Nuclear interactions and multiple coulomb scattering at volume reflection
For volume reflection of charged particles governed by the continuous potential of atomic planes in a bent crystal, we calculate the probability of a nuclear interaction. It is found to differ from the corresponding probability in an amorphous target by an amount proportional to the crystal bending...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/106983 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Nuclear interactions and multiple coulomb scattering at volume reflection / M.V. Bondarenco // Вопросы атомной науки и техники. — 2012. — № 1. — С. 59-63. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-106983 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1069832016-10-11T03:02:10Z Nuclear interactions and multiple coulomb scattering at volume reflection Bondarenco, M.V. Section A. Quantum Field Theory For volume reflection of charged particles governed by the continuous potential of atomic planes in a bent crystal, we calculate the probability of a nuclear interaction. It is found to differ from the corresponding probability in an amorphous target by an amount proportional to the crystal bending radius and the particle mean deflection angle, independently of the shape of the interplanar continuous potential. That result is also applied to the description of the final beam angular divergence owing to the multiple Coulomb scattering. The theoretical predictions are compared with the results of recent experiments. Для объемного отражения заряженных частиц, управляемого непрерывным потенциалом атомных плоскостей в изогнутом кристалле, мы вычисляем вероятность ядерного взаимодействия. Найдено, что последняя отличается от соответствующей величины в аморфной мишени на величину, пропорциональную радиусу изгиба кристалла и среднему углу отклонения частиц, независимо от конкретной формы межплоскостного непрерывного потенциала. Данный результат также применяется для описания угловой расходимости, приобретенной пучком за счет многократного кулоновского рассеяния в мишени. Теоретические предсказания сравниваются с результатами недавних экспериментов. Для об'ємного відбиття заряджених частинок, зумовленого неперервним потенціалом атомних площин в зігнутому кристалі, ми обчислюємо вірогідність ядерного зіткнення. Знайдено, що остання відрізняється від відповідної величини в аморфній мішені на величину, пропорційну радіусу згину кристалу та середньому куту відхилення частинок, незалежно від конкретної форми міжплощинного неперервного потенціалу. Даний результат також застосовується для опису кутового розходження набутого пучком за рахунок багаторазового кулонівського розсіяння в мішені. Теоретичні передбачення порівнюються з результатами недавніх експериментів. 2012 Article Nuclear interactions and multiple coulomb scattering at volume reflection / M.V. Bondarenco // Вопросы атомной науки и техники. — 2012. — № 1. — С. 59-63. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 61.85.+p, 29.27.-a, 45.10.-b http://dspace.nbuv.gov.ua/handle/123456789/106983 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Section A. Quantum Field Theory Section A. Quantum Field Theory |
spellingShingle |
Section A. Quantum Field Theory Section A. Quantum Field Theory Bondarenco, M.V. Nuclear interactions and multiple coulomb scattering at volume reflection Вопросы атомной науки и техники |
description |
For volume reflection of charged particles governed by the continuous potential of atomic planes in a bent crystal, we calculate the probability of a nuclear interaction. It is found to differ from the corresponding probability in an amorphous target by an amount proportional to the crystal bending radius and the particle mean deflection angle, independently of the shape of the interplanar continuous potential. That result is also applied to the description of the final beam angular divergence owing to the multiple Coulomb scattering. The theoretical predictions are compared with the results of recent experiments. |
format |
Article |
author |
Bondarenco, M.V. |
author_facet |
Bondarenco, M.V. |
author_sort |
Bondarenco, M.V. |
title |
Nuclear interactions and multiple coulomb scattering at volume reflection |
title_short |
Nuclear interactions and multiple coulomb scattering at volume reflection |
title_full |
Nuclear interactions and multiple coulomb scattering at volume reflection |
title_fullStr |
Nuclear interactions and multiple coulomb scattering at volume reflection |
title_full_unstemmed |
Nuclear interactions and multiple coulomb scattering at volume reflection |
title_sort |
nuclear interactions and multiple coulomb scattering at volume reflection |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2012 |
topic_facet |
Section A. Quantum Field Theory |
url |
http://dspace.nbuv.gov.ua/handle/123456789/106983 |
citation_txt |
Nuclear interactions and multiple coulomb scattering at volume reflection / M.V. Bondarenco // Вопросы атомной науки и техники. — 2012. — № 1. — С. 59-63. — Бібліогр.: 12 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT bondarencomv nuclearinteractionsandmultiplecoulombscatteringatvolumereflection |
first_indexed |
2025-07-07T19:17:07Z |
last_indexed |
2025-07-07T19:17:07Z |
_version_ |
1837016891069038592 |
fulltext |
NUCLEAR INTERACTIONS AND MULTIPLE COULOMB
SCATTERING AT VOLUME REFLECTION
M.V. Bondarenco∗
National Science Center “Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
(Received November 1, 2011)
For volume reflection of charged particles governed by the continuous potential of atomic planes in a bent crystal,
we calculate the probability of a nuclear interaction. It is found to differ from the corresponding probability in an
amorphous target by an amount proportional to the crystal bending radius and the particle mean deflection angle,
independently of the shape of the interplanar continuous potential. That result is also applied to the description of the
final beam angular divergence owing to the multiple Coulomb scattering. The theoretical predictions are compared
with the results of recent experiments.
PACS: 61.85.+p, 29.27.-a, 45.10.-b
1. INTRODUCTION
Volume reflection [1] is a phenomenon when a fast
charged particle reflects from a family of curved
atomic planes of an oriented bent crystal to side op-
posite to that of the crystal bending. It is considered
to be a promising mechanism of local beam steering
at high energy particle accelerators. The transverse
direction asymmetry in the volume reflection effect
originates from the asymmetry of the continuous po-
tential of bent atomic planes, especially in the area
where the angles of atomic plane crossing by the par-
ticle become comparable to the Lindhard’s critical
angle θc =
√
2V0/E, with V0 the interplanar contin-
uous potential well depth, and E � V0 the particle
energy. The extent of the volume reflection area is
estimated as ∼ Rθc, where R is the crystal bending
radius [2].
Although the origin of the volume reflection ef-
fect is due to the coherent potential scattering, in a
real crystal one must also take into account incoher-
ent Coulomb scattering on individual atomic nuclei at
close interactions with them. The condition for the
incoherent scattering not to spoil the volume reflec-
tion effect is the smallness of the multiple Coulomb
scattering r.m.s. angle accumulated along the whole
traversed crystal compared to the mean volume re-
flection angle. That condition permits usage for the
volume reflection experiments of the crystals of thick-
ness 1÷ 2 mm, by ∼ 10 times exceeding the essential
volume reflection region extent.1 However, in other
respects, for instance for evaluation of the outcom-
ing beam angular divergence, the multiple Coulomb
scattering is crucial. Another manifestation of the
nuclear interactions at high energy are the multiple
hadron production events, which can be registered in
downstream detectors (beam loss monitors).
Outside the volume reflection area, the parti-
cle motion becomes highly over-barrier and straight-
ens out even relative to the active atomic planes.
Thereat, the rate of a fast particle scattering on
atomic nuclei must approach that in an amorphous
medium (see Sec. 2). In a thick-crystal limit, the
number of close nuclear interactions in the whole
crystal will be dominated by the pre- and post-
volume reflection areas, and will become about equal
to that in an amorphous target of same material and
thickness. But there remains a finite difference gener-
ated in the volume reflection region, which carries in-
formation about the volume reflection dynamics and
kinetics, and usually is sufficiently sizeable to man-
ifest itself in the experimental data. In the present
article we calculate that difference, and compare the
result with the recent related measurements. For
a more detailed discussion of the involved problems
see [3].
2. NUCLEAR INTERACTION
PROBABILITY AT VOLUME
REFLECTION
The volume reflection implies particle interaction
with the bent crystal in a planar orientation.
