Extension of the Sp(2,C) group for description of a three-body system

We propose a new approach to the three-body problem that is based on the extension of the Sp(2,C) group, which is the universal covering group for the Lorentz group, to the Sp(4,C) one. Angular momenta of the particles in the phase space of a system with an inner interaction are obtained. This resul...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Yaroshenko, A.P., Uvarov, I.V.
Формат: Стаття
Мова:English
Опубліковано: Dnipropetrovsk National University 2012
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/107057
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Extension of the Sp(2,C) group for description of a three-body system / A.P. Yaroshenko, I.V. Uvarov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 163-165. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-107057
record_format dspace
spelling irk-123456789-1070572016-10-13T03:02:12Z Extension of the Sp(2,C) group for description of a three-body system Yaroshenko, A.P. Uvarov, I.V. Section C. Theory of Elementary Particles. Cosmology We propose a new approach to the three-body problem that is based on the extension of the Sp(2,C) group, which is the universal covering group for the Lorentz group, to the Sp(4,C) one. Angular momenta of the particles in the phase space of a system with an inner interaction are obtained. This result can be used to obtain eigenfunctions of angular momenta, and exact quantum mechanical solutions for the system defined by Dirac-like equations, e.g. a system of three zero-spin particles or Regge trajectories of N-baryons. Предлагается новый подход к описанию трёхчастичной системы, основанный на расширении группы Sp(2,C), которая является универсальной накрывающей группы Лоренца, до группы Sp(4,C). В фазовом пространстве системы с внутренним взаимодействием получены угловые моменты частиц. На основе этого результата будут получены собственные функции углового момента, с помощью которых можно найти точное квантово-механическое решение системы, определённой уравнениями типа уравнений Дирака, например, системы трёх бесспиновых частиц, или определить траектории Редже барионов. Пропонується новий підхід до опису тричастинкової системи, що базується на розширенні групи Sp(2,C), яка є універсальною накриваючою групи Лоренця, до групи Sp(4,C). У фазовому просторі системи зі внутрішньою взаємодією отримані кутові моменти частинок. На основі цього результату будуть знайдені власні функції кутового моменту, за допомогою яких можна отримати точний квантово-механічний розв'язок системи, яка визначається рівняннями типа рівнянь Дірака, наприклад, системи трьох безспінових частинок, або визначити траєкторії Редже баріонів. 2012 Article Extension of the Sp(2,C) group for description of a three-body system / A.P. Yaroshenko, I.V. Uvarov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 163-165. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 03.65.Fd, 11.30.Cp, 04.20.Gz http://dspace.nbuv.gov.ua/handle/123456789/107057 en Вопросы атомной науки и техники Dnipropetrovsk National University
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Section C. Theory of Elementary Particles. Cosmology
Section C. Theory of Elementary Particles. Cosmology
spellingShingle Section C. Theory of Elementary Particles. Cosmology
Section C. Theory of Elementary Particles. Cosmology
Yaroshenko, A.P.
Uvarov, I.V.
Extension of the Sp(2,C) group for description of a three-body system
Вопросы атомной науки и техники
description We propose a new approach to the three-body problem that is based on the extension of the Sp(2,C) group, which is the universal covering group for the Lorentz group, to the Sp(4,C) one. Angular momenta of the particles in the phase space of a system with an inner interaction are obtained. This result can be used to obtain eigenfunctions of angular momenta, and exact quantum mechanical solutions for the system defined by Dirac-like equations, e.g. a system of three zero-spin particles or Regge trajectories of N-baryons.
format Article
author Yaroshenko, A.P.
Uvarov, I.V.
author_facet Yaroshenko, A.P.
