Polarization features of acoustic spectra in uniaxial and biaxial nematic liquid crystals

The results of investigation of uniaxial and biaxial nematic liquid crystals dynamics with molecules of the various forms are presented. These condensed matters possess internal spatial anisotropy and for their adequate description introduction of additional dynamic quantities is necessary. They are...

Full description

Saved in:
Bibliographic Details
Date:2012
Main Authors: Kovalevsky, M.Y., Logvinova, L.V., Matskevych, V.T.
Format: Article
Language:English
Published: Belgorod State University 2012
Series:Вопросы атомной науки и техники
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/107114
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Polarization features of acoustic spectra in uniaxial and biaxial nematic liquid crystals / M.Y. Kovalevsky, L.V. Logvinova, V.T. Matskevych // Вопросы атомной науки и техники. — 2012. — № 1. — С. 221-224. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-107114
record_format dspace
spelling irk-123456789-1071142016-10-14T03:02:29Z Polarization features of acoustic spectra in uniaxial and biaxial nematic liquid crystals Kovalevsky, M.Y. Logvinova, L.V. Matskevych, V.T. Section D. Theory of Irreversible Processes The results of investigation of uniaxial and biaxial nematic liquid crystals dynamics with molecules of the various forms are presented. These condensed matters possess internal spatial anisotropy and for their adequate description introduction of additional dynamic quantities is necessary. They are vectors of spatial anisotropy and conformational degrees of freedom. Investigation of dynamics of the given condensed matters is based on Hamiltonian formalism in which framework the nonlinear dynamic equations for uniaxial and biaxial nematic liquid crystals are derived. Spectra of collective excitations are obtained and their polarization features are investigated. Представлены результаты исследования динамики одноосных и двухосных нематических жидких кристаллов с молекулами различной формы. Эти конденсированные среды обладают внутренней пространственной анизотропией, и для их адекватного описания необходимо введение дополнительных динамических переменных. Ими являются векторы пространственной анизотропии и конформационные степени свободы. Исследование динамики данных конденсированных сред базируется на гамильтоновом формализме, в рамках которого выведены нелинейные уравнения динамики для одноосных и двухосных нематических жидких кристаллов. Получены спектры коллективных возбуждений и исследованы их поляризационные особенности. Представлено результати досліджень динаміки одновісних та двовісних нематичних рідких кристалів з молекулами різної форми. Ці конденсовані середовища мають внутрішню просторову анізотропію, тож для їх адекватного опису необхідно введення додаткових динамічних змінних. Ними є вектори просторової анізотропії та конформаційні ступені свободи. Дослідження динаміки даних конденсованих середовищ базується на гамільтоновому формалізмі, у рамках якого виведені нелінійні рівняння динаміки для одновісних та двовісних нематичних рідких кристалів. Отримано спектри колективних збуджень та досліджено їх поляризаційні особливості. 2012 Article Polarization features of acoustic spectra in uniaxial and biaxial nematic liquid crystals / M.Y. Kovalevsky, L.V. Logvinova, V.T. Matskevych // Вопросы атомной науки и техники. — 2012. — № 1. — С. 221-224. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 61.30Cz, 83.10.Bb http://dspace.nbuv.gov.ua/handle/123456789/107114 en Вопросы атомной науки и техники Belgorod State University
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Section D. Theory of Irreversible Processes
Section D. Theory of Irreversible Processes
spellingShingle Section D. Theory of Irreversible Processes
Section D. Theory of Irreversible Processes
Kovalevsky, M.Y.
Logvinova, L.V.
Matskevych, V.T.
Polarization features of acoustic spectra in uniaxial and biaxial nematic liquid crystals
Вопросы атомной науки и техники
description The results of investigation of uniaxial and biaxial nematic liquid crystals dynamics with molecules of the various forms are presented. These condensed matters possess internal spatial anisotropy and for their adequate description introduction of additional dynamic quantities is necessary. They are vectors of spatial anisotropy and conformational degrees of freedom. Investigation of dynamics of the given condensed matters is based on Hamiltonian formalism in which framework the nonlinear dynamic equations for uniaxial and biaxial nematic liquid crystals are derived. Spectra of collective excitations are obtained and their polarization features are investigated.
format Article
author Kovalevsky, M.Y.
Logvinova, L.V.
Matskevych, V.T.
author_facet Kovalevsky, M.Y.
Logvinova, L.V.