Thereat, the atomic density in each plane may be re-
garded as uniform. Since all the nuclei are located in
the planes, the particle crossing of one atomic plane
may be regarded as an elementary act of nuclear in-
teraction. In the simplest case when all the planes
are equivalent (which corresponds to silicon crystal
in orientation (110)), the surface density of nuclei in
each plane equals natd, where nat is the atomic vol-
ume density of the crystal, and d the inter-planar dis-
∗E-mail address: bon@kipt.kharkov.ua
1At an exemplary beam energy E � 400 GeV (CERN SPS), which entails θc ∼ 10−5 rad, and at optimal radius R ∼ 10 m,
this longitudinal scale amounts to Rθc ∼ 10−1 mm.
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, N 1.
Series: Nuclear Physics Investigations (57), p. 59-63.
59
tance. If nuclear concentrations along the planes may
be regarded as thin (despite the thermal broadening)
and thus crossed by the fast particle at a definite tan-
gential angle θ, the probability of any kind of nuclear
interaction in one atomic plane amounts to
P1 = natσA
d
sin θ
(1)
with σA the corresponding cross-section of the par-
ticle interaction with a single nucleus. For elastic
scattering one has to take the transport cross-section
(σA → σtr), while for inelastic interactions – the cor-
responding total inelastic cross-section on a Silicon
nucleus (σA → σinel). Generalization to a case with
a few non-equivalent planes within a period (rele-
vant, e.g., for silicon crystal in orientation (111)) is
straightforward.
Consider first the case of a straight crystal tra-
versed by a fast particle in a highly over-barrier
regime, when the angle θ between the particle mo-
mentum and the planes by far exceeds the critical
value,
θ � θc. (2)
Thereat, θ varies negligibly within the crystal (varθ <
θc � θ). Summing up contributions (1) for ≈ L sin θ
d
crossed planes then yields the total nuclear interac-
tion probability:
P = P1
L sin θ
d
= natσAL (highly over-barr. pass.)
(3)
This value is independent of d and θ, and equals to the
corresponding probability in an amorphous (i.e. poly-
crystalline) medium – not surprisingly since the uni-
form particle flow covers each nucleus with the same
density, regardless of the existence of a far atomic or-
der in the medium. In that sense, one can as well
speak about an “amorphous orientation” of a perfect
crystal.
Next we consider the case of a bent crystal, to
which a particle enters and exits in a highly over-
barrier regime, but undergoes volume reflection some-
where in the middle of the crystal. In the vicinity of
the reflection point, the particle transverse kinetic en-
ergy is comparable to the potential energy, and con-
dition (2) breaks down, and the “amorphous orien-
tation” does not apply. Thereat, the plane crossing
angle varies considerably along the particle path, and
from plane to plane. Hence, for accurate evaluation
of nuclear interaction probabilities (1) at each plane
crossing, one needs at least to evaluate the whole
trajectory beyond the straight line approximation.
Within the volume reflection region, it may be le-
gitimate to neglect the multiple Coulomb scattering
entirely, and compute the particle trajectory in the
pure continuous potential. That will be our approxi-
mation in the present article.
Provided the crystal is bent uniformly (which is
sufficiently credible at present technology level), the
trajectory description simplifies in cylindrical coordi-
nates, with the bent planes corresponding to surfaces
of constant radius relative to some axis far outside the
crystal. Thereat, the plane crossing angle sine enter-
ing Eq. (1) expresses simply as the time derivative of
the particle radial coordinate:
sin θ ≈ ṙ/c (4)
(we deal with ultra-relativistic particles moving
nearly at speed of light c). Inserting (4) to Eq. (1)
and summing over all the planes crossed by the par-
ticle, we obtain the total inelastic nuclear interaction
probability in a bent crystal:
P ≈ natσAcd
∑
n
1
ṙn
(unif. bent crystal). (5)
Since the particle motion is supposed to straighten
out away from the volume reflection area, there the
nuclear interaction rate per unit length must ap-
proach that in an amorphous medium. Hence, the
difference between the number of nuclear interactions
in an oriented crystal and in an “unoriented” crystal
may be expressed as
ΔP = natσAΔL (6)
with the isolated geometrical factor
ΔL = lim
L→∞
(∑
n
cd
ṙn
− L
)
, (7)
expected to be finite and independent of L, repre-
senting the excess (or deficit) of the target nuclear
interaction range.
