Angular distribution and asymmetries in flavor-changing neutral-current decay B → K* l⁺ l⁻
The fully differential angular distribution for the rare flavor-changing neutral current decay Bd⁰ → K*⁰( → K⁻π⁺)e⁺e⁻ is studied. The emphasis is placed on accurate treatment of the contribution from the processes Bd⁰ → K*⁰( → K⁻π⁺)V with intermediate vector resonances V = ρ(770), ω(782), φ(1020), J...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/107061 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Angular distribution and asymmetries in flavor-changing neutral-current decay B → K* l⁺ l⁻ / A.Yu. Korchin, V.A. Kovalchuk, D.O. Lazarenko // Вопросы атомной науки и техники. — 2012. — № 1. — С. 166-170. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-107061 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1070612016-10-13T03:02:16Z Angular distribution and asymmetries in flavor-changing neutral-current decay B → K* l⁺ l⁻ Korchin, A.Yu. Kovalchuk, V.A. Lazarenko, D.O. Section C. Theory of Elementary Particles. Cosmology The fully differential angular distribution for the rare flavor-changing neutral current decay Bd⁰ → K*⁰( → K⁻π⁺)e⁺e⁻ is studied. The emphasis is placed on accurate treatment of the contribution from the processes Bd⁰ → K*⁰( → K⁻π⁺)V with intermediate vector resonances V = ρ(770), ω(782), φ(1020), J/ψ, ψ(2S), … decaying into the e⁺e⁻ pair. The two versions of the vector-meson-dominance model for the transition Vγ are used and tested. The branching ratio, longitudinal polarization fraction of the K*⁰ meson, transverse asymmetry AT⁽²⁾ and forward-backward asymmetry are compared with data from BaBar and CDF, and predictions for experiments at LHCb and B factories are made. Изучено полное дифференциальное угловое распределение редкого распада Bd⁰ → K*⁰( → K⁻π⁺)e⁺e⁻, индуцированного нейтральным током, изменяющим аромат. Акцентировано внимание на аккуратном рассмотрении вкладов от процессов Bd⁰ → K*⁰( → K⁻π⁺)V с промежуточными векторными резонансами V = ρ(770), ω(782), φ(1020), J/ψ, ψ(2S),…, распадающимися на e⁺e⁻ -пару. Использованы две версии модели векторной доминантности для перехода Vγ. Относительная вероятность распада, доля продольной поляризации K*⁰ мезона, поперечная асимметрия AT⁽²⁾ и асимметрия "вперед-назад'' сравниваются с данными BaBar и CDF, а также выполнены предсказания для экспериментов LHCb и B-фабрик. Досліджено повний диференційний кутовий розподіл рідкого розпаду Bd⁰ → K*⁰( → K⁻π⁺)e⁺e⁻, індукованого нейтральним струмом, який змінює аромат. Акцентовано увагу на акуратному розгляді вкладів від процесів Bd⁰ → K*⁰( → K⁻π⁺)V з проміжними векторними резонансами V = ρ(770), ω(782), φ(1020), J/ψ, ψ(2S),…, які розпадаються на e⁺e⁻ -пару. Використані дві версії моделі векторної домінантності для переходу Vγ. Відносна ймовірність розпаду, частка повздовжньої поляризації K*⁰ мезона, поперечна асиметрія AT⁽²⁾ та асиметрія "вперед-назад'' порівнюються з даними BaBar та CDF, а також виконані передбачення для експериментів LHCb та B-фабрик. 2012 Article Angular distribution and asymmetries in flavor-changing neutral-current decay B → K* l⁺ l⁻ / A.Yu. Korchin, V.A. Kovalchuk, D.O. Lazarenko // Вопросы атомной науки и техники. — 2012. — № 1. — С. 166-170. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 13.20.He, 13.25.Hw, 12.40.Vv http://dspace.nbuv.gov.ua/handle/123456789/107061 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Section C. Theory of Elementary Particles. Cosmology Section C. Theory of Elementary Particles. Cosmology |
spellingShingle |
