Good Measures on Locally Compact Cantor Sets

We study the set M(X) of full non-atomic Borel measures μ on a non-compact locally compact Cantor set X. The set Mμ = {x is in X : for any compact open set U (x is in U) we have μ(U) = ∞} is called defective. μ is non-defective if μ(Mμ) = 0. The set M⁰(X) is subset of M(X) consists of probability a...

Full description

Saved in:
Bibliographic Details
Date:2012
Main Author: Karpel, O.M.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2012
Series:Журнал математической физики, анализа, геометрии
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/106723
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Good Measures on Locally Compact Cantor Sets/ O.M. Karpel // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 3. — С. 260-279. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine