Renormalization the quantum field model of particle interaction

The model simulates the interaction of abstract entities distinguished in a physical experiment and denoted as particles. Empirical data results in the non-hermitian anti-symmetric matrix of particle relationship. The real and imaginary parts of the matrix correspond to symmetric and asymmetric coup...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Tikhonov, V.I., Tykhonov, A.V.
Формат: Стаття
Мова:English
Опубліковано: Odessa National Academy of Telecommunication n.a. A.S.Popov 2012
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106982
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Renormalization the quantum field model of particle interaction / V.I. Tikhonov, A.V. Tykhonov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 55-58. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-106982
record_format dspace
spelling irk-123456789-1069822016-10-11T03:02:07Z Renormalization the quantum field model of particle interaction Tikhonov, V.I. Tykhonov, A.V. Section A. Quantum Field Theory The model simulates the interaction of abstract entities distinguished in a physical experiment and denoted as particles. Empirical data results in the non-hermitian anti-symmetric matrix of particle relationship. The real and imaginary parts of the matrix correspond to symmetric and asymmetric coupling of particles. The relationship matrix evolves to multiplication of pure defined hermitian metric tensor and curvature vector. The real spectrum of metric tensor extended into the complex space with invariant spectrum power results in renormalized non-singular quantum field model of particle interaction. Рассматривается модель взаимодействия абстрактных сущностей, различимых в физическом эксперименте и названных частицами. Эмпирические данные представлены в форме неэрмитовой антисимметрической матрицы взаимодействия частиц. Вещественные и мнимые элементы матрицы соответствуют симметрической и асимметрической составляющим взаимодействующей пары частиц. Матрица взаимодействия приведена к произведению слабо обусловленного эрмитового метрического тензора на вектор кривизны. Вещественный спектр метрического тензора расширен в комплексную область с условием инвариантности мощности спектра, в результате чего получена ренормализованная несингулярная квантово-полевая модель взаимодействия частиц. Розглянуто модель взаємодії абстрактних сутностей, помітних у фізичному експерименті і названих частками. Емпіричні дані представлені у вигляді неермітової антисиметричної матриці взаємодії часток. Дійсні та уявні елементи матриці відповідають симетричній та асиметричній складовим взаємодіючої пари часток. Матриця взаємодії приведена к добутку слабо обумовленого метричного тензора на вектор кривизни. Дійсний спектр метричного тензора розширено у комплексну область за умови інваріантності потужності спектру, в результаті чого отримано ренормалізовану несингулярну квантово-польову модель взаємодії часток. 2012 Article Renormalization the quantum field model of particle interaction / V.I. Tikhonov, A.V. Tykhonov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 55-58. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 11.10.Gh, 11.10.Nx http://dspace.nbuv.gov.ua/handle/123456789/106982 en Вопросы атомной науки и техники Odessa National Academy of Telecommunication n.a. A.S.Popov
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Section A. Quantum Field Theory
Section A. Quantum Field Theory
spellingShingle Section A. Quantum Field Theory
Section A. Quantum Field Theory
Tikhonov, V.I.
Tykhonov, A.V.
Renormalization the quantum field model of particle interaction
Вопросы атомной науки и техники
description The model simulates the interaction of abstract entities distinguished in a physical experiment and denoted as particles. Empirical data results in the non-hermitian anti-symmetric matrix of particle relationship. The real and imaginary parts of the matrix correspond to symmetric and asymmetric coupling of particles. The relationship matrix evolves to multiplication of pure defined hermitian metric tensor and curvature vector. The real spectrum of metric tensor extended into the complex space with invariant spectrum power results in renormalized non-singular quantum field model of particle interaction.
format Article
author Tikhonov, V.I.
Tykhonov, A.V.
author_facet Tikhonov, V.I.
