On the hydrodynamics of polaron gas in the Bogolyubov reduced description method

On the basis of a generalization of the Chapman-Enskog method a new approach to derivation of hydrodynamic equations for weak density polaron gas has been elaborated taking into account the relaxation of temperature and velocity in the system. Non-locality of the collision integral of the used kinet...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автор: Sokolovsky, S.A.
Формат: Стаття
Мова:English
Опубліковано: Prydniprovs'k State Academy of Engineering and Architecture 2012
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/107113
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the hydrodynamics of polaron gas in the Bogolyubov reduced description method / S.A. Sokolovsky // Вопросы атомной науки и техники. — 2012. — № 1. — С. 217-220. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-107113
record_format dspace
spelling irk-123456789-1071132016-10-14T03:02:38Z On the hydrodynamics of polaron gas in the Bogolyubov reduced description method Sokolovsky, S.A. Section D. Theory of Irreversible Processes On the basis of a generalization of the Chapman-Enskog method a new approach to derivation of hydrodynamic equations for weak density polaron gas has been elaborated taking into account the relaxation of temperature and velocity in the system. Non-locality of the collision integral of the used kinetic equation was taken into account also. Both circumstances lead to some modification of the standard transport theory. На основе обобщения метода Чепмена-Энскога разработан новый подход к выводу уравнений гидродинамики для поляронного газа малой плотности с учетом релаксации скорости и температуры системы. Учтена также нелокальность интеграла столкновений используемого кинетического уравнения. Оба обстоятельства ведут к модификации стандартной теории переноса. На основі узагальнення метода Чепмена-Енскога розроблено новий підхід до виведення рівнянь гідродинаміки поляронного газу малої густини з урахуванням релаксації швидкості та температури. Також врахована нелокальність інтеграла зіткненнь кінетичного рівняння, що використовується. Обидві обставини ведуть до модифікації стандартної теорії переносу. 2012 Article On the hydrodynamics of polaron gas in the Bogolyubov reduced description method / S.A. Sokolovsky // Вопросы атомной науки и техники. — 2012. — № 1. — С. 217-220. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 72.10.Bg, 72.15.Eb, 72.15.Lh http://dspace.nbuv.gov.ua/handle/123456789/107113 en Вопросы атомной науки и техники Prydniprovs'k State Academy of Engineering and Architecture
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Section D. Theory of Irreversible Processes
Section D. Theory of Irreversible Processes
spellingShingle Section D. Theory of Irreversible Processes
Section D. Theory of Irreversible Processes
Sokolovsky, S.A.
On the hydrodynamics of polaron gas in the Bogolyubov reduced description method
Вопросы атомной науки и техники
description On the basis of a generalization of the Chapman-Enskog method a new approach to derivation of hydrodynamic equations for weak density polaron gas has been elaborated taking into account the relaxation of temperature and velocity in the system. Non-locality of the collision integral of the used kinetic equation was taken into account also. Both circumstances lead to some modification of the standard transport theory.
format Article
author Sokolovsky, S.A.
author_facet Sokolovsky, S.A.
author_sort Sokolovsky, S.A.
title On the hydrodynamics of polaron gas in the Bogolyubov reduced description method
title_short On the hydrodynamics of polaron gas in the Bogolyubov reduced description method
title_full On the hydrodynamics of polaron gas in the Bogolyubov reduced description method
title_fullStr On the hydrodynamics of polaron gas in the Bogolyubov reduced description method
title_full_unstemmed On the hydrodynamics of polaron gas in the Bogolyubov reduced description method
