Isomorphically Polyhedral Banach Spaces

We prove two theorems giving su±cient conditions for a Banach space to be isomorphically polyhedral.

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Fonf, V.P., Pallarés, A.J., Troyanski, S.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2013
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106740
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Isomorphically Polyhedral Banach Spaces / V.P. Fonf, A.J. Pallarés, S. Troyanski // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 1. — С. 108-113. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-106740
record_format dspace
spelling irk-123456789-1067402016-10-04T03:02:37Z Isomorphically Polyhedral Banach Spaces Fonf, V.P. Pallarés, A.J. Troyanski, S. We prove two theorems giving su±cient conditions for a Banach space to be isomorphically polyhedral. Доказаны две теоремы, дающие достаточные условия для того, чтобы банахово пространство было изоморфически многогранным. 2013 Article Isomorphically Polyhedral Banach Spaces / V.P. Fonf, A.J. Pallarés, S. Troyanski // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 1. — С. 108-113. — Бібліогр.: 9 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106740 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We prove two theorems giving su±cient conditions for a Banach space to be isomorphically polyhedral.
format Article
author Fonf, V.P.
Pallarés, A.J.
Troyanski, S.
spellingShingle Fonf, V.P.
Pallarés, A.J.
Troyanski, S.
Isomorphically Polyhedral Banach Spaces
Журнал математической физики, анализа, геометрии
author_facet Fonf, V.P.
Pallarés, A.J.
Troyanski, S.
author_sort Fonf, V.P.
title Isomorphically Polyhedral Banach Spaces
title_short Isomorphically Polyhedral Banach Spaces
title_full Isomorphically Polyhedral Banach Spaces
title_fullStr Isomorphically Polyhedral Banach Spaces
title_full_unstemmed Isomorphically Polyhedral Banach Spaces
title_sort isomorphically polyhedral banach spaces
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/106740
citation_txt Isomorphically Polyhedral Banach Spaces / V.P. Fonf, A.J. Pallarés, S. Troyanski // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 1. — С. 108-113. — Бібліогр.: 9 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT fonfvp isomorphicallypolyhedralbanachspaces
AT pallaresaj isomorphicallypolyhedralbanachspaces
AT troyanskis isomorphicallypolyhedralbanachspaces
first_indexed 2025-07-07T18:55:45Z
last_indexed 2025-07-07T18:55:45Z
_version_ 1837015547157413888
fulltext Journal of Mathematical Physics, Analysis, Geometry 2013, vol. 9, No. 1, pp. 108–113 Isomorphically Polyhedral Banach Spaces V.P. Fonf Department of Mathematics, Ben Gurion University of the Negev Beer-Sheva, Israel E-mail: fonf@math.bgu.ac.il A.J. Pallarés and S. Troyanski Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo 30100 Murcia, Spain E-mail: apall@um.es stroya@um.es Received October 9, 2012 We prove two theorems giving sufficient conditions for a Banach space to be isomorphically polyhedral. Key words: polyhedral norms and renormings, boundaries, polytopes, countable covers. Mathematics Subject Classification 2010: 46B20. Devoted to the memory of M.I. Kadets All Banach spaces we consider in this paper are infinite-dimensional