Section C. Theory of Elementary Particles. Cosmology Section C. Theory of Elementary Particles. Cosmology Korchin, A.Yu. Kovalchuk, V.A. Lazarenko, D.O. Angular distribution and asymmetries in flavor-changing neutral-current decay B → K* l⁺ l⁻ Вопросы атомной науки и техники |
description |
The fully differential angular distribution for the rare flavor-changing neutral current decay Bd⁰ → K*⁰( → K⁻π⁺)e⁺e⁻ is studied. The emphasis is placed on accurate treatment of the contribution from the processes Bd⁰ → K*⁰( → K⁻π⁺)V with intermediate vector resonances V = ρ(770), ω(782), φ(1020), J/ψ, ψ(2S), … decaying into the e⁺e⁻ pair. The two versions of the vector-meson-dominance model for the transition Vγ are used and tested. The branching ratio, longitudinal polarization fraction of the K*⁰ meson, transverse asymmetry AT⁽²⁾ and forward-backward asymmetry are compared with data from BaBar and CDF, and predictions for experiments at LHCb and B factories are made. |
format |
Article |
author |
Korchin, A.Yu. Kovalchuk, V.A. Lazarenko, D.O. |
author_facet |
Korchin, A.Yu. Kovalchuk, V.A. Lazarenko, D.O. |
author_sort |
Korchin, A.Yu. |
title |
Angular distribution and asymmetries in flavor-changing neutral-current decay B → K* l⁺ l⁻ |
title_short |
Angular distribution and asymmetries in flavor-changing neutral-current decay B → K* l⁺ l⁻ |
title_full |
Angular distribution and asymmetries in flavor-changing neutral-current decay B → K* l⁺ l⁻ |
title_fullStr |
Angular distribution and asymmetries in flavor-changing neutral-current decay B → K* l⁺ l⁻ |
title_full_unstemmed |
Angular distribution and asymmetries in flavor-changing neutral-current decay B → K* l⁺ l⁻ |
title_sort |
angular distribution and asymmetries in flavor-changing neutral-current decay b → k* l⁺ l⁻ |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2012 |
topic_facet |
Section C. Theory of Elementary Particles. Cosmology |
url |
http://dspace.nbuv.gov.ua/handle/123456789/107061 |
citation_txt |
Angular distribution and asymmetries in flavor-changing neutral-current decay B → K* l⁺ l⁻ / A.Yu. Korchin, V.A. Kovalchuk, D.O. Lazarenko // Вопросы атомной науки и техники. — 2012. — № 1. — С. 166-170. — Бібліогр.: 12 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT korchinayu angulardistributionandasymmetriesinflavorchangingneutralcurrentdecaybkll AT kovalchukva angulardistributionandasymmetriesinflavorchangingneutralcurrentdecaybkll AT lazarenkodo angulardistributionandasymmetriesinflavorchangingneutralcurrentdecaybkll |
first_indexed |
2025-07-07T19:26:38Z |
last_indexed |
2025-07-07T19:26:38Z |
_version_ |
1837017490203344896 |
fulltext |
ANGULAR DISTRIBUTION AND ASYMMETRIES IN
FLAVOR-CHANGING NEUTRAL-CURRENT DECAY
B → K∗ l+ l−
A.Yu. Korchin1∗, V.A. Kovalchuk1, D.O. Lazarenko2
1National Science Center “Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
2Université Paris-Sud 11, 91405 Orsay Cedex, France
(Received November 1, 2011)
The fully differential angular distribution for the rare flavor-changing neutral current decay B̄0
d → K̄∗0 (→
K− π+) e+ e− is studied. The emphasis is placed on accurate treatment of the contribution from the processes
B̄0
d → K̄∗0 (→ K− π+)V with intermediate vector resonances V = ρ(770), ω(782), φ(1020), J/ψ, ψ(2S), . . . decaying
into the e+e− pair. The two versions of the vector-meson-dominance model for the transition V γ are used and
tested. The branching ratio, longitudinal polarization fraction of the K̄∗0 meson, transverse asymmetry A
(2)
T and
forward-backward asymmetry are compared with data from BaBar and CDF, and predictions for experiments at
LHCb and B factories are made.
