Twist extrusion

The work presents the results of research and development on Twist Extrusion (TE) process. It was shown the two main deformation zones of TE are located at the two ends of the twist part of the die. The mode of deformation in these zones is simple shear in the transversal layers, as in high pressure...

Full description

Saved in:
Bibliographic Details
Date:2014
Main Authors: Beygelzimer, Y., Varyukhin, V.
Format: Article
Language:English
Published: Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України 2014
Series:Физика и техника высоких давлений
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/107323
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Twist extrusion / Y. Beygelzimer, V. Varyukhin // Физика и техника высоких давлений. — 2014. — Т. 24, № 2. — С. 86-94. — Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-107323
record_format dspace
spelling irk-123456789-1073232016-10-19T03:02:23Z Twist extrusion Beygelzimer, Y. Varyukhin, V. The work presents the results of research and development on Twist Extrusion (TE) process. It was shown the two main deformation zones of TE are located at the two ends of the twist part of the die. The mode of deformation in these zones is simple shear in the transversal layers, as in high pressure torsion (HPT). In terms of strain, at the first approximation, the billet during TE like passes through two “transparent” HPT anvils. TE has a significant commercial potential due to the following physical effects: intensive grain refinement; homogenization and mixing; intensive powders consolidation. There are three main areas in TE application for the present: formation the submicron and nanostructures in the bulk metals samples; processing of the recycled non-ferrous metals and alloys for the improvement of the mechanical properties; production the bulk samples through powders consolidation. Donetsk Institute for Physics and Engineering created a TE Center to showcase the process and educate investors. Our experience with the center has shown that the most prospective directions are producing ultrafine-grained alloys for medical and aircraft applications. Представлены результаты исследований процесса винтовой экструзии (ВЭ) и разработок по его осуществлению. Показано, что основная деформация материалов при ВЭ происходит в двух зонах простого сдвига, расположенных по границам винтового участка матрицы. ВЭ имеет значительный коммерческий потенциал благодаря быстрому измельчению зерен и интенсивному массопереносу, приводящему к гомогенизации и перемешиванию материалов. В настоящее время наметились три основных направления в применении ВЭ: формирование субмикронных и наноструктур в металлах и сплавах; обработка вторичных цветных металлов и сплавов для улучшения их механических свойств; производство объемных образцов путем консолидации порошков. Донецкий физико-технический институт создал опытный участок ВЭ, чтобы продемонстрировать процесс и привлечь инвесторов. Опыт работы этого участка показал, что наиболее перспективным направлением применения ВЭ является производство субмикрокристаллических материалов для медицины и авиации. 2014 Article Twist extrusion / Y. Beygelzimer, V. Varyukhin // Физика и техника высоких давлений. — 2014. — Т. 24, № 2. — С. 86-94. — Бібліогр.: 19 назв. — англ. 0868-5924 PACS: 62.20.Fe http://dspace.nbuv.gov.ua/handle/123456789/107323 en Физика и техника высоких давлений Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The work presents the results of research and development on Twist Extrusion (TE) process. It was shown the two main deformation zones of TE are located at the two ends of the twist part of the die. The mode of deformation in these zones is simple shear in the transversal layers, as in high pressure torsion (HPT). In terms of strain, at the first approximation, the billet during TE like passes through two “transparent” HPT anvils. TE has a significant commercial potential due to the following physical effects: intensive grain refinement; homogenization and mixing; intensive powders consolidation. There are three main areas in TE application for the present: formation the submicron and nanostructures in the bulk metals samples; processing of the recycled non-ferrous metals and alloys for the improvement of the mechanical properties; production the bulk samples through powders consolidation. Donetsk Institute for Physics and Engineering created a TE Center to showcase the process and educate investors. Our experience with the center has shown that the most prospective directions are producing ultrafine-grained alloys for medical and aircraft applications.
format Article
author Beygelzimer, Y.
Varyukhin, V.
spellingShingle Beygelzimer, Y.
Varyukhin, V.
Twist extrusion
Физика и техника высоких давлений
author_facet Beygelzimer, Y.