Matskevych, V.T.
author_sort Kovalevsky, M.Y.
title Polarization features of acoustic spectra in uniaxial and biaxial nematic liquid crystals
title_short Polarization features of acoustic spectra in uniaxial and biaxial nematic liquid crystals
title_full Polarization features of acoustic spectra in uniaxial and biaxial nematic liquid crystals
title_fullStr Polarization features of acoustic spectra in uniaxial and biaxial nematic liquid crystals
title_full_unstemmed Polarization features of acoustic spectra in uniaxial and biaxial nematic liquid crystals
title_sort polarization features of acoustic spectra in uniaxial and biaxial nematic liquid crystals
publisher Belgorod State University
publishDate 2012
topic_facet Section D. Theory of Irreversible Processes
url http://dspace.nbuv.gov.ua/handle/123456789/107114
citation_txt Polarization features of acoustic spectra in uniaxial and biaxial nematic liquid crystals / M.Y. Kovalevsky, L.V. Logvinova, V.T. Matskevych // Вопросы атомной науки и техники. — 2012. — № 1. — С. 221-224. — Бібліогр.: 6 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kovalevskymy polarizationfeaturesofacousticspectrainuniaxialandbiaxialnematicliquidcrystals
AT logvinovalv polarizationfeaturesofacousticspectrainuniaxialandbiaxialnematicliquidcrystals
AT matskevychvt polarizationfeaturesofacousticspectrainuniaxialandbiaxialnematicliquidcrystals
first_indexed 2025-07-07T19:30:50Z
last_indexed 2025-07-07T19:30:50Z
_version_ 1837017754399408128
fulltext POLARIZATION FEATURES OF ACOUSTIC SPECTRA IN UNIAXIAL AND BIAXIAL NEMATIC LIQUID CRYSTALS M.Y. Kovalevsky 1,2, L.V. Logvinova 1, V.T. Matskevych 2∗ 1Belgorod State University, Belgorod, Russia 2National Science Center “Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine (Received October 30, 2011) The results of investigation of uniaxial and biaxial nematic liquid crystals dynamics with molecules of the various forms are presented. These condensed matters possess internal spatial anisotropy and for their adequate description introduction of additional dynamic quantities is necessary. They are vectors of spatial anisotropy and conformational degrees of freedom. Investigation of dynamics of the given condensed matters is based on Hamiltonian formalism in which framework the nonlinear dynamic equations for uniaxial and biaxial nematic liquid crystals are derived. Spectra of collective excitations are obtained and their polarization features are investigated. PACS: 61.30Cz, 83.10.Bb 1. INTRODUCTION Nematic liquid crystals are orientationally or- dered anisotropic liquids with spontaneously broken symmetry to rotations in configuration space. Be- sides, they possess the internal molecular structure capable to be deformed in the process of evolution, which also must be considered at the macroscopic level. Hence, for the description of dynamics of such condensed matters introduction of the addi- tional variables connected both with broken symme- try and with the form and the size of molecules is necessary. In the given work features of dynamics of uni- axial and biaxial nematic liquid crystals taking into account internal structure are considered, and possi- bility of distribution of collective excitations and their polarization structure is studied. 