Tykhonov, A.V.
author_sort Tikhonov, V.I.
title Renormalization the quantum field model of particle interaction
title_short Renormalization the quantum field model of particle interaction
title_full Renormalization the quantum field model of particle interaction
title_fullStr Renormalization the quantum field model of particle interaction
title_full_unstemmed Renormalization the quantum field model of particle interaction
title_sort renormalization the quantum field model of particle interaction
publisher Odessa National Academy of Telecommunication n.a. A.S.Popov
publishDate 2012
topic_facet Section A. Quantum Field Theory
url http://dspace.nbuv.gov.ua/handle/123456789/106982
citation_txt Renormalization the quantum field model of particle interaction / V.I. Tikhonov, A.V. Tykhonov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 55-58. — Бібліогр.: 8 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT tikhonovvi renormalizationthequantumfieldmodelofparticleinteraction
AT tykhonovav renormalizationthequantumfieldmodelofparticleinteraction
first_indexed 2025-07-07T19:17:01Z
last_indexed 2025-07-07T19:17:01Z
_version_ 1837016884901314560
fulltext RENORMALIZATION THE QUANTUM FIELD MODEL OF PARTICLE INTERACTION V.I. Tikhonov 1∗and A.V. Tykhonov 2 1Odessa National Academy of Telecommunication n.a. A.S.Popov, 65029, Odessa, Ukraine 2Odessa National Polytechnic University, 65044, Odessa, Ukraine (Received October 31, 2011) The model simulates the interaction of abstract entities distinguished in a physical experiment and denoted as particles. Empirical data results in the non-hermitian anti-symmetric matrix of particle relationship. The real and imaginary parts of the matrix correspond to symmetric and asymmetric coupling of particles. The relationship matrix evolves to multiplication of pure defined hermitian metric tensor and curvature vector. The real spectrum of metric tensor extended into the complex space with invariant spectrum power results in renormalized non-singular quantum field model of particle interaction. PACS: 11.10.Gh, 11.10.Nx 1. INTRODUCTION The classic field theory (CFT) studies the real and complex functions (scalar fields, vector fields, tensor fields) presented in a priory pre-defined linear spaces [1]. This approach is truly relevant to the certain universe stratum available for the human perception. The enhanced experiments extend the scope of analy- sis into macro- and microspheres, though the cogni- tive horizon remains infinitesimal part of the Uni- verse. The macro-world violates naive insights of plane Euclidian space. The micro-world drastically changes the understanding of what is the space even- tually; it appears multidimensional, non-orthonormal and asymmetric. In contrast to CFT, the quantum field theory (QFT) studies the models of abstract spaces simu- lating the physical experiments [2, 3]. In this work, authors try a holistic approach to the modeling of arbitrary physical entities emerged in stochastic ex- periment (called particles). The model assimilates the space curvature and asymmetry properties of the empirical data. 2. THE RELATIONSHIP MATRIX OF EMPIRICAL DATA Let X be an arbitrary open set of N interacting el- ements (x1, ..., xN ) ∈ X , distinguished in the physi- cal experiment within a certain time interval. These elements we denote as particles. Any xn ∈ X con- sider open, e.g. it may interact with particles of X and out of X (latent interaction). The interaction of particles may have the asymmetry. Let Q be the non-hermitian complex anti-symmetric matrix of par- ticle’s relationship. We define a binary