Varyukhin, V.
author_sort Beygelzimer, Y.
title Twist extrusion
title_short Twist extrusion
title_full Twist extrusion
title_fullStr Twist extrusion
title_full_unstemmed Twist extrusion
title_sort twist extrusion
publisher Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/107323
citation_txt Twist extrusion / Y. Beygelzimer, V. Varyukhin // Физика и техника высоких давлений. — 2014. — Т. 24, № 2. — С. 86-94. — Бібліогр.: 19 назв. — англ.
series Физика и техника высоких давлений
work_keys_str_mv AT beygelzimery twistextrusion
AT varyukhinv twistextrusion
first_indexed 2025-07-07T19:49:26Z
last_indexed 2025-07-07T19:49:26Z
_version_ 1837018924598689792
fulltext Физика и техника высоких давлений 2014, том 24, № 2 © Y. Beygelzimer, V. Varyukhin, 2014 PACS: 62.20.Fe Y. Beygelzimer, V. Varyukhin TWIST EXTRUSION Donetsk Institute for Physics and Engineering named after O.O. Galkin of the National Academy of Sciences of Ukraine 72 R. Luxemburg St., Donetsk, 83114, Ukraine Received January 12, 2014 The work presents the results of research and development on Twist Extrusion (TE) proc- ess. It was shown the two main deformation zones of TE are located at the two ends of the twist part of the die. The mode of deformation in these zones is simple shear in the trans- versal layers, as in high pressure torsion (HPT). In terms of strain, at the first approxi- mation, the billet during TE like passes through two “transparent” HPT anvils. TE has a significant commercial potential due to the following physical effects: intensive grain re- finement; homogenization and mixing; intensive powders consolidation. There are three main areas in TE application for the present: formation the submicron and nanostruc- tures in the bulk metals samples; processing of the recycled non-ferrous metals and al- loys for the improvement of the mechanical properties; production the bulk samples through powders consolidation. Donetsk Institute for Physics and Engineering created a TE Center to showcase the process and educate investors. Our experience with the center has shown that the most prospective directions are producing ultrafine-grained alloys for medical and aircraft applications. Keywords: twist extrusion, severe plastic deformation, ultrafine-grained materials Представлено результати досліджень процесу гвинтової екструзії (ГЕ) та розро- бок з його здiйснення. Показано, що основна деформація матерiалiв при ГЕ вiдбувається у двух зонах простого зсуву, розташованих на границях гвинтової дiлянки матрицi. ГЕ має значний комерційний потенціал завдяки швидкому подрібненню зерен та інтенсивному масопереносу, що призводить до гомогенізації та перемішування матеріалів. На цей час намiтилися три основних напрями в за- стосуваннi ГЕ: формування субмiкронних i наноструктур в металах i сплавах; об- робка вторинних кольорових металiв i сплавiв для полiпшення їхнiх механiчних вла- стивостей; виробництво об’ємних зразкiв шляхом консолiдацiї порошкiв. Донець- кий фізико-технічний інститут створив дослiдну дiлянку ГЕ, щоб продемонстру- вати процес і залучити інвесторів. Досвід роботи цієї ділянки показав, що найбільш перспективним напрямом застосування ГЕ є виробництво сплавiв для медицини та авіації. Ключові слова: гвинтова екструзія, інтенсивна пластична деформація, субмiкро- кристалiчнi матеріали Физика и техника высоких давлений 2014, том 24, № 2 87 Introduction Severe plastic deformation (SPD) processes are defined as methods of metal forming under extensive hydrostatic pressure that may be used to impose very high strain on a bulk solid without introduction of any significant change in the overall dimensions of the sample. SPD is able to produce exceptional grain re- finement [1]. Several different SPD techniques are now available; these include High-Pressure Torsion (HPT) [2], ECAP [3], Multi-Directional Forging (MDF) [4], Accumulative Roll-Bonding (ARB) [5], Repetitive Corrugation and Strength- ening (RCS) [6] and TE [7]. HPT involves order of magnitude higher pressures than any other SPD process. This provides attainment of uniquely high strains and formation of UFG structures. However, application of HPT is limited to laboratory conditions due to small size of the samples. Other processes, such as ECAP, ARB, RCS and TE, permit processing of substantially larger samples and, therefore, they are of practical interest [1]. Being promising in the commercial sense [1], TE enjoyed some interest, which is reflected in continuous research on the subject [1,8–10] as well as in the emer- gence of new SPD methods inspired by the concept of TE [11–15]. In [16], strained state of the billet during TE was investigated by experimental and computational method. In the present paper, the finite element method was applied for this purpose. By using the software Deform-3D, the computational ex- periment was carried out and the regression's relations were obtained for calcula- tion of the basic characteristics of TE. In recent years, TE has achieved a significant progress in terms of practical use. Donetsk Institute for Physics and Engineering created TE Center to showcase the process and educate investors. This paper gives an overview of the main equipment of TE Center and presents some results of its work. Basics of Twist Extrusion TE is based on pressing out a prism specimen through a die with a profile con- sisting of two prismatic regions separated by a twist part [17,18] (see Fig. 1). As the specimen is processed, it undergoes severe deformation while maintaining its original cross-section. This property allows the specimen to be extruded repeatedly in order to accumulate the value of deformation, which changes the specimen structure and properties. TE is performed under high hydrostatic pressure in the deformation zone. The pres- sure is created by applying backpressure to the specimen when it exits the die. Fig. 1. TE scheme. The analogy of TE with HPT process was shown on the insertions Физика и техника высоких давлений 2014, том 24, № 2 88 a b c d Fig. 2. A few examples of cross-sections of dies for twist extrusion: а – rectangular; b – elliptical; c – circular, ‘+’ denotes the position of extrusion axis; d – hexagonal with a hollow centre The profile of TE die cross-section can be arbitrary. A few examples of possi- ble profiles are shown in Fig. 2. Let us emphasise here a principal ability of TE to process bars having cir- cular cross-section profile. This can be achieved when the axis of extrusion is shifted away from the axis of symmetry of the channel. It is illustrated in Fig. 2,c where extrusion axis indicated by ‘+’ is located aside from the centre of symmetry of the channel in the middle of the cross-section. Tubular billets with a hollow centre can also be processed by TE when extrusion on a barrel is used, Fig. 2,d. In [16], it was shown by means of experimentally-computational method that the two main deformation zones of TE were located at the two ends of the twist part of the die (see Fig. 1). The mode of deformation in these zones is simple shear in the transversal layers, as in HPT. In terms of strain, at the first approxi- mation, the TE of a billet is similar to passes through two «transparent» Bridgman anvils (see insertions in Fig. 1). The presence of two zones of intensive simple shear we confirmed by simulation of TE with finite element method. In addition, numerical experiments allowed employment of different values of die parameters and materials in order to obtain the engineering relations for design of the tech- nology and equipment for TE. Finite element method simulations of deformation during TE were conducted with the aid of Deform-3D software permitting three-dimensional analysis1. De- sign model of the TE die is shown in Fig. 3. The die and punches were modeled with rigid elements, while 50000 tetrahe- dral elements were employed for the samples. The adaptive meshing was used to accommodate large strains during simulations. Reduced integration and hourglass control were applied in the analysis. Von Mises plastic model was employed. The backpressure was varied. Friction between the samples and the matrix walls was expressed according to Zibel’s law: τ = μσy, where σy was the yield stress, μ was the friction coefficient (μ = 0.1). 1 The calculations were performed by R. Kulagin. Физика и техника высоких давлений 2014, том 24, № 2 89 Fig. 3. Design model of the TE die (hs, R, ld, h, b are the geometric parameters of the die) Accumulation of von Mises strain at three different locations of the sample cross-section in the TE is shown in Fig. 4. The calculation were performed for the following parameters: hs = 150 mm, ld = 25 mm, h = 25 mm, b = 40 mm. Z axis was directed along the extrusion axis, the X and Y axis were oriented, respectively, along smaller and larger part of the initial cross-section of the die. Fig. 4 shows two zones of intense deformation at the entrance and exit from the twist part of the die. The analysis of the strain rate tensor components (see Fig. 5) Fig. 4. Accumulation of von Mises strain for three typical points of the cross section (see insertions) during TE Fig 5. The values of