The evaluation of limit (7) and averaging over the
angles and impact parameters of particles in the ini-
tial beam simplifies under the condition R � Rc, and
may be performed without the need to specify the ex-
act shape of the inter-planar potential. For positively
charged particles, the result reads [3]:
〈ΔL〉 = R 〈χ〉 (1 + O(R2
c/R2)
)
(pos. particles),
(8)
where 〈χ〉 is the correspondingly averaged deflection
angle of particles in the crystal. Importantly, 〈χ〉
includes O(Rc/R) corrections (cf. Eq. (17) below),
which may be important at practice, but higher order
corrections are beyond the accuracy of relation (8).
Remarkably, result (8) holds both in orientations
(110) and (111).
For negatively charged particles, at leading order
in Rc/R, when 〈χ〉 ≈ θc, the result is similar to (8):
〈ΔL〉 = −Rθc (1 + O(Rc/R)) (neg. particles).
(9)
Corrections O(Rc/R) can also be computed, but they
are not absorbable into 〈χ〉 and differ for (110) and
(111) orientations (see [3]).
The principal difference between Eq. (8) and (9)
is that for positive particles the nuclear range excess
is positive, while for negative particles it is nega-
tive (representing a deficit), being of the same or-
der in magnitude. That property is natural from
60
the viewpoint that positive particles are repelled from
the atomic planes and cross them more tangentially,
while negative particles are attracted, crossing the
planes quicker.
3. COMPARISON WITH THE
EXPERIMENTAL DATA
Inelastic nuclear interaction probability. Pre-
dictions (8, 9) can be tested against the available ex-
perimental data. The most direct check is supposed
to be against the results of experiments on inelastic
nuclear scattering. At present, there is one such ex-
periment, performed at CERN with 400 GeV protons
and a L = 2 mm thick silicon crystal at a single value
of the crystal bending radius R = 10 m [4].
When the cutting angle (essentially the initial
beam collimation angle) was sufficiently large (which
ought to correspond to perfect averaging over b or
E⊥), the measured relative difference between the
number of inelastic nuclear interaction events at vol-
ume reflection and in the “amorphous orientation”
was about constant, holding on the level
ΔP
P
≈ (5 ± 2)%. (experim.) (10)
For comparison, our prediction, using the experimen-
tally determined [7] mean value 〈χ〉exp = 13.35 μrad
at the given curvature 1/R = 0.1 m−1 amounts to
ΔP
P
=
〈ΔL〉
L
=
R 〈χ〉exp
L
= 6.67%. (theor.)
(11)
The agreement between (10) and (11) may be re-
garded as satisfactory.
Impact on the final beam angular divergence.
The nuclear interactions also manifest themselves
through angular broadening of the final beam due
to elastic Coulomb scattering. There is, however, an-
other contribution to the broadening, present even in
a pure continuous potential, and stemming from the
impact parameter dependence of the deflection angle.
In fact, the continuous potential contribution is ab-
sent in the direction parallel to the planes, but the
beam spread parallel to the planes is rarely measured,
so in the published experimental data on the beam
dispersion in the direction of deflection the amor-
phous and continuous potential contributions enter
together.
Reasonably, we can decompose the kinetics of the
particle passage through the crystal into three dis-
tinct stages: pure incoherent multiple scattering up-
stream the volume reflection region (where the beam
acquires Gaussian shape), pure dynamical broaden-
ing in the volume reflection region, and pure incoher-
ent multiple scattering downstream of it. Denoting
by dw/dχ the final angular distribution function, and
by dwcoh/dχ the intrinsic volume reflection distribu-
tion function, obtained with the neglect of multiple
Coulomb scattering, the aggregate angular dispersion
σ2 =
∫ ∞
−∞
dχ (χ − 〈χ〉)2 dw
dχ
(∫ ∞
−∞
dχ
dw
dχ
= 1
)
(12)
about the mean value
〈χ〉 =
∫ ∞
−∞
dχχ
dw
dχ
(13)
is represented as a sum of independent contributions:
σ2 = σ2
am(L + 〈ΔL〉) + σ2
coh
≡ σ2
am(L) + σ2
am(R 〈χ〉) + σ2
coh, (14)
with
σ2
coh =
∫ ∞
−∞
dχ (χ − 〈χ〉)2 dwcoh
dχ
, (15)
and provided σ2
am(T ) is a linear function of T (see
Eq. (19) below).
