On Spectrum of Differential Operator with Block-Triangular Matrix Coefficients
For the Sturm-Louville equation with block-triangular matrix potential that increases at infinity, both increasing and decreasing at infinity matrix solutions are found. The structure of spectrum for the differential operator with these coefficients is defined.
Saved in:
Date: | 2014 |
---|---|
Main Authors: | Kholkin, A.M., Rofe-Beketov, F.S. |
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2014
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/106785 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On Spectrum of Differential Operator with Block-Triangular Matrix Coefficients / A.M. Kholkin, F.S. Rofe-Beketov // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 1. — С. 44-63. — Бібліогр.: 24 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Inverse Scattering Problem on the Axis for the Schrödinger Operator with Triangular 2 x 2 Matrix Potential. II. Addition of the Discrete Spectrum
by: Zubkova, E.I., et al.
Published: (2007) -
Inverse Scattering Problem on the Axis for the Schrödinger Operator with Triangular 2 x 2 Matrix Potential. I. Main Theorem
by: Zubkova, E.I., et al.
Published: (2007) -
Necessary and Sufficient Conditions in Inverse Scattering Problem on the Axis for the Triangular 2 x 2 Matrix Potential
by: Zubkova, E.I., et al.
Published: (2009) -
Necessary and Sufficient Conditions in Inverse Scattering Problem on the Axis for the Triangular 2 x 2 Matrix Potential
by: Zubkova, E.I., et al.
Published: (2009) -
Solutions of matrix equation AX + YB = C with triangular coefficients
by: N. S. Dzhaliuk
Published: (2019)