the strain rate tensor components along trajectories of the three typi- cal points. (Note: locations of the three points in the sample cross-section are the same as Fig. 4). □ – eхx, ◊ – eуу, ○ – ezz, ▲ – exy, ■ – eyz, ● – ezx Физика и техника высоких давлений 2014, том 24, № 2 90 shows that really simple shear takes place within the layers perpendicular to the extrusion axis. It is evidenced by the fact that the moduli of components ezx, ezy in the mentioned areas are much higher than the absolute values of all other compo- nents of the strain rate tensor. Von Mises strain distribution for a final cross-section for TE die is shown in Fig. 6. The isostrain contours form closed loops around the centre of the cross-section. a b c Fig. 6. Distributions of Von Mises equivalent strain in cross-section of billets having rectangular (a), oval (b) and hexagonal with hollow centre (c) profiles In general, the character of strain distribution and strain accumulation was in agreement with the previously reported results obtain experimentally [16]. Relations for the main Twist Extrusion characteristics calculation In TE technology development and equipment design, the following main characteristics of the process are of a great importance: TE pressure (p), the minimum (emin) and the average (eav) strain over the cross-section of the billet. In order to obtain relations for calculating these characteristics, a planned numerical experiment was carried out using the Deform-3D software. As variable factors, the dimensionless parameters were chosen that changed in the following ranges: hs/R = 3–11, ld/hs = 0.1–0.2, h/b = 0.5–1. As a result of regression analysis, the following engineering relations for three major TE characteristics were obtained [19]: 0.65 0.87 1.15 min 3.08 hs ld he R hs b − − ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ , 0.47 0.55 0.56 av 3.46 hs ld he R hs b − − ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ , ( ) av 2 σ μy bp h b l p e p hb +⎛ ⎞ = + +⎜ ⎟ ⎝ ⎠ , Физика и техника высоких давлений 2014, том 24, № 2 91 where l was the billet length, pbp was the backpressure. These relations can be used for practical implementation of TE. Applications of Twist Extrusion TE Center encloses TE equipment (see Fig. 7), metal forming equipments (instal- lation for direct extrusion, rolling mill and facilities for wire-drawing), cutting equip- ment, heat-treatment facilities. Pilot-plant equipment for TE has the following characteristics: the maximum pressure of 2000 MPa, the maximum back- pressure of 700 MPa; the temperature of the container and the die is up to 400°C, the ram velocity is 3 mm/s, the dimensions of the specimens are 30 × 40 × 140 mm. There are several technologies based on TE. We have got the UFG billets of Al–Mg alloy2. The grain size about 300–500 nm has been reached (see Fig. 8). The mechanical properties of the alloy are given in Table 1. The obtained material has a higher strength-to- weight ratio and fatigue strength. Therefore it has good prospects of application in air- craft and automotive industries, as a load carrying structural units and aircraft covering. Using of this alloy can reduce the specific quantity of metal per structure and specific fuel consumption, and increase the life of the individual units of the machine as well. Table 1 Mechanical properties of Al–4.45Mg–0.4Mn–0.3Sc–0.1Zr alloy YS UTS σ–1 El, %State of alloy MPa Initial 290 400 180 15 4 pass TE 350 420 330 10 The second promising material for TE commercialization based on the grain refinement effect is commercially pure (CP) titanium for medical application. We have processed billets from the CP titanium by four passes of TE followed by rolling. As a result of TE, the grain refinement to submicron level has occurred (see Fig. 9). Strength properties of the billets increased approximately twofold, while the plasticity of the material remained at an acceptable level (Table 2). 