PACS: 13.20.He, 13.25.Hw, 12.40.Vv
1. INTRODUCTION
The investigation of rare B decays induced by the
flavor-changing neutral current (FCNC) transitions
b → s and b → d represents an important test of the
standard model (SM) and its extensions (see [1] for a
review).
Among the rare decays, the process b → s�+�−,
where the virtual photon is converted to the lepton
pair, is of considerable interest. In this decay the an-
gular distributions and lepton polarizations can probe
the chiral structure of the matrix element [1] and
thereby effects of the new physics (NP) beyond the
SM.
In order to unambiguously measure effects of NP
in the observed process B̄0
d → K̄∗0 (→ K− π+) �+ �−,
mediated by b → s�+�− decay, one needs to calcu-
late the SM predictions with a high accuracy. The
amplitude in the SM consists of the short-distance
(SD) and long-distance (LD) contributions. The for-
mer are expressed in terms of the Wilson coefficients
Ci calculated in perturbative QCD up to a certain or-
der in αs(μ); they carry information on processes at
energy scales ∼ mW , mt. The LD effects describing
the hadronization process are expressed in terms of
matrix elements of several b → s operators between
the initial B and the K∗ final state. These hadronic
matrix elements are parameterized in terms of form
factors that are calculated in various approaches (see,
e.g. [2]).
The additional LD effects, originating from inter-
mediate vector resonances ρ(770), ω(782), φ(1020),
J/ψ(1S), ψ(2S),. . ., in general, may complicate theo-
retical interpretation and make it more model depen-
dent. The vector resonances modify the amplitude
and thus may induce, for example, the right-handed
currents which are absent in the SM.
In the present paper we extend calculations of
[3] to the whole region of dilepton invariant mass
up to mmax
ee = mB − mK∗ = 4.39 GeV. The effec-
tive SM Hamiltonian with the Wilson coefficients in
the next-to-next-to-leading order (NNLO) approxi-
mation is applied. The LD effects mediated by the
resonances, i.e. B̄0 → K̄∗0V → K̄∗0e+e− with
V = ρ(770), ω(782), φ(1020), J/ψ, ψ(2S), . . ., are
included explicitly in terms of the helicity amplitudes
of the decays B̄0 → K̄∗0V . The information on the
latter is taken from experiments if available; other-
wise it is taken from theoretical predictions.
2. ANGULAR DISTRIBUTIONS AND
AMPLITUDES FOR THE B̄0
d → K̄∗0 e+ e−
DECAY
The decay B̄0
d → K̄∗0 e+ e−, with K̄∗0 → K−π+ on
the mass shell, is completely described by four in-
dependent kinematic variables: the electron-positron
pair invariant-mass squared, q2, and the three angles
θl, θK , φ. In the helicity frame (Fig. 1), the angle
θl (θK) is defined as the angle between the directions
of motion of e+ (K−) in the γ∗ (K̄∗0) rest frame and
the γ∗ (K̄∗0) in the B̄0
d rest frame. The azimuthal
angle φ is defined as the angle between the decay
planes of γ∗ → e+ e− and K̄∗0 → K−π+ in the B̄0
d
rest frame. The fully differential angular distribution
∗Corresponding author E-mail address: korchin@kipt.kharkov.ua
166 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, N 1.