Uvarov, I.V.
author_sort Yaroshenko, A.P.
title Extension of the Sp(2,C) group for description of a three-body system
title_short Extension of the Sp(2,C) group for description of a three-body system
title_full Extension of the Sp(2,C) group for description of a three-body system
title_fullStr Extension of the Sp(2,C) group for description of a three-body system
title_full_unstemmed Extension of the Sp(2,C) group for description of a three-body system
title_sort extension of the sp(2,c) group for description of a three-body system
publisher Dnipropetrovsk National University
publishDate 2012
topic_facet Section C. Theory of Elementary Particles. Cosmology
url http://dspace.nbuv.gov.ua/handle/123456789/107057
citation_txt Extension of the Sp(2,C) group for description of a three-body system / A.P. Yaroshenko, I.V. Uvarov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 163-165. — Бібліогр.: 10 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT yaroshenkoap extensionofthesp2cgroupfordescriptionofathreebodysystem
AT uvaroviv extensionofthesp2cgroupfordescriptionofathreebodysystem
first_indexed 2025-07-07T19:26:19Z
last_indexed 2025-07-07T19:26:19Z
_version_ 1837017470341218304
fulltext EXTENSION OF THE Sp(2,C) GROUP FOR DESCRIPTION OF A THREE-BODY SYSTEM A.P. Yaroshenko and I.V. Uvarov ∗ Dnipropetrovsk National University, 49050, Dnipropetrovs’k, Ukraine (Received October 31, 2011) We propose a new approach to the three-body problem that is based on the extension of the Sp(2, C) group, which is the universal covering group for the Lorentz group, to the Sp(4, C) one. Angular momenta of the particles in the phase space of a system with an inner interaction are obtained. This result can be used to obtain eigenfunctions of angular momenta, and exact quantum mechanical solutions for the system defined by Dirac-like equations, e.g. a system of three zero-spin particles or Regge trajectories of N-baryons. PACS: 03.65.Fd, 11.30.Cp, 04.20.Gz 1. INTRODUCTION Description of a relativistic three-body system is an important issue in modern nuclear and particle physics. Statistical approaches or even many-body technics are not efficient for three-body problems, and a good treatment of the center of mass is neces- sary and internal coordinates must be employed. Var- ious approaches to the solution of this problem exist. For example, the system can be described by means of relativistic quantum mechanics (using the Lorentz- invariant wave equations) [1–3] or quantum field the- ory (Faddeev equation for three particles) [4, 5]. An important research direction is connected with exten- sions of the Minkowski and spinor spaces [6, 7]. Using the method of extension of the Sp(2, C) group in a minimal manner, we develop the model that describes the three-body system with an inner interaction. Expressions for positions, momenta, an- gular momenta and their eigenfunctions are found. Furthermore, this new method of spacetime exten- sion may be used for description of interacting stan- dart model particles, e.g., N-baryons. 2. SPACETIME EXTENSION The following is the general overview of the exten- sion of the two-dimensional spinor space and corre- sponding groups of symmetry. The proposed method of extension of two-dimensional spinor space has an important advantage over the method of the space- time extension by addition of spatial variables only, as number of dimensions increases only quadratically, not exponentially. Therefore, a significantly smaller number of subsidiary conditions is required. The Lorentz group SO(1, 3) is covered by the SL(2, C) ≡ Sp(2, C) group. There is an one-to- one correspondence between the Sp(2, C) Hermitian spin-tensors of second rank and the Minkowski four- vectors that