Pulsed Laser Deposition of Thin Iron and Chromium Silicide Films with Large Thermoelectromotive Force Coefficient

Nanostructures in the form of thin films exhibiting the semiconductor properties with a narrow energy-band gap are deposited from the CrSi₂ and β-FeSi₂ targets by means of the pulsed laser deposition (PLD) assisted with an excimer KrF laser.

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Mulenko, S.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут металофізики ім. Г.В. Курдюмова НАН України 2014
Назва видання:Наносистеми, наноматеріали, нанотехнології
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/107205
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Pulsed Laser Deposition of Thin Iron and Chromium Silicide Films with Large Thermoelectromotive Force Coefficient / S.A. Mulenko // Наносистеми, наноматеріали, нанотехнології: Зб. наук. пр. — К.: РВВ ІМФ, 2014. — Т. 12, № 3. — С. 623–632. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-107205
record_format dspace
spelling irk-123456789-1072052016-10-15T03:02:23Z Pulsed Laser Deposition of Thin Iron and Chromium Silicide Films with Large Thermoelectromotive Force Coefficient Mulenko, S.A. Nanostructures in the form of thin films exhibiting the semiconductor properties with a narrow energy-band gap are deposited from the CrSi₂ and β-FeSi₂ targets by means of the pulsed laser deposition (PLD) assisted with an excimer KrF laser. Наноструктури у формі тонких плівок, що проявили напівпровідникові властивості, з вузькою енергетичною забороненою зоною було осаджено методом імпульсного лазерного осадження (PLD) з мішеней CrSi₂ і β-FeSi₂ із застосуванням ексимерного KrF-лазера. Наноструктуры в форме тонких плёнок, которые проявили полупроводниковые свойства, с узкой энергетической запрещённой зоной были осаждены методом импульсного лазерного осаждения (PLD) из мишеней CrSi₂ и β-FeSi₂ с применением эксимерного KrF-лазера. 2014 Article Pulsed Laser Deposition of Thin Iron and Chromium Silicide Films with Large Thermoelectromotive Force Coefficient / S.A. Mulenko // Наносистеми, наноматеріали, нанотехнології: Зб. наук. пр. — К.: РВВ ІМФ, 2014. — Т. 12, № 3. — С. 623–632. — Бібліогр.: 12 назв. — англ. 1816-5230 PACS numbers: 72.20.Pa, 73.22.-f, 73.50.Lw, 73.61.-r, 81.15.Fg, 81.16.Mk, 85.80.Fi http://dspace.nbuv.gov.ua/handle/123456789/107205 en Наносистеми, наноматеріали, нанотехнології Інститут металофізики ім. Г.В. Курдюмова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Nanostructures in the form of thin films exhibiting the semiconductor properties with a narrow energy-band gap are deposited from the CrSi₂ and β-FeSi₂ targets by means of the pulsed laser deposition (PLD) assisted with an excimer KrF laser.
format Article
author Mulenko, S.A.
spellingShingle Mulenko, S.A.
Pulsed Laser Deposition of Thin Iron and Chromium Silicide Films with Large Thermoelectromotive Force Coefficient
Наносистеми, наноматеріали, нанотехнології
author_facet Mulenko, S.A.
author_sort Mulenko, S.A.
title Pulsed Laser Deposition of Thin Iron and Chromium Silicide Films with Large Thermoelectromotive Force Coefficient
title_short Pulsed Laser Deposition of Thin Iron and Chromium Silicide Films with Large Thermoelectromotive Force Coefficient
title_full Pulsed Laser Deposition of Thin Iron and Chromium Silicide Films with Large Thermoelectromotive Force Coefficient
title_fullStr Pulsed Laser Deposition of Thin Iron and Chromium Silicide Films with Large Thermoelectromotive Force Coefficient
title_full_unstemmed Pulsed Laser Deposition of Thin Iron and Chromium Silicide Films with Large Thermoelectromotive Force Coefficient
title_sort pulsed laser deposition of thin iron and chromium silicide films with large thermoelectromotive force coefficient
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/107205
citation_txt Pulsed Laser Deposition of Thin Iron and Chromium Silicide Films with Large Thermoelectromotive Force Coefficient / S.A. Mulenko // Наносистеми, наноматеріали, нанотехнології: Зб. наук. пр. — К.: РВВ ІМФ, 2014. — Т. 12, № 3. — С. 623–632. — Бібліогр.: 12 назв. — англ.