Series: Nuclear Physics Investigations (57), p. 166-170.
in these coordinates is given by
W (q̂2, θl, θK , φ) ≡ d4 Γ
dq̂2d cos θl d cos θKdφ
/
dΓ
dq̂2
=
9
64 π
9∑
k=1
αk(q2)gk(θl, θK , φ) , (1)
where gk are the angular and αk are the amplitude
terms, q̂2 ≡ q2/m2
B, mB is the mass of the B0
d meson,
and
dΓ
dq̂2
= mB N
2q̂2
√
λ̂
(|A0|2 + |A‖|2 + |A⊥|2
)
. (2)
φ
θK θl
K*0
_
B
_
d
0
γ*
K-
π+
e+
e-
Fig. 1. Definition of helicity angles θl, θK , and φ,
for the decay B̄0
d → K̄∗0 e+ e−
We have neglected the electron mass me, and
A0L(R), A‖L(R) and A⊥L(R) are the complex decay
amplitudes of the three helicity states in the transver-
sity basis, λ̂ ≡ λ(1, q̂2, m̂2
K∗) = (1 − q̂2)2 − 2(1 +
q̂2)m̂2
K∗ + m̂4
K∗ , m̂K∗ ≡ mK∗/mB, where mK∗ is the
mass of the K∗0 meson, and
N = |VtbV ∗
ts|
GFm
2
Bαem
32 π2
√
3 π
.
Here, Vij are the Cabibbo-Kobayashi-Maskawa ma-
trix elements [4, 5], GF is the Fermi coupling con-
stant, αem is the electromagnetic fine-structure con-
stant.
Next, we implement the effects of LD contribu-
tions from the decays B̄0
d → K̄∗0 V , where V =
ρ0 , ω , φ , J/ψ(1S) , ψ(2S) , . . . mesons, followed by
V → e+ e− in the decay B̄0
d → K̄∗0 e+ e− (Fig. 2).
B̄0
d K̄∗0
e+
e−
B̄0
d K̄∗0
V
e+
e−γ
Fig. 2. Nonresonant and resonant contributions to
the decay amplitude
We apply vector-meson dominance (VMD) ap-
proach. In general, the V γ transition can be in-
cluded into consideration using various versions of
VMD model. In the “standard” version (see, e.g. [6],
chapter 6), the V γ transition vertex can be written
as
〈γ(q); μ|V (q); ν 〉 = −efVQVmV g
μν , (3)
where gμν is the metric tensor, QV is the effective
electric charge of the quarks in the vector meson:
Qρ =
1√
2
, Qω =
1
3
√
2
, Qφ = −1
3
,
QJ/ψ = Qψ(2S) = . . . =
2
3
. (4)
The decay constants of neutral vector mesons fV can
be extracted from their electromagnetic decay width.
This version of VMD model will be called VMD1. A
more elaborate model (called hereafter VMD2) orig-
inates from Lagrangian
LγV = −e
2
Fμν
∑
V
fVQV
mV
Vμν , (5)
where Vμν ≡ ∂μVν − ∂νVμ and Fμν ≡ ∂μAν − ∂νAμ
is the electromagnetic field tensor.
Based on VMD approach, we obtain the total am-
plitude including nonresonant and resonant parts,
A0L,R =
1
2 m̂K∗
√
q̂2
(
C0(q2)
(
Ceff
9V ∓ C10A
+ 2m̂b
(
Ceff
7γ − C′ eff
7γ
)
κ0(q2)
)
+ 8π2
∑
V
CVD
−1
V (q̂2)
((
1 − q̂2 − m̂2
K∗
)
SV1
+ λ̂
SV2
2
))
, (6)
A‖L,R = −√
2
(
C‖(q2)
(
Ceff
9V ∓ C10A
+ 2
m̂b
q̂2
(
Ceff
7γ − C′ eff
7γ
)
κ‖(q2)
)
+ 8π2
∑
V
CVD
−1
V (q̂2)SV1
)
, (7)
A⊥L,R =
√
2λ̂
(
C⊥(q2)
(
Ceff
9V ∓ C10A
+ 2
m̂b
q̂2
(
Ceff
7γ + C′ eff
7γ
)
κ⊥(q2)
)
+ 4π2
∑
V
CVD
−1
V (q̂2)SV3
)
, (8)
where the form factors enter as
C0(q2) = (1 − q̂2 − m̂2
K∗)(1 + m̂K∗)A1(q2)
− λ̂
A2(q2)
1 + m̂K∗
, (9)
C‖(q2) = (1 + m̂K∗)A1(q2), (10)
C⊥(q2) =
V (q2)
1 + m̂K∗
, (11)
κ0(q2) ≡
(
(1 − q̂2 + 3m̂2
K∗)(1 + m̂K∗)T2(q2)
− λ̂
1 − m̂K∗
T3(q2)
)(
(1 − q̂2 − m̂2
K∗)
× (1 + m̂K∗)2A1(q2) − λ̂ A2(q2)
)−1
, (12)
