Local and Global Stability of Compact Leaves and Foliations

The equivalence of the local stability of a compact foliation to the completeness and the quasi analyticity of its pseudogroup is proved. It is also proved that a compact foliation is locally stable if and only if it has the Ehresmann connection and the quasianalytic holonomy pseudogroup. Applicatio...

Full description

Saved in:
Bibliographic Details
Date:2013
Main Author: Zhukova, N.I.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2013
Series:Журнал математической физики, анализа, геометрии
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/106762
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Local and Global Stability of Compact Leaves and Foliations / N.I. Zhukova // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 3. — С. 400-420. — Бібліогр.: 37 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:The equivalence of the local stability of a compact foliation to the completeness and the quasi analyticity of its pseudogroup is proved. It is also proved that a compact foliation is locally stable if and only if it has the Ehresmann connection and the quasianalytic holonomy pseudogroup. Applications of these criterions are considered. In particular, the local stability of the complete foliations with transverse rigid geometric structures including the Cartan foliations is shown. Without assumption of the existence of an Ehresmann connection, the theorems on the stability of the compact leaves of conformal foliations are proved. Our results agree with the results of other authors.