Real Hypersurfaces in Complex Two-Plane Grassmannians with Generalized Tanaka-Webster Invariant Shape Operator
In this paper, we introduce a new notion of the generalized Tanaka-Webster invariant for a hypersurface M in G₂(C^m+2), and give a non-existence theorem for Hopf hypersurfaces in G₂(C^m+2) with generalized Tanaka-Webster invariant shape operator.
Saved in:
Date: | 2013 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2013
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/106759 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Real Hypersurfaces in Complex Two-Plane Grassmannians with Generalized Tanaka-Webster Invariant Shape Operator / I. Jeong, E. Pak, Y.J. Suh // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 3. — С. 360-378. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | In this paper, we introduce a new notion of the generalized Tanaka-Webster invariant for a hypersurface M in G₂(C^m+2), and give a non-existence theorem for Hopf hypersurfaces in G₂(C^m+2) with generalized Tanaka-Webster invariant shape operator. |
---|