κ‖(q2) ≡ T2(q2)
A1(q2)
(1 − m̂K∗), (13)
167
κ⊥(q2) ≡ T1(q2)
V (q2)
(1 + m̂K∗). (14)
In the above formulas the definition m̂b ≡ mb(μ)/mB
is used, and A1(q2), A2(q2), V (q2), T1(q2), T2(q2),
T3(q2) are the B → K∗ transition form factors, de-
fined in [2]. Furthermore,
DV (q̂2) = q̂2 − m̂2
V + im̂V Γ̂V (q̂2)
is the usual Breit-Wigner function for the V meson
resonance shape with the energy-dependent width
ΓV (q2) [Γ̂V (q̂2) = ΓV (q2)/mB], m̂V ≡ mV /mB,
Γ̂V ≡ ΓV /mB, mV (ΓV ) is the mass (width) of a V
meson, and
CV =
QVmV fV
q2
(VMD1) , CV =
QV fV
mV
(VMD2) .
(15)
In Eqs. (6)-(8), SVi (i = 1, 2, 3) are the invariant
amplitudes of the decay B0
d → K∗0 V .
The energy-dependent widths of light vector res-
onances ρ, ω and φ are chosen as in Ref. [3]. The
up-dated branching ratios for resonances decays to
different channels are taken from [7]. For the cc̄ reso-
nances J/ψ, ψ(2S), . . . we take the constant widths.
In order to calculate the resonant contribution to
the amplitude of the B̄0
d → K̄∗0 e+ e− decay, one has
to know the amplitudes of the decays B̄0
d → K̄∗0 ρ,
B̄0
d → K̄∗0 ω, B̄0
d → K̄∗0 φ, B̄0
d → K̄∗0 J/ψ, B̄0
d →
K̄∗0 ψ(2S), . . . At present the amplitudes of the B̄0
d →
K̄∗0 φ, B̄0
d → K̄∗0 J/ψ, B̄0
d → K̄∗0 ψ(2S) decays are
known from experiment [7], therefore, we use these
amplitudes for calculation of invariant amplitudes.
For the light resonances ρ and ω we use the theoret-
ical prediction [8] for the decay amplitudes. At the
same time, we are not aware of a similar prediction
for the higher cc̄ resonances, such as ψ(3770) an so
on, therefore we do not include contribution of these
resonances to amplitudes in our calculation. The SM
Wilson coefficients have been obtained in [9] at the
scale μ = 4.8 GeV to NNLO accuracy. In the nu-
merical estimations, we use the form factors from the
light-cone sum rules (LCSR) calculation [2].
3. RESULTS
In Figs. 3 we present results for the dependence
on the dilepton invariant mass squared of the differ-
ential branching ratio,
dB
dq̂2
= τB
dΓ
dq̂2
, (16)
the longitudinal polarization fraction of K∗ meson,
fL = |a0|2 , (17)
the forward-backward asymmetry
AFB = −3
2
Re(a‖L a∗⊥L − a‖R a∗⊥R) , (18)
Fig. 3. Solid line corresponds to the SM calculation
without resonances taken into account. Dashed and
dotted lines are calculated with account of resonances
in the VMD1 and VMD2 model respectively
168
and the coefficient
A
(2)
T ≡ a⊥ − a‖
a⊥ + a‖
, (19)
for the B̄0
d → K̄∗0 e+ e− decay. Here
aia
∗
j ≡ aiL(q2)a∗jL(q2) + aiR(q2)a∗jR(q2) (20)
and
aiL(R) ≡
AiL(R)√∑
j |Aj |2
, (21)
i, j = (0, ‖,⊥), τB is the lifetime of a B0
d meson. The
data from Belle [10] and CDF [11, 12] are shown by
the circles and boxes respectively. The interval of
q2 is taken from (30 MeV)2 up to (mB − mK∗)2 ≈
19.22 GeV2. The phase δV0 is chosen zero for all res-
onances except the φ meson, for which δφ0 = 2.82 rad
is taken from experiment.