series Наносистеми, наноматеріали, нанотехнології
work_keys_str_mv AT mulenkosa pulsedlaserdepositionofthinironandchromiumsilicidefilmswithlargethermoelectromotiveforcecoefficient
first_indexed 2025-07-07T19:40:02Z
last_indexed 2025-07-07T19:40:02Z
_version_ 1837018337075265536
fulltext 623 PACS numbers: 72.20.Pa, 73.22.-f, 73.50.Lw, 73.61.-r, 81.15.Fg, 81.16.Mk, 85.80.Fi Pulsed Laser Deposition of Thin Iron and Chromium Silicide Films with Large Thermoelectromotive Force Coefficient S. A. Mulenko G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, Academician Vernadsky Blvd., 36, 03680 Kyyiv-142, Ukraine Nanostructures in the form of thin films exhibiting the semiconductor prop- erties with a narrow energy-band gap are deposited from the CrSi2 and - FeSi2 targets by means of the pulsed laser deposition (PLD) assisted with an excimer KrF laser. The films deposited from CrSi2 target on the 100Si sub- strate at 293 K and 740 K manifest the band gaps Eg  0.09 eV and 0.18 eV, respectively. The films deposited from -FeSi2 target on the 100Si substrate at the same conditions manifest the band gaps Eg  0.16 eV and 0.31 eV, re- spectively. The upper-range value of thermoelectromotive force coefficient (Seebeck coefficient), S, for the CrSi2-based films deposited on heated sub- strate at 740 K is about 1.4 mV/K at 300 KT340 K. The largest S coeffi- cient for the -FeSi2-based films deposited on heated substrate too is about 1.5 mV/K within the same temperature range. With the higher Eg, the higher S coefficient is obtained. The XRD analysis reveals that films deposited on the Si substrates have a polycrystalline structure, and films deposited on the SiO2 substrates are amorphous. As regards the S coefficient for films depos- ited on the Si and SiO2 substrates, this coefficient is higher for polycrystal- line films than for amorphous deposits. The larger the semiconductor-phase concentration in the deposited films, the higher the S coefficient. So, the PLD based on an excimer KrF laser is an effective method for the deposition of nanostructures in the form of thin films, which are quite suitable for thermal sensors operating at moderate temperatures. Наноструктури у формі тонких плівок, що проявили напівпровідникові властивості, з вузькою енергетичною забороненою зоною було осаджено методом імпульсного лазерного осадження (PLD) з мішеней CrSi2 і -FeSi2 із застосуванням ексимерного KrF-лазера. Плівки, яких було осаджено з мішені CrSi2 на підложжя 100Si при температурах у 293 К і 740 К, мали ширину забороненої зони Eg  0,09 еВ і 0,18 еВ відповідно. Плівки, яких було осаджено з мішені -FeSi2 на підложжя 100Si за таких же умов, ма- ли ширину забороненої зони Eg  0,16 еВ і 0,31 еВ відповідно. Найбільше значення коефіцієнта термоерс (Зеєбекового коефіцієнта) S плівок на ос- Наносистеми, наноматеріали, нанотехнології Nanosystems, Nanomaterials, Nanotechnologies 2014, т. 12, № 3, сс. 623–632  2014 ІÌÔ (Іíñòèòóò ìåòàëîôіçèêè іì. Ã. Â. Êóðäþìîâà ÍÀÍ Óêðàїíи) Надруковано в Óкраїні. Ôотокопіювання дозволено тільки відповідно до ліцензії 624 S. A. MULENKO нові CrSi2 при осадженні на нагріте підложжя при 740 К складає біля 1,4 мВ/К при 300 КT340 К. Найбільше значення коефіцієнта S плівок на основі -FeSi2 при осадженні на нагріте також підложжя складає біля 1,5 мВ/К у тому ж інтервалі температур. Чим більше Eg, тим більше значення було встановлено для коефіцієнта S. Рентґенодифракційний аналіз пока- зав, що плівки, яких було осаджено на Si-підложжя, мали полікристалі- чну структуру, а плівки, яких було осаджено SiO2-підложжя, були амор- фними. Що стосується коефіцієнта S для плівок, яких було осаджено на SiO2-підложжя, то він виявився більшим для полікристалічних плівок, аніж для аморфних. Таким чином, PLD-метод із використанням ексимер- ного KrF-лазера є ефективним методом осадження наноструктур у формі тонких плівок, які є вельми придатними для термосенсорів, що працюють за помірних температур. Наноструктуры в форме тонких плёнок, которые проявили полупровод- никовые свойства, с