Lie Invariant Shape Operator for Real Hypersurfaces in Complex Two-Plane Grassmannians II
A new notion of the generalized Tanaka-Webster D┴-invariant for a hypersurface M in G₂(C^m+2) is introduced, and a classification of Hopf hypersurfaces in (C^m+2) with generalized Tanaka-Webster D┴-invariant shape operator is given.
Gespeichert in:
Datum: | 2013 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2013
|
Schriftenreihe: | Журнал математической физики, анализа, геометрии |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/106767 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Lie Invariant Shape Operator for Real Hypersurfaces in Complex Two-Plane Grassmannians II / I. Jeong, E. Pak, Y.J. Suh // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 4. — С. 455-475. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | A new notion of the generalized Tanaka-Webster D┴-invariant for a hypersurface M in G₂(C^m+2) is introduced, and a classification of Hopf hypersurfaces in (C^m+2) with generalized Tanaka-Webster D┴-invariant shape operator is given. |
---|