and real. A Banach space is called polyhedral if the unit ball of each its finite-dimensional subspace is a polytope [7]. If a Banach space admits an equivalent norm in which it is polyhedral then we say that it is isomorphically polyhedral. In [8] is proved that polyhedral space cannot be isometric to a dual space. In [9] is proved that if extBX∗ is countable then X is not reflexive. In [6] this result is strengthen, namely it is proved that if extBX∗ can be covered by a countable union of compact sets then X is not reflexive. A subset B ⊂ SX∗ of the unit sphere SX∗ of a Banach space X∗ is called a boundary (for X) if for any x ∈ X there is f ∈ B such that f(x) = ||x||. An important example of a boundary is extBX∗ (the Krein–Milman theorem). The first named author is supported by Israel Science Foundation, Grant 209/09. The second author is supported by MCI MTM2011-25377 . The third named authors is supported financially by Science Foundation Ireland under Grant Number SFI 11/RFP.1/MTH/3112, by MCI MTM2011-22457 and the project of the Institute of Mathematics and Informatics, Bulga- rian Academy of Science. c© V.P. Fonf, A.J. Pallarés, and S. Troyanski, 2013 Isomorphically Polyhedral Banach Spaces A subset B of the dual unit ball BX∗ has property (*) if, given any w∗-limit point f0 of B (i.e. any w∗-neighborhood of f0 contains infinitely many elements of B), we have f0(x) < 1 whenever x is in the unit sphere SX . Note that if B is a set such that |||x||| = sup{f(x) : x ∈ B} defines a norm, and B has (*) for this norm, then B is a boundary for the norm |||.|||. Any separable polyhedral space has a countable boundary, and if a Banach space has a countable boundary then it is isomorphically polyhedral space [2]. Any (isomorphically) polyhedral space saturated by spaces isomorphic to c0, that is any (infinite-dimensional) subspace of a polyhedral space contains an isomor- phic copy of c0 [4]. In this paper we prove two theorems giving sufficient conditions for a Banach space to be isomorphically polyhedral. Theorem 1. Let X be a Banach space. Then (a), (b) and (c) are equivalent and imply (d). (a) There are a sequence of subsets of SX , {Sk}∞k=1, SX = ⋃ Sk, and an in- creasing sequence of norm-compact subsets of SX∗, {Fk}∞k=1, Fk = −Fk , with the following properties: bk := inf x∈Sk max f∈Fk {f(x)} > 0, k = 1, 2, . . . and lim k bk = 1. (b) There are a sequence {tk} ⊂ SX∗ and a sequence of positive numbers εk > 0, k = 1, 2, . . ., such that (i) the set B = {±(1 + εk)tk}k is a boundary with property (*) for the equivalent norm |||x||| = sup k |(1 + εk)tk(x)|, x ∈ X, (ii) B(X,|||.|||) ⊂ intBX . (c) There are a sequence {tn}n ⊂ SX∗ and a sequence of positive numbers {αn}, limn αn = 0, such that SX ⊂ ⋃ n S(tn, αn), where S(tn, αn) are the slices defined as S(tn, αn) = {x ∈ BX : tn(x) ≥ 1− αn}. (d) X is a separable isomorphically polyhedral space. Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 1 109 V.P. Fonf, A.J. Pallarés, and S. Troyanski P r o o f. (a) ⇒ (b). Fix a sequence δn > 0 such that 0 < 3δn < bn and limn δn = 0. Choose γn defined by the equation (1 + γn) = (bn − 3δn)−1 and observe that γn > 0, lim n γn = 0 and (1 + γn)(bn − 2δn) > 1, n = 1, 2, . . . (notice that here we use that 1 ≥ bn > 0, for any n and that limn bn = 1). Since each set Fn is compact, for each n there is a δn-net Nn = {hn j : j = 1, 2, . . . , pn} ⊂ Fn such that ‖hn i − hn j ‖ ≥ δn, i 6= j and for each f ∈ Fn there is some hn j with ‖f − hn j ‖ < δn. Clearly, we can write the set ±⋃ n(1 + γn)Nn in the form B = {±(1 + εk)tk : k = 1, 2, . . .