узкой энергетической запрещённой зоной были оса- ждены методом импульсного лазерного осаждения (PLD) из мишеней CrSi2 и -FeSi2 с применением эксимерного KrF-лазера. Плёнки, осаждён- ные из мишени CrSi2 на подложку 100Si при температурах 293 К и 740 К, имели ширину запрещённой зоны Eg  0,09 эВ и 0,18 эВ соответствен- но. Плёнки, осаждённые из мишени -FeSi2 на подложку 100Si при тех же условиях, имели ширину запрещённой зоны Eg  0,16 эВ и 0,31 эВ со- ответственно. Наибольшее значение коэффициента термоэдс (коэффици- ента Зеебека) S для плёнок на основе CrSi2 при осаждении на нагретую подложку при 740 К составляет около 1,4 мВ/К при 300 КT340 К. Наибольшее значение коэффициента S для плёнок на основе -FeSi2 при осаждении на нагретую так же подложку составляет около 1,5 мВ/К в том же интервале температур. Чем больше Eg, тем большее значение было установлено для коэффициента S. Рентгенодифракционный анализ пока- зал, что плёнки, осаждённые на Si-подложки, имели поликристалличе- скую структуру, а плёнки, осаждённые на SiO2-подложки, были аморф- ными. Что касается коэффициента S для плёнок, осаждённых на подлож- ки Si и SiO2, то он для поликристаллических плёнок оказался больше, чем для аморфных. Чем больше концентрация полупроводниковой фазы в осаждённых плёнках, тем больше коэффициент S. Таким образом, PLD- метод с применением эксимерного KrF-лазера является эффективным методом осаждения наноструктур в форме тонких плёнок, которые весьма удобны для термосенсоров, работающих при умеренных температурах. Key words: thin films, laser-assisted deposition, silicides, thermoelectric ef- fects, thermoelectric devices, thermal sensors. (Received 25 March, 2014) 1. INTRODUCTION One of the most important parameters for thermosensors is the ther- moelectromotive force coefficient (Seebeck coefficient, S). Thermoe- PULSED LASER DEPOSITION OF THIN Fe AND Cr SILICIDE FILMS 625 lectric converters based on silicides of transitional metals are up-to- date materials owing to their narrow band gap result in a large thermo- electromotive force (e.m.f.) coefficient, S. Chromium silicide (CrSi2) and iron silicide (-FeSi2) in bulk single crystalline form are semicon- ductors with the band gaps Eg  0.35 eV and 0.85 eV, respectively [1– 3]. In general, chromium and iron silicides are attractive materials be- cause of their semiconducting, electrochromic and photochromic prop- erties [4]. However, the electrical properties of CrSi2 depend strongly on the film deposition method and on its stoichiometry (Cr:Si) [5]. The thermoelectric conversion properties of these silicides deposited in the form of thin films and layers depend on Eg. In turn, the value of Eg de- pends on the structure of the deposited materials: amorphous or poly- crystalline. The aim of this work is to study chromium and iron silicide thin films’ characteristics, which depend on their nature and tempera- ture. These thin films are suitable structure for the fabrication of thermosensors operating at moderate temperature. The pulsed laser deposition (PLD) method was used, since it allows a very efficient fab- rication of films from compound materials. 2. EXPERIMENTAL Film depositions were performed in a stainless-steel chamber, evacuat- ed down to 10 5 Pa. Pure CrSi2 and β-FeSi2 monocrystalline targets were ablated with an excimer KrF laser pulses (248 nm; p  20 ns) at a fluence F  5.5 J/cm2 and repetition rate of 10 Hz. The target was ro- tated at 3 Hz to obtain a smooth ablation procedure. Before each deposi- tion, the target surface was cleaned using 600 laser pulses, with a shut- ter shielding the substrate. The ablated material was collected on 100Si or SiO2 substrates, either at room temperature (RT) or heated to 740 K. Film deposition on heated substrate was carried out at 5000 pulses and while film deposition on the substrate at RT the number of laser pulses (N) was 6500. Such conditions were used to obtain 40 nm film thicknesses. Optical measurements were carried out to find out the real part of the dielectric constant (10) of the deposited films with ellipsometry and prove the existence of a semiconductor phase in these deposits [6]. The direct current (DC) electrical resistance of Si samples with the deposited films was measured by using a two-probe technique in the range 340–78 К. An indium or silver coating formed ohmic con- tacts. Electrical resistance was measured in plane of the deposited film. The substrate temperature was measured by thermocouple. Tempera- ture dependences of specific conductivity () were evaluated from measurements of the electrical resistance of the samples as a function of temperature and film geometry. Film thickness was measured with Dectak-3080 profilemeter or by RUMP simulation of experimental Rutherford backscattering (RBS) spectra [7]. The crystalline structure 626 S. A. MULENKO of deposited films was studied with X-ray diffractometer (XRD) ‘Stoe’ at 45 kV and 33 mA (CuK radiation). The DC electrical resistance of deposited films was measured by two-probe technique. Ohmic contacts were made from indium or silver coatings. Temperature dependence of the electrical resistance, specific conductivity () of the deposited films, the S coefficient were measured in the range 78–340 K with a high resistance multimeter. The heating temperature and its difference between the two ends of the substrate were measured by two thermo- couples. Calculations of the specific conductivity were performed tak- ing into account the geometrical shape of Si and SiO2 substrates. The temperature dependence of the S coefficient was measured after pro- ducing a thermal gradient along the sample. The value of the S coeffi- cient was measured from thermoelectromotive force existing between heated or cooled end of the sample and its end at RT. 3. RESULTS AND DISCUSSION Film deposition from CrSi2 target was carried out on both SiO2 and Si substrates. It is seen for films deposited on the heated Si substrate (TS  740 K) that a semiconductor trend of these films reveals from 340 down to 227 K, and then a metallic one down to 78 K (Fig. 1, curve 1 and 2). Semiconductor trend of temperature dependences of  is evident al- so for the film deposited from -FeSi2 target on the heated Si substrate (TS  740 K) and on the Si substrate at RT from 340 to 78 K (Fig. 1, curve 3 and 4) can be described by the well-known expression [8] gexp{Eg/(2kT)}iexp{Ei/(kT)}, (1) Fig. 1. Temperature dependences of the specific conductivity of films deposited by PLD on Si substrates from: (1) CrSi2 target, Eg  0.09 eV, TS  293 K, N6500; (2) CrSi2 target, Eg  0.18 eV, TS  740 K, N5000; (3) -FeSi2 target, Eg  0.16 eV, TS  293 K, N6500; (4) -FeSi2 target, Eg  0.31 eV, TS  740 K, N5000. PULSED LASER DEPOSITION OF THIN Fe AND Cr SILICIDE FILMS 627 where g is intrinsic specific conductivity; i is the specific conductivi- ty determined by impurities; Eg is the band gap for intrinsic conductiv- ity; Ei is the band gap assigned for impurities. The band gap Eg in the range 340–293 K was calculated by using the following expression  1 2 2 1 2 ln ( ) / ( ) 1 / 1/ g k T T E T T     , (2) where (T1) is the specific conductivity at the temperature T1 and (T2) is the specific conductivity at the temperature T2 (T1T2). The tem- perature dependence of  essentially depends on the substrate nature (Si or SiO2) [6]. It was shown by XRD that deposited films on SiO2 sub- strate display an amorphous structure (Figs. 2, 4). However, deposited films on Si substrate display a polycrystalline structure (Figs. 3, 5). Fig. 2. XRD diagram of film deposited by PLD from CrSi2 target on SiO2 sub- strate at TS  293 K. Fig. 3. XRD diagram of film deposited by PLD from CrSi2 target on Si sub- strate at TS  740 K. 628 S. A. MULENKO The SiO2 native layer on Si substrate is about 3 nm thickness and has no a significant influence on the growth of deposited film from CrSi2 and -FeSi2 targets [9]. The optical properties of films deposited from CrSi2 and -FeSi2 targets on SiO2 and Si substrates prove the existence of a semiconductor phase in these