describe the space-time position of a rela- tivistic particle. The Sp(2, C) group can be extended to the Sp(4, C) one for the description of few-particle systems. Similar to the Sp(2, C) group case, there is a correspondence between Sp(4, C) 4 × 4 Hermitian spin-tensor and a real 16-vector [8,9]. We will choose the matrices of the basis as follows: μM ≡ μ(a,m) = Σa ⊗ σm, (1) Values of M = 1..16 can be represented through 4 × 4 combinations of two indices (a, m = 0..3). The Σa and σm matrices can be explicitly expressed through 2 × 2 unitary matrix I and the Paupli ma- trices τ1, τ2, τ3: σ0 = σ̃0 = Σ2 = Σ̃2 = I, σ1 = σ̃1 = Σ1 = Σ̃1 = τ1, σ2 = −σ̃2 = Σ0 = −Σ̃0 = τ2, σ3 = −σ̃3 = Σ3 = Σ̃3 = τ3, (2) Now we obtain the metrics of 16-dimensional real space: gMN = 1 4 Tr(μM μ̃N ) = ĥabhmn, (3) where hmn = diag (1,−1,−1,−1) is the Minkowski metrics and ĥab is the Minkowski metrics with the opposite sign caused by the group extension. The discussed real space is a sum of four Minkowski met- rics. The 16-dimensional momentum operator in the considered space can be represented as four relativis- tic four-momenta. Since ten of the 16 dimensions are spacelike, whereas six other are time-like and we need only one time for a physical interpretation, it is necessary to exclude five of six time-like components. ∗Corresponding author E-mail address: wvanj@pisem.net PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, N 1. Series: Nuclear Physics Investigations (57), p. 163-165. 163 Let us introduce the quadratic function of the mo- mentum PM = i∂M : (PP̃ )αβ = Pαα̃P̃ ββ̃ = μM αα̃PMμNββ̃PN , (4) where α, ᾱ, β, β̄ = 1..4 are spinoral indices. The matrix Pαβ is antisymmetric under the in- terchange of the α and β indices. Let us consider the antisymmetric part, which has six linearly inde- pendent matrices in the four-dimensional space. One of them is proportional to the metric, and, conse- quently, is invariant under the Sp(4, C). The remain- ing five matrices create a five-dimensional complex space. In such way the five-dimensional representa- tion of the Sp(4, C) group, i.e. the special orthogonal group SO(5, C), is obtained. These groups are locally isomorphic. We introduce linkage to the system by requiring five of complex quadratic combinations of momenta to be equal to zero. In this case they are invariant under the transformations of the Sp(4, C) group. In the absence of interaction these momenta have the form of conventional derivatives, commute with each other and do not create secondary linkage. The sys- tem of subsidiary conditions, written in the form of ten real equations, is: (s, p) = (s, q) = 0, rs0 − r0s = [p,q], (5) (r, p) = (r, q) = 0, pq0 − p0q = [s, r], (6) where sm = P3m, pm = P1m, qm = P2m, rm = P0m are the components of the momentum vector Pa,m, round brackets denote the scalar products of four- vectors as (a, b) = a0b0 − ab, and square brackets denote the vector products of three-vectors. Equations (6) are a consequence of (5), therefore we obtained five independent conditions (5), and it can be seen from their form that rm is the pseudovec- tor. The 16-momentum has the maximum amount of independent components when sm is time-like. In that case pm and qm are space-like, and in the frame where s = 0, we have p0 = q0 = 0, and p, q are in- dependent. Thus we can treat this frame as a center- of-momentum one. Then p and q are thought to be three-momenta of the relative motion, that have the corresponding x and y coordinates. 