Real Hypersurfaces in Complex Two-Plane Grassmannians with Generalized Tanaka-Webster Invariant Shape Operator

In this paper, we introduce a new notion of the generalized Tanaka-Webster invariant for a hypersurface M in G₂(C^m+2), and give a non-existence theorem for Hopf hypersurfaces in G₂(C^m+2) with generalized Tanaka-Webster invariant shape operator.

Saved in:
Bibliographic Details
Date:2013
Main Authors: Jeong, I., Pak, E., Suh, Y.J.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2013
Series:Журнал математической физики, анализа, геометрии
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/106759
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Real Hypersurfaces in Complex Two-Plane Grassmannians with Generalized Tanaka-Webster Invariant Shape Operator / I. Jeong, E. Pak, Y.J. Suh // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 3. — С. 360-378. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:In this paper, we introduce a new notion of the generalized Tanaka-Webster invariant for a hypersurface M in G₂(C^m+2), and give a non-existence theorem for Hopf hypersurfaces in G₂(C^m+2) with generalized Tanaka-Webster invariant shape operator.