operation ⊗ to pick hermitian matrix H out of the non-hermitian matrix Q: Q = H ⊗ ψ, ψ = {ψn}, (1) where ψn = eiθ(n) is the vector of curvature for ma- trix Q. The operator ⊗ multiplies any diagonal entry Q(n, n) by the ψ(n). The main diagonal of Q with complex numbers evolves to real numbers and non- hermitian matrix Q results in hermitian matrix H : H = Q⊗ ψ∗ = Q⊗ e−iθ(n), (2) where “*” is the complex conjugation symbol. We will utilize the irreducible representation of hermitian matrix H in eigenvector basis Z [4]: H = Z∗ · Λ · Z, Λ = I ⊗ λ, (3) where Λ is the diagonal matrix of eigenvalues λn, I is the unit diagonal matrix, and λ = {λn} is the vector of eigenvalues λn (also called spectrum of H). If some eigenvalues λn are not positive, the matrix H is poorly defined; it plagues singularity and needs renormalization [5, 6]. 3. RENORMALIZATION OF METRIC TENSOR To renormalize matrix H we make three steps. Step 1. Suppose eigenvectors zn and eigenvalues λn are ordered by λn decrement (if not they are to be re-indexed): λ1 ≥ λ2 ≥ ...λn ≥ ...λN . (4) ∗Corresponding author E-mail address: victor.tykhonov@onat.edu.ua PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, N 1. Series: Nuclear Physics Investigations (57), p. 55-58. 55 Step 2. Let α = |λn|max be the maximal module of λn, n = 1, 2, ..., N . Evolve spectrum λn = {λn} to the spectrum β = {βn} where |βn|max = 1: βn = λn/α. (5) Now, the spectrum β and matrix Q become dimen- sionless. Step 3. Consider spectrum β = {βn} being the real part of the complex spectrum ρ = {ρn}, where ρn = exp(i · ϕn): βn = Re(ρn) = Re[exp(i · ϕn)] = cos(ϕn). (6) Let ΩR = I ⊗ β and CR = f(H) = Z∗ · ΩR · Z being the real part of an abstract complex C = f(H); f symbolizes the functional dependence on the argu- ment. The imaginary part of the complex spectrum is a vector γ = {γn}, where γn = Im(ρn) = Im[exp(i · ϕn)] = sin(ϕn). (7) Let ΩI = I ⊗ γ. The imaginary part of C is CI = Z∗ · ΩI · Z. Thus, we have C = CR + i · CI = Z∗ · ΩR · Z + Z∗ · ΩI · Z = (Z∗ · ΩR + Z∗ · ΩI) · Z = Z∗ · (ΩR + ΩI) · Z = Z∗ · Ω · Z; (8) C = Z∗ · Ω · Z, Ω = ΩR + i · ΩI = I ⊗ (β + i · γ) = I ⊗ exp(i · ϕ) = I ⊗ φ, ϕ = {ϕn}, φ = exp(ϕ). (9) The matrix C = f(H) we denote as a renormalized complex metric tensor (RMT) of the particle interac- tion for the empirical relationship matrixQ = H ⊗ ψ. Matrix C is non-singular as the inverse matrix C−1 always exists: C−1 = C∗. We have: C · C−1 = (Z∗ · Ω · Z) · (Z∗ · Ω · Z)∗ = (Z∗ · Ω · Z) · (Z∗ · Ω∗ · Z) = (Z∗ · Ω · (Z · Z∗) · Ω∗ · Z) = Z∗ · (Ω · I · Ω∗) · Z = Z∗ · I · Z = I. (10) 4. RENORMALIZATION THE QUANTUM FIELD MODEL We will define the multiplication G = f(Q) = C ⊗ ψ = (Z · I ⊗ φ · Z∗) ⊗ ψ. (11) as renormalized complex presentation of the empir- ical data in form of relationship matrix Q. Three objects present G = f(Q): G = f(Q) = {Z, φ, ψ}, (12) Z is the 2-valence one-covariant and one contra- variant unitary matrix operator, φ is the 1-valence co- variant complex phase vector, and ψ is the 1-valence covariant complex curvature vector. Therefore, the multiplication (9) is 4-valence 3- co-variant and 1-contra-variant tensor of metrics and curvature. We denote the system G = {Z, φ, ψ}, in respect to the multiplication (9), as co-variant renormalized quantum field model (RQM) of parti- cle interaction for the empirical relationship matrix Q = H ⊗ ψ. The system G = {Z∗, φ∗, ψ∗} we de- note as contra-variant RQM-model towards G. Ob- viously, G is 4-valence 1-co-variant and 3-contra- variant tensor. Consider the obvious properties of the operator ⊗ spoken above: ψ ⊗ ψ∗ = ψ∗ ⊗ ψ = e = {e1, e2, ..., en, ..., eN} = {1, 