deposits as the real part of the dielectric constant (10) [6]. The best fitting of the experimental curve of the specific conductivi- ty for deposited films from CrSi2 target shows a semiconductor trend. Using the expression (2), one can obtain Eg  0.09 and Eg  0.18 eV for TS  293 K and 740 K, respectively. The best fitting of the experi- mental curve of the specific conductivity for deposited films from - FeSi2 target shows a semiconductor trend too. Using the expression (2), one can get Eg  0.16 and Eg  0.31 eV for TS293 K and 740 K, re- spectively (Fig. 1). These energy band gaps were calculated with an er- Fig. 4. XRD diagram of film deposited by PLD from -FeSi2 target on SiO2 substrate at TS  293 K. Fig. 5. XRD diagram of film deposited by PLD from -FeSi2 target on Si sub- strate at TS  740 K. PULSED LASER DEPOSITION OF THIN Fe AND Cr SILICIDE FILMS 629 ror of 10%. The highest value of the S coefficient for films deposited from CrSi2 target on Si substrate is 1.4 mV/K at T  340 K (Fig. 6). The highest value of this coefficient for films deposited from CrSi2 target on SiO2 substrate was about 0.010–0.015 mV/K at 293 KT340 K [6]. The highest value of the S coefficient for films deposited from - FeSi2 target on Si substrate is 1.5 mV/K at T340 K (Fig. 7). The highest value of the S coefficient for films deposited from -FeSi2 tar- get on SiO2 substrate was about 0.008–0.010 mV/K at 295 K  T  340 K [6]. Measurement method for the S coefficient provides the uncer- Fig. 7. Temperature dependences of the thermo-e.m.f. coefficient for the film deposited by PLD on Si substrate from -FeSi2 target; substrate temperature TS  293 K and 740 K. Fig. 6. Temperature dependence of the thermo-e.m.f. coefficient for the film deposited by PLD on Si substrate from CrSi2 target; substrate temperature TS  293 K and 740 K. 630 S. A. MULENKO tainty in determining of its value of no more than 10% in the tempera- ture range 100 KT340 K. One can see that, for films deposited from CrSi2 and -FeSi2 targets, the crystalline structure of the Si substrate promotes the growth of polycrystalline films, while the amorphous structure of the SiO2 sub- strate promotes the growth of amorphous films. Deposition of films on heated substrates results in the formation of films with a higher con- tent of semiconductor phase: value of Eg is higher for films deposited on heated substrate. In general, polycrystalline films deposited from iron silicide target have higher values of Eg than films deposited from chromium silicide target. This is congruent with the fact that Eg for bulk single crystalline form -FeSi2 has a higher value (0.85 eV) than the one for bulk single crystalline form CrSi2 phase (0.35 eV). As re- gards the S coefficient for films deposited from CrSi2 and -FeSi2 tar- gets, this coefficient is higher for the polycrystalline film with higher values of Eg. The S coefficient is important for studying kinetic phenomena of charge transfer in materials [10, 11]. To this purpose, it is necessary to know besides the correlation between the temperature and specific conductivity, the correlation between the temperature and the S coef- ficient. If one takes into account the expressions for electron and hole concentrations in a non-degenerate semiconductor, it is possible to write the S coefficient in the form [12] as follows: [2 ln( / )] [2 ln( / )] , c n v p n p N n n N p pk S e n p           (3) where k is the Boltzmann constant; e is electron charge; n, p are elec- tron and hole concentrations; Nc, Nv are effective densities of states in the conduction and valence bands, respectively; and n, p are electron and hole mobilities, respectively. It is seen that the thermo-e.m.f. coef- ficient of semiconductor materials depends on impurities of two types (n and p), which determine their conductive characteristics (3). The S coefficient is being increased with temperature increasing up to 315 K and then decreased with temperature increasing up to 340 K for films deposited from CrSi2 target (Fig. 6). This