} for suitable tk’s and εk’s, limk εk = 0. Define |||x||| = sup{|(1 + εk)tk(x)| : k = 1, 2, . . .}. For x ∈ SX there is some n such that x ∈ Sn and some f ∈ Fn such that f(x) > bn − δn, and some hn j ∈ Nn such that ‖f − hn j ‖ < δn. Then we have |||x||| ≥ (1 + γn)hn j (x) ≥ (1 + γn)(f(x)− δn) > (1 + γn)(bn − 2δn) > 1 = ‖x‖. On the other hand we have |||x||| ≤ maxk{(1 + εk)‖x‖}. Therefore ‖x‖ < |||x||| ≤ max k {(1 + εk)}‖x‖, x ∈ X, x 6= 0. This proves (ii) in (b). Finally we prove that B is a boundary of (X, |||.|||) with (*). Assume the contrary and choose f a w∗ limit point of (1 + γn)hn j such that there is x with |||x||| = 1 and f(x) = 1. Since limn γn = 0, we have that ‖f‖ ≤ 1, and then ‖x‖ ≥ 1 in contradiction with (ii) we have already proof. (b) ⇒ (a). Put Ak = {u ∈ X : |||u||| = 1, (1 + εk)tk(u) = 1}, k = 1, 2, . . . Since B is boundary it follows that S(X,|||.|||) = ⋃ k Ak. Define Sk = {u/||u|| : u ∈ Ak} and Fk = {±tj : j = 1, 2, . . . , k}. Clearly S(X,‖.‖) = ⋃ k Sk and bk = inf{max{f(x) : f ∈ Fk} : x ∈ Sk} = inf{max{ti(u/‖u‖) : i = 1, 2, . . . , k} : u ∈ Ak} ≥ inf{tk(u/‖u‖) : u ∈ Ak} = 1 (1 + εk) inf{1/‖u‖ : u ∈ Ak} ≥ 1 (1 + εk) > 0. and clearly limk bk = 1. 110 Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 1 Isomorphically Polyhedral Banach Spaces (b) ⇒ (c). Put V = B(X,|||.|||). Clearly V = ⋂ k{x ∈ X : |(1 + εk)tk(x)| ≤ 1}. From (ii) follows that SX ⊂ ⋃ k{x ∈ X : |(1 + εk)tk(x)| > 1}. Put αk = εk 1+εk , k = 1, 2 . . . and finish the proof. (c) ⇒ (b). Put εk = 2αk 1−2αk , k = 1, 2, . . . and V = ⋂ k{x ∈ X : |(1+εk)tk(x)| ≤ 1}. Since SX ⊂ ⋃ k{x ∈ X : |tk(x)| ≥ 1− αk}, it follows that ⋂ k {x ∈ X : |tk(x)| < 1− αk} ⊂ int(BX), and an easy verification shows that V ⊂ int(BX). Now (i) easily follows from limk εk = 0. (b)⇒ (d). Is clear, since X has an equivalent norm with a countable boundary with (*). R e m a r k. In [3] is proved that if X satisfies (c) (in the given norm) then X is isomorphically polyhedral, and if X is isomorphically polyhedral then there is an equivalent norm on X in which it satisfies (c). However, the following question remains open: if X is isomorphically polyhedral then does it satisfy (c) in any equivalent norm? There is a partial answer changing αk = α > 0 with α arbitrary [1]. Finally, let us mention that the implication (a) ⇒ (d) is a particular case of one of the results in [5]. Theorem 2. Let X be a Banach space. Assume that SX = ⋃ k Sk such that each Sk has an ε-approximative countable boundary, for any ε > 0, in the following sense (P) for any k ∈ N and ε > 0 there is a sequence {hk i } ⊂ (1 + ε)BX∗ such that if V ∗ k = w∗ − cl co{BX∗ , {±hk i }i∈N}, Vk = {x : maxx(V ∗ k ) ≤ 1}, then (i)k Vk ⋂ Sk = ∅ (ii)k for any x ∈ ∂Vk \ SX there is hk i with hk i (x) = 1. Then X is isomorphically polyhedral. P r o o f. Fix ε ∈ (0, 1) and a sequence {εk}, εk ∈ (0, ε), limk εk = 0. Next by using property (P) for every k ∈ N find {hk i }i,k=1,2,... ⊂ (1 + εk)BX∗ , V ∗ k , Vk such that (i)k and (ii)k are satisfied. Put V ∗ = w∗ − clco{±hk i }i,k∈N, V = {x ∈ X : maxx(V ∗) ≤ 1}, and introduce in X a new norm |||.