CPn. � Ukr. Geom. Sbornik 34 (1991), 121�126. (Russian) (Engl. transl.: J. Math. Sci. 69 (1994), No. 1, 916�920.) Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 189