Homogenization of Spectral Problem on Small-Periodic Networks
The homogenization of a spectral problem on small-periodic networks with periodic boundary conditions is considered. Asymptotic expansions for eigenfunctions and corresponding eigenvalues on the network are con- structed. The theorem is proved which is a justi¯cation of the asymptotic expansions for...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | Krylova, A.S., Sandrakov, G.V. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2012
|
Schriftenreihe: | Журнал математической физики, анализа, геометрии |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/106727 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Homogenization of Spectral Problem on Small-Periodic Networks / A.S. Krylova, G.V. Sandrakov // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 4. — С. 336-356. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Homogenization of Spectral Problem on Small-Periodic Networks
von: A. S. Krylova, et al.
Veröffentlicht: (2012) -
Solvability of equations with convolutions that arise in homogenization problems
von: A. L. Hulianytskyi, et al.
Veröffentlicht: (2021) -
Spectral properties of non-homogeneous Timoshenko beam and its controllability
von: Sklyar, G.M., et al.
Veröffentlicht: (2007) -
Elastic homogenization of materials with composite network structure
von: M. M. Tkachuk
Veröffentlicht: (2019) -
On the spectral criterion of stability in the problem of small motions of an ideal capillary fluid with disconnected free surface
von: N. D. Kopachevskij, et al.
Veröffentlicht: (2014)