title_sort on the hydrodynamics of polaron gas in the bogolyubov reduced description method
publisher Prydniprovs'k State Academy of Engineering and Architecture
publishDate 2012
topic_facet Section D. Theory of Irreversible Processes
url http://dspace.nbuv.gov.ua/handle/123456789/107113
citation_txt On the hydrodynamics of polaron gas in the Bogolyubov reduced description method / S.A. Sokolovsky // Вопросы атомной науки и техники. — 2012. — № 1. — С. 217-220. — Бібліогр.: 4 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT sokolovskysa onthehydrodynamicsofpolarongasinthebogolyubovreduceddescriptionmethod
first_indexed 2025-07-07T19:30:45Z
last_indexed 2025-07-07T19:30:45Z
_version_ 1837017749043281920
fulltext ON THE HYDRODYNAMICS OF POLARON GAS IN THE BOGOLYUBOV REDUCED DESCRIPTION METHOD S.A. Sokolovsky ∗ Prydniprovs’k State Academy of Engineering and Architecture, Dnipropetrovs’k, Ukraine (Received November 6, 2011) On the basis of a generalization of the Chapman-Enskog method a new approach to derivation of hydrodynamic equations for weak density polaron gas has been elaborated taking into account the relaxation of temperature and velocity in the system. Non-locality of the collision integral of the used kinetic equation was taken into account also. Both circumstances lead to some modification of the standard transport theory. PACS: 72.10.Bg, 72.15.Eb, 72.15.Lh 1. INTRODUCTION In our paper [1] relaxation phenomena in spatially uniform low density polaron gas have been investi- gated. The consideration was conducted in standard model in which phonons form an ideal equilibrium gas with the temperature T0. Electron spin, phonon po- larization and zone structure of electron spectrum are neglected; energy of electron is chosen as εp = p2/2m. In [1] kinetic equation for strong non-uniform states of polaron (low density polaron gas) in weak electric field has been obtained too and has the form ∂fp(x, t) ∂t = −pn m ∂fp(x, t) ∂xn + eEn(x) ∂fp(x, t) ∂pn + +Ip(x, f(t)). (1) Here collision integral Ip(x, f) is given by the formula Ip(x, f) = 1 4π3h̄2 0∫ −∞ dτ ∫ d3kg2 k { nkfp−kh̄ ( x + k h̄τ 2m ) − (1 + nk)fp ( x − k h̄τ 2m )} × × cos τ h̄ (εp−kh̄ + h̄ωk − εp)+ + 1 4π3h̄2 0∫ −∞ dτ ∫ d3kg2 k { (1 + nk)fp+kh̄ ( x − k h̄τ 2m ) − nkfp ( x + k h̄τ 2m )} × × cos τ h̄ (εp + h̄ωk − εp+kh̄) , (2) where nk = (e h̄ωk T0 − 1)−1 is the Planck distribution for phonons, e is module of electron charge, h̄ωk is energy of a phonon. This result does not amply that gradients of the polaron distribution function fp(x, t) are small. In present paper on the basis of this ki- netic equation and with the help of a generalization of the Chapman-Enskog method transport phenomena in polaron gas are discussed. In contrast to the stan- dard theory we use kinetic equation with the collision integral which is expanded in a series in gradients of the polaron distribution function Ip(x, f) ≡ ∫ d3p′M(p, p′)fp′(x)+ + ∫ d3p′Mn(p, p′) ∂fp′(x) ∂xn + .... (3) Also we do not assume that the distribution function fp(x, t) in hydrodynamic states in zero order in gradi- ents approximation coincides with the local Maxwell distribution. 2. BASIC EQUATIONS Transport phenomena in the polaron gas are dis- cussed in the framework of its hydrodynamics. Ac- cording to the kinetic equation laws of conservation (variation) of the gas mass, energy and momentum have the form ∂σ ∂t = −∂πn ∂xn , ∗E-mail address: sersokol@list.ru PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, N 1. Series: Nuclear Physics Investigations (57), p. 217-220. 