||| with the unit ball V. By using SX = ∪kSk and (i)k, k = 1, 2, . . . , we get V ⊂ intBX . (1) Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 1 111 V.P. Fonf, A.J. Pallarés, and S. Troyanski Indeed, let x ∈ X with ‖x‖ ≥ 1 and take z = x/‖x‖ ∈ SX , then z ∈ Sk for some k and z 6∈ Vk. By the definition of Vk it is possible to find x∗1 ∈ BX∗ , x∗2 ∈ co{±hk i }i∈N and λ ∈ [0, 1) such that λx∗1(z)+(1−λ)x∗2(z) > 1, (1−λ)x∗2(z) > 1− λ and x∗2(x) > ‖x‖ ≥ 1. Thus we have that x 6∈ V . Note that by (1) and its definition we have that V = ⋂ k Vk. From εk ∈ (0, ε), k = 1, 2, . . . , it follows that V ⊃ (1 + ε)−1BX . So the norm |||.||| is (1+ε)-equivalent to the original one. We show that the set B = {±hk i }i,k∈N is a (countable) boundary for the space (X, |||.|||), and then by [2] we conclude that (X, |||.|||) is isomorphically polyhedral. Fix x0 ∈ ∂V. From (1) follows that x0 ∈ intBX . Assume to the contrary that for any h ∈ B we have h(x0) < 1. Since x0 ∈ ∂V there is a sequence {hkn in }∞n=1 with limn hkn in (x0) = 1. We consider two cases. Case 1. lim supn kn = ∞. WLOG we can assume that limn kn = ∞. Let h0 ∈ X∗ be a w∗-limit point of {hkn in }∞n=1. Since hkn in ∈ (1 + εkn)BX∗ and limk εk = 0, it follows that h0 ∈ BX . However h0(x0) = 1, and hence ||x0|| ≥ 1, contradicting x0 ∈ V ⊂ intBX . Case 2. supn kn < ∞. WLOG we can assume that kn = l, for any n ∈ N. Since x0 ∈ Vl (recall that x0 ∈ V = ∩kVk), and limn hl in (x0) = 1, it follows that x0 ∈ ∂Vl. By (ii)l there is hl i with hl i(x0) = 1, which proves that B is a (countable) boundary for (X, |||.|||). The proof of the theorem is complete. References [1] R. Deville, V. Fonf, and P. Hajek, Analytic and Polyhedral Approximation of Convex Bodies in Separable Polyhedral Banach Spaces. — Israel J. Math. 105 (1998), 139–154. [2] V.P. Fonf, Some Properties of Polyhedral Banach Spaces. — Funkts. Anal. i Prilozhen. 14 (1980), No. 4, 89–90. (Russian) (English transl.: Funct. Anal. Appl. 14 (1980), 323–324.) [3] V.P. Fonf, Three Characterizations of Polyhedral Banach Spaces. — Ukr. Mat. Zh. 42 (1990), No. 9, 1286–1290. (Russian) (English transl.: Ukr. Math. J. 42 (1990), No. 9, 1145–1148.) [4] V.P. Fonf, Polyhedral Banach Spaces. — Mat. Zametki 30 (1981), No. 4, 627–634. (Russian) (English transl.: Math. Notes 30 (1981), No. 9, 809–813.) [5] V.P. Fonf, A.J. Pallares, R. Smith, and S. Troyanski, Polyhedrality in Pieces. Preprint. 112 Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 1 Isomorphically Polyhedral Banach Spaces [6] M.I. Kadets and V.P. Fonf, Some Properties of the Set of Extreme Points of the Unit Ball of a Banach Space. — Mat. Zametki 20 (1976), No. 3, 315–320. (Russian) (English transl.: Math. Notes 20 (1977), No. 3/4, 737–739.) [7] V. Klee, Polyhedral Sections of Convex Bodies. — Acta Math. 103 (1960), 243–267. [8] J. Lindenstrauss, Notes on Klee’s paper ”Polyhedral sections of convex bodies”. — Israel J. Math. 4 (1966), No. 4, 235–242. [9] J. Lindenstrauss and R. Phelps, Extreme Point Properties of Convex Bodies in Reflexive Banach Spaces. — Israel J. Math. 6 (1968), 39–48. Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 1 113