On regular geons in general relativity
We present the exact regular solution of vacuum Einstein equations, which may be interpreted as "mass without mass'' (geon – in terminology of J.A. Wheeler), moving along a straight line with constant velocity. The feature of this classical object, localized in three-dimensional space...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Odessa National University
2012
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/107062 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On regular geons in general relativity / V.P. Olyeynik // Вопросы атомной науки и техники. — 2012. — № 1. — С. 171-172. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-107062 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1070622016-10-13T03:02:16Z On regular geons in general relativity Olyeynik, V.P. Section C. Theory of Elementary Particles. Cosmology We present the exact regular solution of vacuum Einstein equations, which may be interpreted as "mass without mass'' (geon – in terminology of J.A. Wheeler), moving along a straight line with constant velocity. The feature of this classical object, localized in three-dimensional space, is that its scalar invariant constructed of two Riemann curvature tensors does not impose any restrictions on the velocity of the object. Представлено точное регулярное решение вакуумных уравнений Эйнштейна, которое можно интерпретировать как «массу без массы» (геон – по терминологии Дж.А. Уилера), движущуюся вдоль прямой с постоянной скоростью. Особенностью этого классического объекта, локализованного в трехмерном пространстве, является то, что его скалярный инвариант, составленный из двух тензоров Римана, не содержит каких-либо ограничений на скорость объекта. Представлено точне регулярне розв'язання вакуумних рівнянь Ейнштейна, яке можна інтерпретувати як «масу без маси» (геон – по термінології Дж.А. Уілера), що рухається вздовж прямої з постійною швидкістю. Особливістю цього класичного об'єкта, локалізованого у тривимірному просторі, є те, що його скалярний інваріант, складений з двох тензорів Рімана, не містить будь-яких обмежень на швидкість об'єкта. 2012 Article On regular geons in general relativity / V.P. Olyeynik // Вопросы атомной науки и техники. — 2012. — № 1. — С. 171-172. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 04.20.Ib, 11.27.+d http://dspace.nbuv.gov.ua/handle/123456789/107062 en Вопросы атомной науки и техники Odessa National University |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Section C. Theory of Elementary Particles. Cosmology Section C. Theory of Elementary Particles. Cosmology |
spellingShingle |
Section C. Theory of Elementary Particles. Cosmology Section C. Theory of Elementary Particles. Cosmology Olyeynik, V.P. On regular geons in general relativity Вопросы атомной науки и техники |
description |
We present the exact regular solution of vacuum Einstein equations, which may be interpreted as "mass without mass'' (geon – in terminology of J.A. Wheeler), moving along a straight line with constant velocity. The feature of this classical object, localized in three-dimensional space, is that its scalar invariant constructed of two Riemann curvature tensors does not impose any restrictions on the velocity of the object. |
format |
Article |
author |
Olyeynik, V.P. |
author_facet |
Olyeynik, V.P. |
author_sort |
Olyeynik, V.P. |
title |
On regular geons in general relativity |
title_short |
On regular geons in general relativity |
title_full |
On regular geons in general relativity |
title_fullStr |
On regular geons in general relativity |
title_full_unstemmed |
On regular geons in general relativity |
title_sort |
on regular geons in general relativity |
publisher |
Odessa National University |
publishDate |
2012 |
topic_facet |
Section C. Theory of Elementary Particles. Cosmology |
url |
http://dspace.nbuv.gov.ua/handle/123456789/107062 |
citation_txt |
On regular geons in general relativity / V.P. Olyeynik // Вопросы атомной науки и техники. — 2012. — № 1. — С. 171-172. — Бібліогр.: 7 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT olyeynikvp onregulargeonsingeneralrelativity |
first_indexed |
2025-07-07T19:26:42Z |
last_indexed |
2025-07-07T19:26:42Z |
_version_ |
1837017494006530048 |
fulltext |
ON REGULAR GEONS IN GENERAL RELATIVITY
V.P. Olyeynik ∗
Odessa National University, 65026, Odessa, Ukraine
(Received November 1, 2011)
We present the exact regular solution of vacuum Einstein equations, which may be interpreted as “mass without
mass” (geon – in terminology of J.A. Wheeler), moving along a straight line with constant velocity. The feature
of this classical object, localized in three-dimensional space, is that its scalar invariant constructed of two Riemann
curvature tensors does not impose any restrictions on the velocity of the object.
PACS: 04.20.Ib, 11.27.+d
1. INTRODUCTION
Wheeler [1] was the first who suggested, that vac-
uum Einstein equations allow the existence of regu-
lar, localized in curved space-time classical objects –
geons, such that the distant observer sees the curva-
ture concentrated in the central region with persisting
large-scale structure. However, various attempts to
construct such objects as static or stationary curved
space-time, possibly coupled to other zero-mass fields
such as massless neutrinos or the electromagnetic
field [2, 3], so far not been successful. In particu-
lar, these geons are however believed to be unstable,
owing to the tendency of massless fields either to dis-
perse to infinity or to collapse into a black hole [4].
In 1985, Sorkin [5] generalized Wheeler’s geon into
a topological geon by allowing that its central re-
gion may have complicated topology. This geon has a
regular Euclidean-signature section, but the topolog-
ically nontrivial central region may evolve into black
hole [6]. So, recent researches in this area are study-
ing the properties of families of geon-like black holes
in D ≥ 4 space-time dimensions [7].