2. FEATURES OF DYNAMICS AND POLARIZATION STRUCTURE OF ACOUSTIC SPECTRA OF UNIAXIAL NEMATIC LIQUID CRYSTALS 2.1. Nematics with rod-like molecules For uniaxial nematics along with usual dynamic vari- ables - densities of mass ρ, momentum πi and en- tropy σ, the additional parameter - unit vector of spatial anisotropy (director) n (x) is introduced [1]. Using Hamiltonian approach of [2, 3] we obtain dy- namic equations of uniaxial nematic with rod-like molecules [4]: ρ̇ = −∇iπi, π̇i = −∇ktik, σ̇ = −∇k (σvk) , l̇ = −vs (x)∇sl(x) + l (x) ni (x)nj (x)∇jvi(x), ṅj = −vs∇snj + δ⊥ij (n) nk∇kvi. (1) Momentum flux density looks like tik = Pδik + ∂ε ∂πk πi + ∂ε ∂∇knl ∇inl + ∂ε ∂l ninkl +nkδ⊥il (n) ( ∂ε ∂nl −∇j ∂ε ∂∇jnl ) . (2) Here P ≡ −ε + δH δζ a ζ a + ∂ε ∂∇lni ∇lni is pressure, vi ≡ πk/ρ is macroscopic velocity, δ⊥ik (n) = δik − nink, ε is energy density, l is length of a molecule. Linearization of (1) near equilibrium state leads to the system of linear and homogeneous equations Dij (k, ω) δvj (k, ω) = 0, (3) which have a nontrivial solution for the vanishing of the determinant detDij = ω6 + ω4I4 + ω2I2 = 0, (4) where ω is frequency, k is wave vector and I4 (k) = −k2c2 − c2λ (kn)2 ≤ 0, I2 (k) = c4λ ( k2 − (kn)2 ) (kn)2 ≥ 0. (5) Here λ ≡ l2 ρc2 ∂2ε ∂l2 > 0 and c is sound velocity in usual liquid. From (4) it is clear, that in unixial nematic with rod-like molecules the propagation of two acoustic oscillation modes ω2± (k) = c2± (k) k2 is possible corresponding to the first and second sound. The solution with a sigh (+) corresponds to the first sound analogous to that in usual liquid. The so- lution with a sigh (-) is new branch of excitations caused by conformational degree of freedom - rod-like molecule length. In spherical system of coordinates ∗Corresponding author E-mail address: matskevych@mail.ru PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, N 1. Series: Nuclear Physics Investigations (57), p. 221-224. 221 kn = k cos θ, where θ is polar angle, hence, velocities c± look like [2]: c± (θ) = c√ 2 [ 1 + λ cos2 θ (6) ± [( 1 + λ cos2 θ )2 − λ sin2 2θ ]1/2 ]1/2 . Calculated angular values of extremum points (θ = π/4) for sound velocity c− coincide with experimental data [5, 6]. Let’s consider solutions of (3) corresponding to modes ω = kc±. Expression for δv (±) j (k) we are looking for in the form of decomposition on three or- thogonal vectors: δv (±) j (k) = kjδv (±) || (k) + [k × n]jδv (±) 1⊥ (k) + + [[k×n]×k]j k δv (±) 2⊥ (k) . From (3) we find, that δv (±) 1⊥ (k) = 0. Then δv (±) j (k) = kjδv (±) || (k) + [[k × n] × k]j k δv (±) 2⊥ (k) . Hence, solutions corresponding to the first and sec- ond sounds are superposition of longitudinal and transversal components and the relation of these am- plitudes has the form: δv (±) 2⊥ δv (±) || = −k5 ( c2 ± − c2 ) + λc2kk4 || λc2k3 ||k 2 ⊥ ≡ f± (θ) . (7) Using (6) we rewrite (7) in terms of polar angle: f± (θ) = 1 + λ cos2 θ cos 2θ λ sin 2θ sin θ cos2 θ ∓ ∓ √ (1 + λ cos2 θ)2 − λ sin2 2θ λ sin 2θ sin θ cos2 θ . At λ << 1 the relation of amplitudes for the first sound f+ (θ) becomes simpler: f+ (θ) = −λ cos5 θ 4 sin2 θ . We can conclude, that at θ → 0 function f+ (θ) → ∞, hence, at such values of polar angle sound is transver- sal. At θ → π/2 function f+ (θ) → 0, hence, at such values of polar angle sound is longitudinal. For the second sound the relation of amplitudes f− (θ) looks like f− (θ) = 1 − λ sin2 θ cos 2θ λ cos θ sin4 θ . (8) We can conclude, that at θ → 0 and θ → π/2 func- tion f− (θ) → ∞, hence, at such values of polar angle sound is transversal. 