Good Measures on Locally Compact Cantor Sets
We study the set M(X) of full non-atomic Borel measures μ on a non-compact locally compact Cantor set X. The set Mμ = {x is in X : for any compact open set U (x is in U) we have μ(U) = ∞} is called defective. μ is non-defective if μ(Mμ) = 0. The set M⁰(X) is subset of M(X) consists of probability a...
Saved in:
Date: | 2012 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2012
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/106723 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Good Measures on Locally Compact Cantor Sets/ O.M. Karpel // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 3. — С. 260-279. — Бібліогр.: 16 назв. — англ. |