2. THE REGULAR VAQUUM GEON
All the above mentioned objects, described by non-
linear differential equations, are static. This means
that there exists a system of reference, in which parts
of the structure under consideration are in rest rel-
ative to each other. It is interesting to consider the
localized nonlinear object, in which separate parts
move relative to one another. In the simplest case it
can be assumed, that a three-region of a curved four-
dimensional space-time is moving relative to another
with a constant 3-velocity �υ (υ, 0, 0)
In such a space-time the spatial direction x as well
as the plane (yz), perpendicular to it, are selected, so
the space-time metric can be chosen in the form:
ds2 = uc2dt2−fdx2−χ (
dy2 + dz2
)
+2ψcdtdx, (1)
where u, f, χ, ψ are functions of the parameter:
ξ =
√
(x− υt)2 + y2 + z2.
Determinant of this metric tensor is
g = −(uf + ψ2)χ2. (2)
Vacuum Einstein equations:
Rik = 0 (3)
have the following exact solution:
u = (1 − υ
c
a4)2
a2
3
a2
(a1 − ξ)2
(a1 + ξ)2
− υ2
c2
a2
ξ4
(a1 + ξ)4,
f = −a2
4
a2
3
a2
(a1 − ξ)2
(a1 + ξ)2
+
a2
ξ4
(a1 + ξ)4,
χ =
a2
(a1ξ)
4 (a1 + ξ)4, (4)
ψ =
(
1 − υ
c
a4
)
a4
a2
3
a2
(a1 − ξ)2
(a1 + ξ)2
+
υ
c
a2
ξ4
(a1 + ξ)4,
where a1, . . . , a4 are the integration constants.
The scalar invariant, composed of two curvature
tensors, for this space-time has the form:
I =
1
48
RiklmR
iklm =
(
2ξ3
a1a2
)2 (
1 +
ξ
a1
)−12
. (5)
In contrast to the Schwarzschild solution, for which
this invariant is of the form:
ISchw =
( rg
2r3
)2
, (6)
where r is the distance to the center of the object,
rg is Schwarzschild radius, the invariant (5) is regu-
lar everywhere in the space-time: it goes to zero as
r6, when the center of the geon is approached, and
behaves like r−6 on large distances from it.
∗E-mail address: olyeyvp@onu.edu.ua
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, N 1.
Series: Nuclear Physics Investigations (57), p. 171-172.
171
3. CONCLUSIONS
We obtain exact solution for vacuum Einstein equa-
tions, which is asymptotically flat and regular every-
where in the space-time. The scalar invariant (5) as
well as the determinant of the metric tensor (2) con-
tains the velocity of the geon only through the para-
meter ξ. The integration constant a4 is not included
in (2) and (5) at all. As is seen from (5), this invari-
ant does not include any limitations on the velocity
of the geon. The question of stability of this object
requires further study.
References
1. J.A. Wheeler. Geons // Phys. Rev. 1955, v. 97,
p. 511-536.
2. J.A. Wheeler. Geometrodynamics. New York:
Academic Press, 1962, 332 p.
3. D.R. Brill, J.B. Hartle. Method of the self-
consistent field in general relativity and its ap-
plication to the gravitational geon // Phys. Rev.
1964, v. B135, p. 271-278.
4. G. Gundlach. Critical phenomena in gravita-
tional collapse // Arxiv : gr-qc/0210101, 2003,
65 p.
5. R.D. Sorkin. Introduction to topological geons
// Topological properties and global structure
of space-time. Proceedings of the NATO Ad-
vanced Study Institute. Erice, Italy, May 12-
22, 1985, ed. P.G. Bergmann and V.De Sabbata.
New York: Plenum, 1986, p. 249-270.
6. D. Gannon. On the topology of space-like hyper-
surfaces, singularities, and black holes // Gen.
Rel. Grav. 1976, v. 7, p. 219-232.
7. J. Louko, R.B. Mann, D. Marolf. Geons with
spin and charge // Arxiv : gr-qc/0412012, 2005,
26 p.
� ��������
�����
� �
��� ������ ���������������
���� �����
�������� �
� ���
�� ��
� ��
�� ����
�� ������
�� ����
�
�� ��
����
�� ������� ���
� �
�������
�������� ��� ������ ��� ����� !
��
" �� �����
� �
�� #�$%$ &� ���'� �����(�)�� ��� � ������
� ������
�� ��������)$ *����
����) +��
� � ���������
� ��,����� ��� �����
�
� � �������
��
�������
����� �� ����� ��� ��� �
� ��� ��
�� �
�����
�� ������ �
�� �� ���� ��
����� -���
��
�
�������� ������ ��� �
��
���
��
� �������� ��,����$
��� ��������� ����� � ��������� ������ �����������
���� ������
�������� �
� ���
� ��
� ��
� ����.���
� ������
�� �/�
�
� 0�
����
�� ��� ���
� /
������������
�� ����� ��� ���� !
��
" �� ����/
� �
/1 #�$%$ &/ ���'� (� ����2���� ������ �����1 � ����/�
�)
�����/��)$ *��� ��/��) 3��
� � ����
�
� ��.2���� ��� /����
�
� � ������/�
��� �������/� 2 ��� (�
��
� ��� ��
�� /
���/�
�� �� ���
�� � ���� ��
���/� -/��
��
� �/����� ��������� ������
�
� �����
�/��� ��.2���$
456
|