2 The work was performed with Dr. Milman’s laboratory (Frantsevych Institute for Prob- lems of Materials Science, Kiev, Ukraine). Fig. 7. Pilot-plant equipment for TE Физика и техника высоких давлений 2014, том 24, № 2 92 Fig. 8. Structure formed in the Al–Mg alloy processed with TE Fig. 9. Structure of CP titanium after four TE passes Table 2 Mechanical properties of CP titanium YS UTSState of Ti MPa El, % Initial 350 430 20 4 pass TE + Rol. 70% 800 840 15 The obtained UFG titanium has been used for production of implants for use in traumatology and orthope- dics (see Fig. 10). Due to improved mechanical properties, such implants can be used instead of similar products from alloyed titanium, for example, Ti–6Al–4V. The advantage of our plates is that due to the absence of im- purities and alloying elements, they have a better biocompatibility with human tissues and are not rejected by the body. Besides, due to high strength of nanocrystalline titanium, the as- sortment of implants can be greatly expanded. In particular, it is possible to reduce the implant cross-section at half or even two-time as less. This fact allows us to increase considerably the number of patients which can be operated in order to insert such implants. Currently, many people can not be operated for implants insertion because of medical reasons as- sociated with relatively large implant size to the bone. Conclusions We present a study of the kinematics of Twist Extrusion (TE) and show that the mode of deformation in ТЕ is simple shear. Unlike Equal-Channel Angular Fig. 10. Products from UFG titanium, ob- tained by TE for medical application Физика и техника высоких давлений 2014, том 24, № 2 93 Pressing (ECAP), there are two main shear layers perpendicular to the specimen axis. TE has significant commercial potential due to the following physical ef- fects: intensive grain refinement; homogenization and mixing; intensive powders consolidation. Donetsk Institute for Physics and Engineering created a TE Center to showcase the process and educate investors. Our experience with the center has shown that the most prospective directions are producing UFG alloys for medical and aircraft applications. 1. Y. Estrin, A. Vinogradov, Acta Mater. 61, 782 (2013). 2. A.P. Zhilyaev, T.G. Langdon, Progr. Mater. Sci. 53, 893 (2008). 3. R.Z. Valiev, T.G. Langdon, Progr. Mater. Sci. 51, 881 (2006). 4. G.A. Salishchev, O.R. Valiakhmetov, R.M. Galeyev, J. Mater. Sci. 28, 2898 (1993). 5. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 47, 579 (1999). 6. J.Y. Huang, Y.T. Zhu, H.G. Jiang, T.C. Lowe, Acta Mater. 49, 1497 (2001). 7. Y. Beygelzimer, V. Varyukhin, S. Synkov, D. Orlov, Mat. Sci. Eng. A503, 14 (2009). 8. E. Pashinska, V. Varykhin, S. Dobatkin. A. Zavdoveev, Emerging Materials Research 2, EMR3, 139 (2013). 9. S.R. Bahadori, S.A.A. Akbari Mousavi, JOM 64, 593 (2012). 10. H. Zendehdel, A. Hassani, Materials and Design 37, 13 (2012). 11. R. Kocich, L. Kunčická, M. Mihola, K. Skotnicová, Mater. Sci. Eng A563, 86 (2013). 12. N. Pardis, R. Ebrahimi, Mater. Sci. Eng. A527, 6153 (2010). 13. Y. Beygelzimer, D. Prilepo, R. Kulagin, V. Grishaev, O. Abramova, V. Varyukhin, M. Kulakov, Journal of Materials Processing Technology 211, 522 (2011). 14. C. Wang, F. Li, Q. Li, L. Wang, Mater. Sci. Eng. A548, 19 (2012). 15. M. Shahbaz, N. Pardis, R. Ebrahimi, B. Talebanpour, Mater. Sci. Eng. A530, 469 (2011). 16. Y. Beygelzimer, A. Reshetov, S. Synkov, O. Prokof’eva, R. Kulagin, Journal of Materi- als Processing Technology 209, 3650 (2009). 17. Y. Beygelzimer, V. Varyukhin, S. Synkov, A. Sapronov, V. Synkov, Fiz. Tekh. Vys. Dav. 14, № 3, 109 (1999) [in Russian]. 18. Y. Beygelzimer, D. Orlov, V. Varyukhin, in: Proc. Second Int. Symp. on Ultrafine Grained Materials, The Minerals, Metals, and Materials Society, Y.T. Zhu et al. (eds.), Warrendale, PA, 297 (2002). 19. Y. Beygelzimer, V. Varyukhin, R. Kulagin, O. Prokof’eva, A. Reshetov, in: Proc. 10th Int. Conf. Techn. Plast., 244 (2011). Я. Бейгельзимер, В. Варюхин ВИНТОВАЯ ЭКСТРУЗИЯ Представлены результаты исследований процесса винтовой экструзии (ВЭ) и раз- работок по его осуществлению. Показано, что основная деформация материалов при ВЭ происходит в двух зонах простого сдвига, расположенных по границам винтового участка матрицы. ВЭ имеет значительный коммерческий потенциал бла- Физика и техника высоких давлений 2014, том 24, № 2 94 годаря быстрому измельчению зерен и интенсивному массопереносу, приводящему к гомогенизации и перемешиванию материалов. В настоящее время наметились три основных направления в применении ВЭ: формирование субмикронных и наност- руктур в металлах и сплавах; обработка вторичных цветных металлов и сплавов для улучшения их механических свойств; производство объемных образцов путем кон- солидации порошков. Донецкий физико-технический институт создал опытный участок ВЭ, чтобы продемонстрировать процесс и привлечь инвесторов. Опыт ра- боты этого участка показал, что наиболее перспективным направлением примене- ния ВЭ является производство субмикрокристаллических материалов для медици- ны и авиации. Ключевые слова: винтовая экструзия, интенсивная пластическая деформация, субмикрокристаллические материалы