The intrinsic angular distribution dwcoh/dχ was
evaluated in [5] in the model of harmonic continu-
ous potential between (110) silicon crystallographic
planes. It has some differences for positive and neg-
ative particles, as does the nuclear interaction rate
described in Sec. 2.
Positively charged particles. For positive particles, at
R > 4Rc the angular distribution of the intrinsic vol-
ume reflection has approximately rectangular shape
(see Eq. (72) of [5], where the calculation was con-
ducted in the harmonic approximation for the inter-
planar continuous potential)2
dwcoh
dχ
≈ Rθc
πd
Θ
(
πd
2Rθc
− |χ − 〈χ〉 |
)
. (16)
In Eq. (16) Θ(s) is the Heavyside unit step function,
and 〈χ〉 equals3
〈χ〉 ≈ θlim
(
1 − d
θ2
cR
)
, θlim =
π
2
θc. (17)
By Eq. (15), the corresponding σcoh is found to be
σcoh ≈ π
2
√
3θc
d
R
, (18)
notably being inversely proportional to the crystal
bending radius.
For σam we may adopt the simple formula of
Gaussian diffusion:
σam(T ) ≈ E0
E
√
T
X0
, (19)
with X0 the radiation length (X0 ≈ 9.36 cm for sil-
icon), and E0 an universal constant. With the ac-
count of Rutherford asymptotics of the scattering
cross-section, and of the distribution function at large
2In paper [5] the final beam angular distribution was described in terms of dλ/dχ, the differential cross-section. But obvi-
ously, dividing that quantity by d, we obtain the normalized probability distribution dwcoh
dχ
= 1
d
dλ
dχ
,
�
dχ dwcoh
dχ
= 1 handled in
the present paper.
3Note that d/θ2
c ≈ 2Rc, but when the continuous potential is not exactly harmonic, expression d/θ2
c works better.
61
χ, σ2 defined by Eq. (12) logarithmically diverges,
but instead it can be determined from a Gaussian fit
to the experimentally measured distribution [9]. In
this case, E0 weakly depends on T , and in the range
T ∼ 0.2 ÷ 1 mm, practically important for volume
reflection, the approximate value for E0 is E0 ≈ 11
MeV (see [3]).
Measurements of total σ2 for 400 GeV protons
interacting with a (110) silicon crystal were made in
CERN experiment [7]. There, in order to get access
to the intrinsic volume reflection angular divergence
σcoh, the difference
σ2 − σ2
am(L) = σ̄2
v.r. (20)
was evaluated. Yet, according to Eq. (14), it differs
from pure σcoh:
σ̄v.r. =
√
σ2 − σ2
am =
√
σ2
coh + σ2
am(R 〈χ〉). (21)
Inserting explicit theoretical expressions (18),
(19) into Eq. (21) leads to a non-scaling dependence
of the measured quantity σ̄v.r. on R:
σ̄v.r. =
√
π2
12θ2
c
d2
R2
+
πθc
2
(
E0
E
)2
R − d/θ2
c
X0
. (22)
The most characteristic feature of function (22) is the
existence of a minimum with respect to variation of
R. The minimum location is found by differentiating
the radicand:
R∗(E) =
1
θc
3
√
π
3
X0d2
(
E
E0
)2/3
�
(
E
38 GeV
)7/6
[m].
(23)
It may serve to mark the scale of R where the mul-
tiple scattering compares with coherent deflection
angles.