217 ∂ε ∂t = −∂qn(f) ∂xn − e m πnEn + R0(f), ∂πl ∂t = −∂tln(f) ∂xn − e m σEl + Rl(f) (4) where mass, energy and momentum densities are de- fined by the formulas σ = m ∫ d3p fp, πl = ∫ d3p plfp, ε = ∫ d3p εpfp. (5) Flux densities of energy qn(x, f), momentum tnl(x, f) and sources R0(x, f), Rl(x, f) are given by expres- sions: tln(x, f) = ∫ d3p pl ∂εp ∂pn fp(x), qn(x, f) = ∫ d3p εp ∂εp ∂pn fp(x); R0(x, f) = ∫ d3p εpIp(x, f), Rl(x, f) = ∫ d3p plIp(x, f). (6) Basic hydrodynamic parameters, temperature T (x, t), velocity ul(x, t) and number of particles den- sity n(x, t) of the system, are defined by usual formu- las ε = 3 2m σT + 1 2 σu2, πl = σul, σ = nm. (7) Equations (4) give hydrodynamic equations if their right sides are expressed through these variables ξμ(x, t) : ξ0(x, t) = T (x, t), ξl(x, t) = ul(x, t), ξ4(x, t) = n(x, t). This is possible if after some time τ0 the polaron distribution function has the structure fp(x, t)−−−−−→ t�τ0 fp(x, ξ(t)), (8) where fp(x, ξ) is a functional of the variables ξμ(x). This relation (called the functional hypothesis) is the basis of the Chapman-Enskog method which is a special case of the Bogolyubov reduced descrip- tion method (see, for example, [2]). Time τ0 in our consideration is assumed satisfying the condition τ0 � τT , τu where τT , τu are relaxation times of the temperature and velocity of the polaron gas. As a result, the hydrodynamic equations can be written as ∂ξμ(x, t) ∂t = Lμ(x, f(ξ(t))), (9) where Lμ(x, f) are some functionals of fp(x). For the distribution function fp(x, ξ) from the kinetic equa- tion (1) with (8) we obtain the equation ∑ μ ∫ d3x′ δfp(x, ξ) δξμ(x′) Lμ(x′, f(ξ)) = −pn m ∂fp(x, ξ) ∂xn + +eEn(x) ∂fp(x, ξ) ∂pn + Ip(x, f(ξ)). (10) Definitions (6) of the parameters ξμ(x) which describe state of the system give additional conditions to this equation∫ d3p fp(x, ξ)pl =mn(x)ul(x), ∫ d3p fp(x, ξ) = n(x), ∫ d3p fp(x, ξ)εp = 3 2 n(x)T (x) + 1 2 mn(x)u(x)2. (11) The solution of the equation (10) taking into ac- count conditions (11) we found in the form of a double series in the gradients of the parameters ξμ(x) (g is their small parameter) and small parameter ε defined by the estimations υl(x, t) ∼ ε, T (x, t) − T0 ∼ ε, El(x) ∼ ε; ∂υn(x, t) ∂xl ∼ gε, ∂T (x, t) ∂xl ∼ gε, ∂n ∂xl ∼ g, (12) which describes the proximity of the system to equi- librium (A(m) is contribution of the order gm to A, A(m,n) is contribution of the order gmεn to A). Zero order in gradients approximation f (0) p has been investigated in our paper [1]. It was established that the main contributions to this distribution func- tion have the form f(0)p = wo p + wo p{A(p)pnυn + C(p)pnEn+ +B(p)(T − T0)} + O(g0ε2); wo p(ξ) ≡ n (2πmT0)3/2 e− p2 2mT0 . (13) Functions A(p), B(p), C(p) satisfy the equations λuA(p)pn = ∫ d3p′ K(p, p′)A(p′)p′n, 〈εpA(p)〉 = 3/2; (14) λT B(p) = ∫ d3p′ K(p, p′)B(p′), 〈B(p)〉 = 0, 〈εpB(p)〉 = 3/2; (15) {μλuA(p) − e/mT0}pn = ∫ d3p′ K(p, p′)C(p′)p′n, 〈εpC(p)〉 = 0, (16) where the notation 〈g(p)〉 ≡ ∫ d3pwo pg(p) is introduced. In Eqs. (14)–(16) instead of the kernel M(p, p′) defined by the formula (3) the kernel K(p, p′) is used M(p, p′)wo p′ ≡ −wo pK(p, p′). (17) In standard approach (see, for example, [3, 4]) the distribution function f (0) p (x, ξ) is not calculated but assumed to be equal to the local Maxwell distribution wp(ξ(x)) where wp(ξ) ≡ n (2πmT )3/2 e− (p−mu)2 2mT . (18) 218 The main in ε contributions to the distribution func- tion of the first order in gradients f (1) p have the struc- ture f (1) p = wo p {D(p)pn + Qnl(p)ul + R(p)pn(T − T0)+ + Snl(p)El} ∂n ∂xn + wo p { Fnl(p) ∂un ∂xl + + G(p)pl ∂T ∂xl + Hnl(p) ∂El ∂xn } + O(gε2). (19) This expression describes dissipative processes in the system. Function D(p) gives the main contribution to f (1) p and functions G(p), Fnl(p) ≡ F1(p)δnl + F2(p)Δnl(p) (20) (Δnl(p) ≡ pnpl − 1 3p2δnl) allow to calculate viscosity and heat conductivity of the system. They satisfy the integral equations with additional conditions: {a A(p) + α(p) − 1 m }pn = ∫ d3p′K(p, p′)D(p′)p′n, 〈εpD(p)〉 = 0; (21) {λT G(p) − b1A(p) − 1 m B(p) + B1(p)}pn = = ∫ d3p′K(p, p′)G(p′)p′n, 〈εpG(p)〉 = 0; (22) A1(p) − a1B(p) − 1 3 A(p)p2 + 1 = = ∫ d3p′K(p, p′)F1(p′), 〈F1(p)〉 = 0, 〈εpF1(p)〉 = 0; (23) − 1 m A(p)Δnl(p) = = ∫ d3p′K(p, p′)F2(p′)Δnl(p′). (24) Here functions α(p), A1(p), B1(p) are defined by the formulas ∫ d3p′Mn(p, p′)wo p′ ≡ wo pα(p)pn, ∫ d3p′Mn(p, p′)wo p′A(p′) ≡ wo pA1(p)pn, ∫ d3p′Mn(p, p′)wo p′B(p′) ≡ wo pB1(p)pn (25) and are absent in the standard theory because they take into account non-locality of our collision inte- gral (see (1), (2)). Taking into account additional conditions for functions A(p), B(p) (see (14), (15), scalar values μ (mobility of the polaron in a steady state), a, a1, b1 in equations (16), (21)–(23) are ex- pressed through solutions of these equations. There- fore, these expressions are not needed for solution of integral equations (16), (21)–(23). Neglecting of the dissipative processes, time equa- tions for temperature and velocity can be written in the form ∂T ∂t = −λT (T − T0) + a1 ∂ul ∂xl + a2 ∂El ∂xl + +(a3ul + a4El) ∂n ∂xl + O(g0ε2, g1ε2), ∂ul ∂t = −λu(ul − μEl) + b1 ∂T ∂xl + b2(T − T0) ∂n ∂xl + +O(g0ε2, g1ε2), (26) where a1, ..., a4, b1, b2, μ are scalar values some of which can be calculated from equations (16), (21)– (23). The kernel K(p, p′) of the integral equations (14)–(16), (21)–(24) has important properties which can be expressed in the terms of the bilinear form {g(p), h(p)} = ∫ d3pd3p′wo pg(p)K(p, p′)h(p′), (27) that gives {g(p), h(p)} = {h(p), g(p)}, {g(p), g(p)} ≥ 0. (28) These formulas show that eigenvalues λT , λu of op- erator with the kernel K(p, p′) are positive. Ac- cording to (26) they describe relaxation phenomena in the system in the spatially homogeneous states (the above mentioned relaxation times τT = λ−1 T , τu = λ−1 u ). Expressions for energy and momentum fluxes tak- ing into account dissipative contributions have the form ql = n(c1ul + c2El) + c3 ∂n ∂xl − κ ∂T ∂xl + O(g0ε2, g1ε2), tnl = nTδnl − η ( ∂un ∂xl )s − ζδnl ∂um ∂xm + +d1 ( ∂En ∂xl )s + d2δnl ∂Em ∂xm + +d3 ( En ∂n ∂xl )s + d4δnlEm ∂n ∂xm + O(g0ε2, g1ε2), (29) where η, ζ are viscosities, κ is heat conductivity; c1, c2, c3, d1, d2, d3, d4 are some coefficients; (Anl) s ≡ Anl + Aln − 2 3 δnlAmm. 3. CONCLUSIONS On the basis of a generalization of the Chapman- Enskog method a new approach to derivation of hy- drodynamic equations for weak density polaron gas has been elaborated taking into account the relax- ation of temperature and velocity in the system. Non- locality of the collision integral of the used kinetic equation was taken into account also. Both circum- stances lead to some modification of the standard the- ory [3, 4]. Solution of the obtained integral equation 219 with the help of expansion in the Sonine polynomial series will be discussed in another paper (in spatially uniform states this was done in [1]). This work was supported by the State Foundation for Fundamental Research of Ukraine under project No. 25.2/102. References 1. S.A. Sokolovsky. Toward polaron kinetics in the Bogoliubov reduced description method // Theo- retical and Mathematical Physics. 2011, v. 168 (2), p. 1150-1164. 2. A.I. Akhiezer, S.V. Peletminsky. Methods of Sta- tistical Physics. Oxford: Pergamon Press, 1981, 368 p. 3. A.I. Akhiezer, V.F. Aleksin, and V.D. Khodusov. Gas dynamics of quasi-parlicles. I. General the- ory // Low Temperature Physics. 1994, v. 20 (12), p. 1199-1238. 4. E.M. Lifshitz, L.P. Pitaevskii. Physical Kinetics. Oxford: Pergamon Press, 1981, 452 p. � ��������� �� ��� ������� ���� � ��� ������ ����� ������� ���������� ���� ��������� �� ������ ���� �� � �� ��� ��������������� ������� �� ����� ������ � ������ ������� � � ���� � ��� � ��� ����������� ���� ����� ��� ��� � ��� �� �������� ������ ������ ��� � � ���� �� ��� �� � �������!��� ! � ������ � �������� � ����!������� � �� ������� ������� �� "�� ��� �� ��!� �� ���� � ��� # ��� � ����� ��� ��� ��������� �� ��������� ��� ��� ������� ���� � ���� ������ ���� ����� ���������� ���� ���������� �� �����$ ������!����� �� ��� ��������%������ ���������� ��� � �$��$� �� � ������� �$����! �$���� � ���$� ����������� ���� ����& ��� � � ����������� ��������$& '� ���� $ � ������ �� � (��� ��������� �������!�$� ! $� ������ �$ �����! �$�� ����� �$������) � � ��� � ���* !��� "� ��$ ��� � �� � ���� ! �� ��� #$���$& � ����� ��& ���$& ��������� ++,