The Warped Product of Hamiltonian Spaces

In this paper, the geometric properties of warped product Hamiltonian spaces are studied. It is shown there is a close geometrical relation between a warped product Hamiltonian space and its base Hamiltonian manifolds. For example, it is proved that for nonconstant warped function f, the Sasaki lift...

Full description

Saved in:
Bibliographic Details
Date:2014
Main Authors: Attarchi, H., Rezaii, M.M.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2014
Series:Журнал математической физики, анализа, геометрии
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/106799
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:The Warped Product of Hamiltonian Spaces / H. Attarchi, M.M. Rezaii // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 3. — С. 300-308. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:In this paper, the geometric properties of warped product Hamiltonian spaces are studied. It is shown there is a close geometrical relation between a warped product Hamiltonian space and its base Hamiltonian manifolds. For example, it is proved that for nonconstant warped function f, the Sasaki lifted metric G of Hamiltonian warped product space is bundle-like for its vertical foliation if and only if based Hamiltonian spaces are pseudo-Riemannian manifolds.