10 R� 20 30 40
R�m�
1
2
3
4
5
6
7
Σv.r.�Μrad�
Subtracted final beam angular width vs. the crystal
bending radius, for E = 400 GeV protons in a
L = 2 mm silicon crystal. Solid curve: theoretical
prediction [Eq. (22)]. Dotted curve: pure σcoh (also
compatible with calculation of [10] in a more realistic
continuous potential model). Points: experimental
data [7]
The data of experiment [7] do show a flattening of
the R-dependence around R∗ (see the figure), but at
greater R there is an indication of further decrease.
More experimental points in the region R > R∗ are
needed to establish a clear trend.
Negatively charged particles. For negative particles
the experimental data are yet too scarce to extract a
picture of σ̄2
v.r.(R) behavior, so we restrict ourselves
to a few remarks.
For negatively charged particles the expression
for σcoh(R) differs only by a numerical coefficient
(actually, logarithmically dependent on R), but the
main ∼ 1/R-dependence remains. But according to
Eq. (4), the difference of the amorphous contribution
changes sign: Δσ2
am ∝ 〈ΔL〉 < 0. Therefore, the
expression for σ̄2
v.r. for negative particles is similar
to the radicand of Eq. (22), but with a negative co-
efficient at the second term. That implies that for
negative particles σ̄2
v.r. turns to zero at some value
of R, and becomes negative beyond it. That is the
salient feature of the final beam angular distribution
for negative particles, which would be interesting to
verify experimentally.
Secondly, since σcoh for positively and for nega-
tively charged particles differ, in general it is not as
straightforward to compare the angular broadenings
for positive and negative particles, as it was for the
rate of inelastic nuclear interactions. However, in the
region R > Rc where σcoh gets relatively small, that
must become possible. The simplest way of pinning
down σcoh, though, is to measure both angular beam
divergence components perpendicular and parallel to
the family of the active atomic planes.
Acknowledgement
The author thanks to V. Guidi and A.V. Shchagin
for discussions and to A.M. Taratin for useful corre-
spondence.
References
1. A.M. Taratin and S.A. Vorobiev. Deflection of
high-energy charged particles in quasi-channeling
states in bent crystals // Nucl. Instrum. Methods.
1987, v. B26, p. 512-521;
A.G. Afonin et al. The schemes of proton extrac-
tion from IHEP accelerator using bent crystals //
Nucl. Instrum. Methods. 2005, v. B234, p. 14-22;
V.M. Biryukov et al. Crystal collimation as an
option for the large hadron colliders // Nucl. In-
strum. Methods. 2005, v. B234, p. 23-30;
V. Shiltsev et al. Channeling and volume reflec-
tion based crystal collimation of tevatron circu-
lating beam halo (T-980) // Proc. of IPAC-2010,
Kyoto, Japan, p. 1243-1245.
2. A.M. Taratin and W. Scandale. Volume reflec-
tion of high-energy protons in short bent crys-
tals // Nucl. Instrum. Methods. 2007, v. B262,
p. 340-347.
3. M.V. Bondarenco. Account of Nuclear Scatter-
ing at Volume Reflection // arXiv : 1108.0648v1.
4. W. Scandale et al. Probability of inelastic nu-
clear interactions of high-energy protons in a bent
62
crystal // Nucl. Instrum. Methods. 2010, v. B268,
p. 2655-2659.
5. M.V. Bondarenco. Model solution for volume re-
flection of relativistic particles in a bent crystal
// Phys. Rev. 2010, v. A82, 042902, 19 p.
6. M.V. Bondarenco. Comments on theory of vol-
ume reflection and radiation in bent crystals
// Il Nuov. Cim. 2011, v. C34, p. 381-388.;
arXiv : 1103.0770.
7. W. Scandale et al. Volume Reflection Depen-
dence of 400 GeV/c Protons on the Bent Crys-
tal Curvature // Phys. Rev. Lett. 2008, v. 101,
234801, 4 p.
8. W. Scandale et al. Observation of channeling
and volume reflection in bent crystals for high-
energy negative particles // Phys. Lett. 2009,
v. B681, p. 233–236.