2.2. Nematics with disc-like molecules The direction of orientation of such liquid crystals is defined by unit vector of a normal to molecule plane. Studying of dynamic behavior of uniaxial nematic with disc-like molecules we will carry out similar to earlier considered case of uniaxial nematic with rod- like molecules. Dynamic equations of uniaxial ne- matic with disc-like molecules are as follows [4]: ρ̇ = −∇iπi, π̇i = −∇ktik, σ̇ = −∇k (σvk) , ḋ = −vs∇sd − dδ⊥lk (n)∇kvl, (9) ṅj = −vs∇snj − niδ ⊥ jλ (n)∇λvi, tik = Pδik + ∂ε ∂πk πi + ∂ε ∂∇knl ∇inl + ∂ε ∂ddδ⊥lk (n)+ +nkδ⊥il (n) ( ∂ε ∂nl −∇j ∂ε ∂∇jnl ) . Here d is molecule diameter. Dispersion equation has the form (4), where coefficients Ia, a = 2.4 are as fol- lows: I4 (k) = −k2c2 − c2λ ( k2 − (kn)2 ) < 0, I2 (k) = c4λ ( k2 − (kn)2 ) (kn)2 > 0, (10) where λ = d2 ρc2 ∂2ε ∂d2 > 0. From here we come to acoustic spectra ω2 ± (k) = c2 ± (k) k2. In this case also two anisotropic velocities of acoustic waves exist [2]: c± (θ) = c√ 2 [ 1 + λ sin2 θ ± ± [( 1 + λ sin2 θ )2 − λ sin2 2θ ]1/2 ]1/2 . (11) Polarization structure of the received spectra of collective excitations looks like δv (±) j (k) = kjδv (±) || + [[k × n] × k]j k δv (±) 2⊥ , and relation of amplitudes has the form δv (±) 2⊥ (k) δv (±) || (k) = −k5 ( c2 ± − c2 ) + λc2kk4 ⊥ λc2k||k4 ⊥ ≡ g± (θ) . (12) Using (11) we rewrite (12) in terms of polar angle: g± (θ) = 1 λ sin 2θ sin3 θ ( 1 − λ sin2 θ cos 2θ )∓ ∓ √( 1 + λ sin2 θ )2 − λ sin2 2θ λ sin 2θ sin3 θ . At λ << 1 the relation of amplitudes for the first sound g+ (θ) becomes simpler: g+ (θ) = −λ sin4 θ 4 cos θ . We can conclude, that at θ → 0 function g+ (θ) → 0, hence, in this case sound is longitudinal. At θ → π/2 function g+ (θ) → ∞, hence, in this case sound is transversal. At λ << 1 expression for c− does not depend on molecule form, so the relation (8) is iden- tical for uniaxial nematics with rod-like and disc-like molecules. 222 3. FEATURES OF DYNAMICS AND POLARIZATION STRUCTURE OF ACOUSTIC SPECTRA OF BIAXIAL NEMATIC LIQUID CRYSTAL 3.1. Nematics with ellipsoidal molecules In the case of biaxial nematic with ellipsoidal mole- cules the set of thermodynamic variables contains additionally two unit and orthogonal vectors of spa- tial anisotropy n (x),m (x) and three conformational parameters u (x) , v (x) , p (x) describing sizes of long and short molecule axes and an angle between them. Acting further similarly to previously considered case of uniaxial nematics, we obtain dynamic equations of biaxial nematic with ellipsoidal molecules [4]: ρ̇ = −∇iπi, π̇i = −∇ktik, σ̇ = −∇k (σvk) , ṅj (x) = −vs (x)∇snj (x) − Fiλj (x)∇λvi (x) , ṁj (x) = −vs (x)∇smj (x) − Giλj (x)∇λvi (x) , u̇ (x) = −vi (x)∇iu (x) − Fij (x)∇jvi (x) , v̇ (x) = −vi (x)∇iv (x) − Gij (x)∇jvi (x) , ṗ (x) = −vs (x)∇sp (x) − Hij (x)∇ivj (x) , (13) tik = Pδik + ∂ε ∂πk πi + ∂ε ∂∇knl ∇inl + ∂ε ∂∇kml ∇iml+ + ∂ε ∂uFik + ∂ε ∂v Gik + ∂ε ∂pHik+ +Fikl ( ∂ε ∂nl −∇j ∂ε ∂∇jnl ) + Gikl ( ∂ε ∂ml −∇j ∂ε ∂∇jml ) , where P ≡ −ε + δH δζ a ζ a + ∂ε ∂∇lni ∇lni + ∂ε ∂∇lmi ∇lmi is pressure, Fij , Gij , Hij and Fijk, Gijk , Hijk are some functions of n (x),m (x) and u (x) , v (x) , p (x). Lin- earization of (13) near equilibrium state leads to the system of linear and