3. ANGULAR MOMENTA The next step is to include an inner interaction in the system. We introduce the interaction that leads to the violation of the Sp(4, C) symmetry, but rel- ativistic invariance remains. The subsidiary condi- tions are primary constraints [10], and they can cre- ate secondary constraints. We demand that there is no secondary linkage. This strict requirement com- pletely defines the form of interaction potentials up to gauge transformations. In the center-of-momentum frame instead of two sets of inner coordinates and corresponding momenta we obtain two independent coordinate spaces Qa, Q′ a and two corresponding mo- menta spaces were obtained.: a) P(λ) = p − λy, Q(λ) = q + λx, b) P(−λ) = p + λy, Q(−λ) = q − λx. (7) The commutation relations between these vectors are [Qa(λ), Pb(λ)] = 2iλδab, [Q′ a(λ), P ′ b(λ)] = 2iλδab, (8) where Q′(λ) = P(−λ) and P′(λ) = Q(−λ); δab is the Kronecker delta (a, b = 1, 2, 3 are Cartesian indices). The pairs P,Q and P′,Q′ commute with each other. Using the two proposed sets of coordinates and momenta, P(λ),Q(λ) and P′(λ),Q′(λ), we can in- troduce two angular momentum operators: M = M(λ) = 1 2λ [Q(λ),P(λ)], N = M(−λ) = 1 2(−λ) [Q′(−λ),P′(λ)]. (9) M and N obey the usual commutation relations and they are independent. 4. CONCLUSIONS In the present work, we have investigated the quan- tum system with nine degrees of freedom using a method based on the extension of the Sp(2, C) group. After the introduction of inner interaction in a min- imal manner, we redefined the coordinates and mo- menta of the system, that resulted in two indepen- dent angular momenta, which eigenfunctions will be found elsewhere. This new result lays the groundwork for determining the stationary states of a quantum three-body system with an inner interaction defined by Dirac-like equations. The theory can be applied, for example, to analysis of the system of three spinless particles or to find Regge trajectories of N-baryons. References 1. H. Sazdjian // Phys. Lett. B. 1988, v, 208, p. 470. 2. W. Krolikowski // Acta Phys. Pol. B. 1980, v. 11, p. 387. 3. T. Sasakawa // Nucl. Phys. A. 1977, v. 160, p. 321. 4. A.H. Monahan and M. McMillan // Phys. Rev. A. 1998, v. 58, p. 4226. 5. W. Plessas // “Few-Body Methods: Principles and Applications” / Eds. T.-K. Lim et al. World Scientific, 1986, p. 43. 6. Yu.F. Pirogov // Phys. Atom. Nucl. 2003, v. 66, p. 136-143. 164 7. D.A. Kulikov, R.S. Tutik, and A.P. Yaroshenko // Phys. Lett. B. 2007, v. 644, p. 311. 8. Howard Georgi. Lie Algebras In Particle Physics. Westview Press, 1999. 9. H. Weyl. The Classical Groups: Their Invariants and Representations. Princeton University Press, 1946. 10. P.A.M. Dirac. Lectures on Quantum Mechanics. Dover Publications, 2001. ���������� �� � � ����� ��� � ������ ������������� ������� ���� ����� �� �� � ������ ���������� �� �� ������ � ��� ���� ������ ������ � ����� � �� ����� �� �� ������� ������ Sp(2, C)� ������ � �� ��� �� ������ ����� ����� ������ �������� �� ������ Sp(4, C)� !�" #� �� ��� ���� � � � ���� ��������� #������� � ��� �������� ���� �� ������� �� ���� $� � �� � %���� ��#������� &���� �������� �& � ����� !������ ���� ��� �������� ������� ����" ��� ��'�� ����� ������ � ���� �"�������� ��� ������� � ����� ������������ ��� ���� �� ���� ��� ����� (������ ��������� � ���� ���� &� ���� �� �� ���� ��� ���������� ���������� )��'� &������ � ���������� �� � � ����� ��� � �� ������� ����� ��� ���� ����� �� �� � ������ �������*�� �� �� �+��+� �� ��� � ����� ����� �, � ����� �� &�#�*�� �� ��#������+ ����� Sp(2, C)� �� * ��+ �� ������ ����� ����� ����� ������ � �� ����� Sp(4, C)� - !�#� ��� ��� ���+ � ���� #+ ����+����� #�*���+*� �������+ ���� + ������� �� ������ $� � �� + ����� ��#������� &����� #������+ �� �+ !����+, ���� ��� �������� #� ��������� ��� ��'�� �������� ������ � ���� �" �����+���� ��# . #�� � ����� �� �#����*�� �+ � �� �� ���� �+ � �� (+����� ���������� � ���� ����� &�# �+�� �� �� ������ �&� �#������ ���*����+, )��'� &��+��+ � /01