9. G.R. Lynch and O.I. Dahl // Nucl. Instrum.
Methods. 1991, v. B58, p. 6;
V.L. Highland // Nucl. Instr. Methods. 1975,
v. 129, p. 497; ibid. 1979, v. 161, p. 171;
K. Nakamura et al. (Particle Data Group) // Re-
view of Particle Physics. J. Phys. 2010, v. G37,
075021.
10. V.A. Maisheev. Volume reflection of ultrarela-
tivistic particles in single crystals // Phys. Rev.
ST Accel. Beams. 2007, v. 10, 084701, 11 p.
11. Yu.A. Chesnokov et al. Radiation of photons
in process of charge particle volume reflection
in bent single crystal // JINST. 2008, v. 3,
P020052;
A.G. Afonin et al. Investigation of the emission
of photons induced in the volume reflection of 10-
GeV positrons in a bent silicon single crystal //
JETP Lett. 2008, v. 88, p. 414-417;
W. Scandale et al. Experimental study of the
radiation emitted by 180-GeV/c electrons and
positrons volume-reflected in a bent crystal //
Phys. Rev. 2009, v. A79, 012903, 9 p.;
M.V. Bondarenco. Coherent bremsstrahlung in a
bent crystal // Phys. Rev. 2010, v. A81, 052903,
14 p.;
Yu.A. Chesnokov et al. Photoproduction of
electron-positron pairs in bent single crystals //
Phys. Rev. ST Accel. Beams. 2010, v. 13, 070706,
6 p.
12. V. Biryukov. The Theory of the scattering in-
duced feeding in in bent crystals // Phys. Lett.
1995, v. A205, p. 340-343;
V.M. Biryukov and S. Bellucci. Simulations of
volume reflection and capture in bent crystals //
Nucl. Instr. Methods. 2008, v. B266, p. 235-241;
V.M. Biryukov. The Limits of volume reflection
in bent crystals // Nucl. Instr. Methods. 2009,
v. B26, p. 2457-2459.
������� ��
����
���
�
������� ���� �����������
� �����
� ��
�������� ��� ���
���� �����
���
��� ����� �
� ���
�� �� �
���� �� �
����� ���
������
� ������� �� ���� ��
���
��� ��
���������� � ���
���� �����
���� �� ��������� ������ ���� ���� �
� ��
������������ �
��� ��
��� ������ �� �����
���� �� ����������� !�� ������ � �
���" �� ��#� �
������ �� ��������$
�
�� � �
����� ��
��
�����
��
� ���� ��� �
�� ����� � �� �
����� ��
������ �� �� ���� ��
"���� ����������� �
� ������� �
� ���� ��
�
� �
�� �������
� �
��� ����� ����� ��� ���$
�
�� �
����� �
����������� ��������� �� ������ �
���� � �
���
� �
� ���� �����
� �
���� �� �
��#� �� %������������ ������
�
�� ��
� ��
��� � �������
�
�� ��
� �� &�������� ����
������ ��������� � � � ��� ���� ����������� ��������� ��
��������� ����
���
���� �����
���
��� ��'(� �
� �)������ �
����� �� �
��� ��� ������� �
� ������� �� ���� �)
���
��� �� ���!�
� �)
����� �����
�)� �� ������ (�� �)��
)� )��� ���� �
� �)�� � �� *
��� �� !� ���
� �)��)�$
�(���� �)� �)����)� �+ ������ � �
���" )� �)#� )
������ �� �������)� � �
�)��� �
� � �����
��
�
����� ���� ���� �)����� � �
��� ��� ��
��� � �)� �� ���� �+ "���� �)����!� �
� �����$
�� �
� ���� �)
��� �
�� �������
� �
��� �
�������(���� ��� ����� ������
� �������� �
����
�
������ �
�
�� �� �
���
����
� ���� )�����
� ����)� � � �)#� )� %������� ) ������
�� � ���)�$
���� � �������
�
�� ��
� )� ��������� �)��
,-
|