1, ..., 1}; C ⊗ ψ ≡ ψ ⊗ C; C ⊗ e ≡ C; ψ ⊗ I ⊗ ψ∗ = ψ∗ ⊗ I ⊗ ψ = I. (13) The invariant tensor of RQM-model we define as tripled convolution G ·G = (C ⊗ ψ) · (C∗ ⊗ ψ∗) = ψ ⊗ (C · C∗) ⊗ ψ∗ = ψ ⊗ I ⊗ ψ∗ = I. (14) The matrix I is 2-valence one-co-variant and one- contra-variant tensor (neutral operator). It is clear that tensor multiplication (13) is commutative: G×G ≡ G×G = I. (15) 5. THE QUANTUM FIELD MODEL ANALYSIS We will discuss some properties and special cases of the renormalized quantum field model (RQM) of particle interaction. Property 1. The RQM has η = N · (N + 1) − 1 degrees of freedom. In fact, any square complex matrix Q with com- plex main diagonal and anti-symmetric entries Q(n,m) = Q(m,n) has N ×N +N = N · (N + 1) independent entries, e.g. freedom degrees. The renor- malization procedure given above provides: 1 free- dom degree limitation (|βn|max = |λn|max/α = 1); N freedom degrees extension (ΩI ) and N freedom de- grees limitation (ΩI · ΩR = I ⊗ exp(i · ϕ) = I ⊗ φ). Eventually η = N · (N + 1) − 1. Consider nor- malization factor α, the particular renormalized quantum field model (PRM) Gα = α ·G results in η = N · (N + 1) freedom degrees. Property 2. In the 4-dimensional space (N = 4) the PRM-model has 20 freedom degrees. The same number μ = N2 · (N2 − 1)/12 = 20 of free- dom degrees results in the 4-valence 3-covariant and 1-contra-variant Riemann curvature tensor [2]. That means that the 4-dimensional PRM model is isomor- phic to the 4-dimensional space presented by the Rie- mann curvature tensor. These two presentations bi- jectively map each other. 56 Case 1: ψ = e (no curvature). The RQM evolves into the normalized spectral phase C-filter in Z-basis: G→ C = Z∗ · Ω · Z = Z · (I ⊗ φ) · Z∗. (16) The filtering procedure for any sample y = {y1, y2, ..., yn} is yC = C · y. Manipulating the factor α = |λn|max we obtain the general spectral phase filter Cα = α · (F ∗ · Ω · F ). (17) The α > 1 amplifies the y-output; α < 1 suppresses the y-output. Property 3. The C-filter (16) is spinor [3]. In special case φ = {exp(i · π ·m)n} all the diagonal entries of matrix Ω = I ⊗ φ turn into the alternating units ±1. We denote the correspondent vector s as signature and matrix S as signature filter (S-filter): s = {sn} = {exp(i · π ·m)n}, S = I ⊗ s. (18) Case 2: ψ = e (no curvature); α = 1 ; Z →MS = [x,y, z, t] are real Euclidian orts of the (3+1)-dimensional orthonormal space; s → sM = [−1 , 1 , 1 , 1 ]. The sM is the signature of the Minkovski space MS [7]: C →M∗ S · sM ·MS = I ⊗ sM. (19) Case 3: ψ = e; α = 1; Z → F is the Fourier ba- sis. Now, the C-filter (16) turns into the conventional digital phase Fourier filter Φ [8]: C → Φ = F ∗ · Ω · F. (20) The Fourier filtering for any sample y = {y1, y2, ..., yn} is yC = Φ · y. Here F · y = yF is direct Fourier transform; yF is Fourier image; the Ω · yF = yFΩ is spectral cor- rection of Fourier image yF ; the F ∗ · yFΩ = yC is reverse Fourier transform for the corrected Fourier image yFΩ . Case 4: ψ = e; α = 1; Z → F ; Ω → ΩR = Re(Ω). Now, the Φ-filter (20) turns into the passive spec- tral density Fourier filter: Φ → ΦR = (F · ΩR · F ∗). Manipulating the factor α = |λn|max we obtain the general spectral density Fourier filter ΦRα = α · (F · ΩR · F ∗). (21) Property 4. Take equation (8), next derive G = C ⊗ ψ = (CR + i · CI) ⊗ ψ. Therefore, we have G = QM + i QF, QM = CR ⊗ ψ, QF = CI ⊗ ψ, (22) where QM denotes abstract “Quantum Matter”, and QF is abstract “Quantum Field”. The composition G = QM + i QF has invariant total abstract power PG obtained from (15): PG = f(G) = Tr(G×G) = I = Tr(I) = N, (23) where Tr is the matrix trace symbol. 