homogeneous equations δvj (k, ω) Dij (k, ω) = 0. (14) Condition for the existence of a nontrivial solution of (14) is the vanishing of the determinant det D̂ = ω6 + ω4I4 + ω2I2 + I0 = 0, where coefficients Ia, a = 0, 2, 4 are some functions of k,F,G,H and F,G,H are some functions of n (x),m (x),k and parameters λα, α = 1, 2, 3: λ1 ≡ u2 ρc2 ∂2ε ∂u2 > 0, λ2 ≡ v2 ρc2 ∂2ε ∂v2 > 0, λ3 ≡ p2 ρc2 ∂2ε ∂p2 > 0. As a result we come to bicubic dispersion equation ω6 + I4 (k, θ, ϕ)ω4 + I2 (k, θ, ϕ)ω2 + I0 (k, θ, ϕ) = 0. (15) From (15) it is clear, that in biaxial nematic with ellipsoidal molecules in general case propaga- tion of three acoustic oscillation modes ω2 1,2,3 (k) = c2 1,2,3 (k) k2 is possible corresponding to the first, sec- ond and third sounds. Detailed analysis of the ob- tained spectra is given in [4]. Let’s consider solutions of (14) corresponding to modes ω2 1,2,3 ≡ c2 1,2,3 (θ, ϕ) k2. Expression for δv (1,2,3) j (k) we are looking for in the form of decom- position on three orthogonal vectors: δv (1,2,3) j (k)= kjδv (1,2,3) || (k) + [k × l]jδv (1,2,3) 1⊥ (k)+ + [[k×l]×k]j k δv (1,2,3,) 2⊥ (k) . From (14) we find that these solutions are su- perposition of one longitudinal and two transver- sal components. It can be shown, that at θ → 0 sounds are cross-polarized with components δv (1,2,3) 1⊥ (k) , δv (1,2,3,) 2⊥ (k); at θ → π/2 sounds are cross-polarized with component δv (1,2,3,) 2⊥ (k). 3.2. Nematics with discoidal molecules Dynamic equations of biaxial nematic with discoidal molecules are as follows [4]: ρ̇ = −∇iπi, π̇i = −∇ktik, σ̇ = −∇k (σvk) , ṅj (x) = −vs (x)∇snj (x) − fiλj (x)∇λvi (x) , ṁj (x) = −vs (x)∇smj (x) − giλj (x)∇λvi (x) , q̇ (x) = −vi (x)∇iq (x) − fij (x)∇jvi (x) , ṫ (x) = −vi (x)∇it (x) − gij (x)∇jvi (x) , ṗ (x) = −vs (x)∇sp (x) − hij (x)∇ivj (x) , (16) tik = Pδik + ∂ε ∂πk πi + ∂ε ∂∇knλ ∇inλ + ∂ε ∂∇kmλ ∇imλ + ∂ε ∂qfik + ∂ε ∂t gik + ∂ε ∂phik + fikλ ( ∂ε ∂nλ −∇j ∂ε ∂∇jnλ ) +gikλ ( ∂ε ∂mλ −∇j ∂ε ∂∇jmλ ) . Here n (x),m (x) are unit and orthogonal vectors of spatial anisotropy, q (x) , t (x) , p (x) are conforma- tional parameters describing sizes of long and short molecule axes and an angle between them, fij , gij , hij and fijk, gijk, hijk are some functions of n (x),m (x) and q (x) , t (x) , p (x). Linearization of (16) near equilibrium state leads to the system of linear and homogeneous equations δvj (k, ω)Dij (k, ω) = 0. (17) Condition for the existence of a nontrivial solution of (17) is the vanishing of the determinant det D̂ = ω6 + ω4I4 + ω2I2 + I0 = 0, where coefficients Ia, a = 0, 2, 4 are some functions of k,f ,g,h and f ,g,h are some functions of n (x),m (x),k and parameters λα, α = 1, 2, 3: λ1 ≡ q2 ρc2 ∂2ε ∂q2 > 0, λ2 ≡ t2 ρc2 ∂2ε ∂t2 > 0, λ3 ≡ p2 ρc2 ∂2ε ∂p2 > 0. As a result we come to bicubic dispersion equation ω6 + I4 (k, θ, ϕ)ω4 + I2 (k, θ, ϕ)ω2 + I0 (k, θ, ϕ) = 0. (18) From (18) it is clear, that in biaxial nematic with dis- coidal molecules in general case propagation of three acoustic oscillation modes ω2 1,2,3 (k) = c2 1,2,3 (k) k2 also is possible corresponding to the first, second and third sounds. Detailed analysis of the obtained spec- tra is given in [4]. 