As it is seen from the figures, VMD1 and VMD2
give different prediction for observables in the region
of small q2 ≤ 2 GeV2 while at bigger values of q2
they yield similar results. Note that the difference
between predictions of these two models is especially
large for the high-lying cc̄ resonances.
The experimental uncertainties are still large,
nevertheless the version VMD2 seems more preferable
as compared with data for the differential branching
ratio and longitudinal polarization fraction.
4. CONCLUSIONS
The rare FCNC decay B̄0
d → K̄∗0 (→ K− π+) e+ e−
has been studied in the whole region of electron-
positron invariant masses up to mB − mK∗ . The
fully differential angular distribution over the three
angles and dilepton invariant mass for the four-body
decay B̄0
d → K− π+ e+ e− is analyzed. We defined
a convenient set of asymmetries which allows one to
extract them from measurement of the angular distri-
bution once sufficient statistics is accumulated. We
performed calculations of differential branching, po-
larization fractions of K∗ meson and asymmetries.
These asymmetries may have sensitivity to various
effects of the NP, although in order to see signatures
of these effects, the resonance contribution should be
accurately evaluated.
Contribution from intermediate vector resonances
in the process B̄0
d → K̄∗0 (→ K− π+)V with
V = ρ(770), ω(782), φ(1020), J/ψ, ψ(2S) decaying
into the e+e− pair has been taken into account. Dif-
ferent aspects of treatment of this LD contribution
have been studied.
The important aspect is the choice of the VMD
model, describing the V γ∗ transition. We used two
variants of the VMD model, called here VMD1 and
VMD2 versions. Based on comparison of calculation
for the differential branching ratio, longitudinal po-
larization fraction and forward-backward asymmetry
with the data from Belle and CDF, we can conclude
that the VMD2 version is somewhat more preferable.
For the vertex B̄0
d → K̄∗0 V we used an off-mass-
shell extension of the helicity amplitudes describing
production of on-shell vector mesons. For the latter
the experimental information is used if available, and
otherwise theoretical predictions.
All asymmetries are calculated and the resonance
contributions are studied. The coefficient A(2)
T take
sizable value at large mee, while in the wide region
of invariant masses this observable is small. Ac-
count of resonances changes this asymmetry, mainly
in the vicinity of the resonance positions, i.e. at
mee ≈ mV . In general, this observable is important
in view of its sensitivity to the chiral-odd dipole tran-
sition bL → sR + γR and thereby to the effects of the
NP which are related to the right-handed currents.
Calculations performed in the present work may
be useful for experiments aiming at search of effects
of the NP in the decay B̄0
d → K̄∗0 (→ K− π+) �+ �−.
References
1. M. Antonelli et al. Flavor Physics in the Quark
Sector // Phys. Rep. 2010, v. 494, p. 197-414.
2. P. Ball and R. Zwicky. Bd,s → ρ, ω,K∗, φ Decay
Form Factors from Light-Cone Sum Rules Revis-
ited // Phys. Rev. 2005, v. D71, 014029, 26 p.
3. A.Yu. Korchin and V.A. Kovalchuk. Contribu-
tion of low-lying vector resonances to polarization
observables in B̄0
d → K̄∗0 e+ e− decay // Phys.
Rev. 2010, v. D82, 034013, 12 p.
4. N. Cabibbo. Unitary symmetry and leptonic de-
cays // Phys. Rev. Lett. 1963, v. 10, p. 531-533.