behaviour can be explained by the existence of metallic phase in deposited films while this target ablation. During ablation process of CrSi2 target, the stoichiometry of this bulk single-crystalline form is being destroyed, resulting in Cr atomic content in deposited films. Therefore, the value of Eg is de- creased. The S coefficient is increased with temperature increasing in the range from 100 K to 340 K for films deposited while -FeSi2 targets ablation (Fig. 7). During ablation process of -FeSi2 target, the stoichi- ometry of this bulk single-crystalline form is being destroyed too, re- sulting in Fe atomic content in deposited films. Nevertheless, in this PULSED LASER DEPOSITION OF THIN Fe AND Cr SILICIDE FILMS 631 case, Fe atomic content in deposited films is not enough to change the specific conductivity of deposited films from semiconductor trend to metallic one while sample cooling. The value of Eg is decreased in this case too. However, in general, released Cr and Fe create impurity levels in the forbidden zone of semiconductor films results in decreasing of energy band gap Eg, which is less than that is for bulk single- crystalline form. Nanometre film deposition on heated Si substrate re- sults in increasing of energy band gap Eg in comparison with one depos- ited on Si substrate at RT as heat energy promotes crystallization pro- cess of semiconductor phase. As the S coefficient is positive in whole temperature range, p-type of charge carriers prevails above n-type ones. Moreover, the increasing the S coefficient for nanometre films is assigned with increasing of effective density of states in the conduc- tion and valence bands results in increasing charge-carriers’ gradient at creation of temperature gradient in nanometre films. 4. CONCLUSIONS Large S coefficient of thin films deposited from CrSi2 and -FeSi2 tar- gets by PLD using an excimer KrF laser is obtained. The value of this coefficient depends on substrate nature and substrate temperature. The more substrate temperature, the higher value of energy band gap Eg of nanometre films results in increasing of the S coefficient. There- fore, the PLD based on an excimer KrF laser is effective method for the deposition of nanostructures in the form of thin films with large ther- moelectromotive force coefficient, which are quite suitable for thermal sensors operating in a wide temperature range. Nanostructures of iron and chromium silicide films in the form of thin films deposited by PLD the form of thin films with a narrow energy-band gap (less than 1.0 eV) can be proposed not only for thermal sensors but for infrared detectors too. ACKNOWLEDGMENTS Author thanks to Prof. A. Luches and Dr. A. P. Caricato from the De- partment of Physics at Salento University, Italy for the help of sample preparation by PLD. REFERENCES 1. L. F. Mattheiss, Phys. Rev. B, 43: 1863 (1991). 2. H. Lange, phys. status solidi (b), 201: 3 (1997). 3. J. Chevrier, J. Y. Natoli, I. Berbezier, A. Ronda, and J. Derrien, Solid State Phenomena, 39: 32 (1993). 632 S. A. MULENKO 4. S. P. Murarka, Silicides for VLSI Applications (New York: Academic Press, Inc.: 1983). 5. C. D. Lien, M. A. Nicolet, and S. S. Lau, Thin Solid Films, 143: 63 (1986). 6. A. P. Caricato, A. Luches, F. Romano, S. A. Mulenko, Y. V. Kudryavtsev, T. Gorbachuk, C. Fotakis, E. L. Papadopoulou, and R. Klini, Appl. Surf. Science, 254: 1288 (2007). 7. L. Doolittle, RUMP RBS Simulation Program (Ithaca, N.Y.: Computer Graphics Service, Ltd., 1993). 8. C. W. Wert and R. M. Thomson, Physics of Solids (New York: McGraw-Hill Book Company: 1964). 9. A. P. Caricato, G. Leggieri, A. Luches, F. Romano, G. Barucca, P. Mengucci, and S. A. Mulenko, Appl. Surf. Science, 254: 1224 (2007). 10. H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology (San Diego: Academic Press: 2000), vols. 1–5. 11. A. Ishida, D. Cao, S. Morioka, Y. Inoue, and T. Kita, J. of Electronic Materials, 38: 940 (2009). 12. K. V. Shalimova, Fizika Poluprovodnikov (Moscow: Ehnergoatomizdat: 1985) (in Russian).