6. CONCLUSIONS The work studies the interaction model for an ar- bitrary set of abstract physical entities called par- ticles. The simulation model assumes the statisti- cal experiment output data in form of non-hermitian anti-symmetric complex matrix with non-real main diagonal entries. To dissimulate the complexity of the matrix diagonal a special binary operation es- tablished in the work. Due to this operation, the non-hermitian data matrix evolves into the composi- tion of the two components: hermitian metrical ma- trix of linear complex space and the curvature vector. Hence, these two components are treated individu- ally. To override the inherent singularity of hermitian matrix, the new axiom is applied: the spectrum of a unitary operator metrics is a real part of the complex spectrum defined for extended non-unitary operator metrics. The extended complex spectrum considered has constant power and is invariant to the phase ro- tations (non-singular). From that point of view, the concept of quantum matter and quantum field com- ponent’s composition is originated in the work. References 1. J.J. Binney. Classical Fields. Part I: Relativistic Covariance. “Oxford University Trinity Term”, 1999, 79 p. 2. R. Penrose. Structure of space-time. Lectures in Mathematics and Physics Chapter VII. New York-Amsterdam: “W.A. Benjamin, Inc.”, 1968, 520 p. 3. U.B. Rumer, A.I. Fet. Group Theory and Quan- tum Fields. Moscow: “Nauka”, 1977, 247 p. (in Russian). 4. F.R. Hantmaher. The Matrix Theory / 2nd edition. Moscow: “Nauka”, 1966, 576 p. (in Russian). 5. R.P. Feynman. The Strange Theory Of Light And Matter. Princeton, New Jersey: “Princeton University Press”, 2006, 158 p. 6. N.N. Bogolubov, D.V. Shyrkov. Introduction into the Quantum Field Theory. Moscow: “Nauka”, 1984, 600 p. (in Russian). 7. H. Minkowski. Basic Equations for Electromag- netic Processes in Moving Objects // http://jvr.freewebpage.org/TableOfContents/ Volume4/Issue4/MinkowskiHermann.pdf (in German). 8. S.W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing. Second Edition. San Diego: “California Technical Publishing”, 1999, 643 p. 57 ��������� � �� � ���� ������ �� ������ ��������� �� ����� ���� ������ ���� ������ ����������� �� ��� � ������� ����� ����������� ������� �� ��� ������ � ����� ���� ���� � ��� �� � ��������� ���������� ������ ��� ����� �� ����� �� � ���� � ��������� ����� ���� ���� ���� ������� ������� ����� ������� ! � ��� ��� � ����� � � ��� ������� ����� � �����"� ���� ���� ���� � ����� ���� ���� ������ "��� ������� �����"� � ���� ������� #��� ���� ������� ����� ���� � �� � ������ � ��" � ��� ���� �� ���$� ��������$� � ���� ���$� � ���� �� �� � ���� ��������� ! � ��� ���� �� ��� � ���� ���$� � ����� ���%�� � � ���� ����" �� ���� � �� ��� � �������������� �������� �� ����� � � �� ���� � $� �� �� �� � ����� �������� � ���� $� ��� ����������� �� ��� � ������� ����� ������� ��������� � �� � ���� ������� �� ������ ���������� ������ ���� � ���� ���� ������ ���$ ���� ��� � ���&���'( ����������� ������� �� ���'���� � �'������� ��� ��� ��' ' �������� ��������� )��'����' ���' �� ����� �' � ��$ �' � ��'����( ������� ������( ������' ���&���'( ��� ����� *'���' �� � ��' � ��� ������' �'����'��"�� ��� �����'� �� ���� �����'� �� ������ ���&���'� "��( ���� ������� #����� ���&���'( ���� � �� � ������� � ��� ������ ��$� � ������$� � ����� �� � ���� ��������� *'����� �� ��� � ������$� � ����� ���%�� �� � ���� ���� �� ���� �� ����� '�� ���'�������' ����+����' �� ����� � � �� ����' ��$� �������� � ����� '������ � ���$� ��� ��������� �� ���� ��� � ���&���'( ������� ,-