5. M. Kobayashi and T. Maskawa. CP-violation in
the renormalizable theory of weak interaction //
Prog. Theor. Phys. 1973, v. 49, p. 652-657.
6. R.P. Feynman. Photon-hadron interactions. Rea-
ding, Massachusets: W.A. Benjamin, Inc., 1972,
282 p.
7. K. Nakamura et al. Review of particle physics //
J. Phys. G. 2010, v. 37, 075021, 1422 p.
8. C.H. Chen. Polarizations of two vector mesons
in B decays // arXiv : 0601019v2[hep-ph]. 2006,
13 p.
9. W. Altmannshofer, P. Ball, A. Bharucha et al.
Symmetries and Asymmetries of B → K∗μ+μ−
Decays in the Standard Model and Beyond // J.
High Energy Phys. 2009, v. 01, 019, 58 p.
10. J.-T. Wei et al. Measurement of the Differen-
tial Branching Fraction and Forward-Backword
Asymmetry for B → K(∗)l+l−// Phys. Rev. Lett.
2009, v. 103, 171801, 7 p.
11. T. Aaltonen et al. Observation of the Bary-
onic Flavor-Changing Neutral Current Decay
Λ0
b → Λμ+μ− // arXiv : 1107.3753v1[hep-ex].
2011, 7 p.
12. T. Aaltonen et al. Measurements of the Angular
Distributions in the Decays B → K(∗)μ+μ− at
CDF // arXiv : 1108.0695v1[hep-ex]. 2011, 7 p.
169
������� �
�������
�� �
�������� � �
� �� B → K∗ l+ l−�
�
�������
��
���� ��
�� ������ ����
����� ��� �
���� �����
���� ���
�����
���� �
�
�� ��
������� �� ���
����
����� ���� �� ����
���
�
� ����
�
����
����
� B̄0
d → K̄∗0 (→ K− π+) e+ e−�
��
���
�������� ����
� ���� ������ ���������� �
����� �������
����� �������� �� ����
�����
������
���� �� �
�� �� �
������� B̄0
d → K̄∗0 (→ K− π+)V � �
������������ �����
����
���
������� V = ρ(770)� ω(782)� φ(1020)� J/ψ, ψ(2S), . . . �
����
�������� �� e+e− ��
�� ���� �������
�� ��
��� ��
� � �����
���
������������
� ��
�!�
� V γ� "������� ���� ��
��������
����
��
� � �
�
� ���� �� �
������ K̄∗0 ������� ����
����� �������
�� A
(2)
T � �������
�� #���
�
����
$
�
���������� �
������ %&%&' � ()*� � ����� ���� ���� �
�
��������
� +����
������� ,-(. �
% ��/
���
������ ��������� �
������� � ���� �� B → K∗ l+ l−� �
�����
���
���� ��
��
������� ���� ���
�� ��� �
���� �����
���� ���
�����
���� �
�
�� ��
0�� 1
���� ������
���
���1���� �������
����
1
1
����
����
� B̄0
d → K̄∗0 (→ K− π+) e+ e−� 1�
��������� ����
� ���� ��
����� ���� ��1��2 �
����� ����������� ����� �� ���
������
��� �
1
�� �
1� �1
�
����1� B̄0
d → K̄∗0 (→ K− π+)V � �
��1����� �����
����
���������� V = ρ(770)�
ω(782)� φ(1020)� J/ψ, ψ(2S), . . . � ��1
����
������ �� e+e− ��
�� 3���
�����1
�1 ��
�14 ��
� 1 �����
��4
��1��������1
� ��
�!�
� V γ� 31
����� ����1
�1���
����
�� ������ ����
������4 �� �
����14
K̄∗0 ������� ����
���� ������
1� A
(2)
T �� ������
1� #���
�
����
$ ��
1�������� �
����� %&%&' ��
()*� � ����� �������1 ��
�
/������
� �����
�����1� ,-(. �� % ��/
���
567
|