223 Let’s consider solutions of (17) corresponding to modesω2 1,2,3 ≡ c2 1,2,3 (θ, ϕ) k2. Expression for δv (1,2,3) j (k) we are looking for in the form of decom- position on three orthogonal vectors: δv (1,2,3) j (k) = kjδv (1,2,3) || (k) + [k × l]jδv (1,2,3) 1⊥ (k) + [[k×l]×k]j k δv (1,2,3,) 2⊥ (k) . From (17) we find that like in the previous case of biaxial nematic with ellipsoidal molecules these solu- tions are superposition of one longitudinal and two transversal components. It can be shown, that at θ → 0 sounds are cross-polarized with components δv (1,2,3) 1⊥ (k) , δv (1,2,3,) 2⊥ (k); at θ → π/2 sounds are cross-polarized with component δv (1,2,3,) 2⊥ (k). 4. CONCLUSIONS On the basis of Hamiltonian approach the dynamic theory of uniaxial and biaxial nematic liquid crystals with molecules of different geometry is constructed. For all types of liquid crystals nonlinear dynamic equations are derived, acoustic spectra of collective excitations are received and their polarization struc- ture is studied. It is shown that in the case of uni- axial nematics the first sound is mostly longitudinal and the second one is mostly transversal; for biaxial nematics the first, second and third sounds mostly possess transversal polarization. References 1. P.G. De Gennes, J. Prost. The Physics of Liq- uid Crystals. Oxford University Press, 1995, 597 p. 2. A.P. Ivashin, M.Y. Kovalevsky, L.V. Logvinova // Int. J. Quantum Chemistry. 2004, v. 96, p. 636-644. 3. A.P. Ivashin, M.Y. Kovalevsky, L.V. Logvinova // Theor. Math. Phys. 2004, v. 140, N 3, p. 1316- 1327. 4. M.Y. Kovalevsky, L.V. Logvinova, V.T. Mats- kevych // Physics of Elementary Particles and Atomic Nuclei, 2009, v. 40, N 3, p. 704-753 (in Russian). 5. J.V. Selinger, M.S. Spector, V.A. Greanya, B.T. Weslowski, D.K. Shenoy, R. Shashidhar // Phys. Rev. E. 2002, v. 66, 051708, 7 p. 6. V.A. Greanya, A.P. Malanovsky, B.T. Weslow- ski, M.S. Spector, J.V. Selinger // Liquid Crys- tals. 2005, v. 32, N 7, p. 933-941. �������� �� �� � ��� � �� ��� ���� ��� ������� � �� �� �� � ����� �� ������� ��� ������ ��� ������ ���� ����� � �� � ���� ���������� ���� ���� ��� �������� � � ��� ����� ��� ����� �� �� ����� �� ��� �� � �� ��� �� ����������� ������ ���� ��� �� � �� �� ��� ��� �� �� ������ ��� �� �� ������ �� ����� �� ����� � ��� �� ���� ���� ���� �� � ����������� � � � �� ������� � � ����� �� ��������� ����� �� ���� ��� � �� �� ��������� ������ ��� !�� �� ����� ������� ������� ���� �� � ��������� � �� �����"�� � �� ����� � �������� !�� ����� �� �� ����� �� �� �� �� ������ �� ���� ����� ���� � ��� �� �� ���� ����� ����� � ������ ������ � ������ � � � �� �� ��� � �� �� ����� � � �� ��� �� � �� ��� �� ����������� ������ ������ ��� �� �� � ������� �� ����� �� ���� ��� �� � ��� � ����� � �� �� �����"�� �� ����� ����� �������� �� � � ������ �� ��� ��� �� ������� � �� ��� �� �� ����� �� ������ �� ������ ��� ����� ���� ����� � ��� � ���� ���������� ���� ���� ��� �������� � � ��� ����� ��� #��� � �� ��#�� �� ��#� �� �� ����#� �� ������ �� �#���� ������ #� � �� �� ��� �#� �$ ������ %# �� �� ���� # ��������&� ����� � ��#' � ��������� � #������#�� ��� � � $� ������� � � ���� ����#� � ����� � ���������� �� ��#� �� ��# ��� (��� ) ������� ����������$ � #������#$ �� �� �����"#� # �� �� # �������� *�� #��� � �� ��#�� �� �� �� �� ����� �� ��������& ��� )���� � ��# ��� ���� ����� #��#� ������ ��� � ������ # � # #� # �#� � � �� ��#�� � � �� ��#� �� �� ����#� �� ������ �� �#���� ������ #�� +����� � ������� �� ����� �� �� ��� � �� ��� #��� � $� �� �����"#� # ���� �����#� ,,-