Ion beam space charge neutralization using for beam intensity increase in linacs

As it is well known, the space charge is the main factor limiting the beam intensity in ion bunchers and low energy linacs. It can be declared that the limit low energy beam current is achieved or close now. But it must be enlarged up to 300…1000 mA for the same purposes as neutron generators, accel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
1. Verfasser: Polozov, S.M.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/108676
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Ion beam space charge neutralization using for beam intensity increase in linacs / S.M. Polozov // Вопросы атомной науки и техники. — 2012. — № 3. — С. 131-136. — Бібліогр.: 36 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-108676
record_format dspace
spelling irk-123456789-1086762016-11-15T03:02:17Z Ion beam space charge neutralization using for beam intensity increase in linacs Polozov, S.M. Динамика пучков As it is well known, the space charge is the main factor limiting the beam intensity in ion bunchers and low energy linacs. It can be declared that the limit low energy beam current is achieved or close now. But it must be enlarged up to 300…1000 mA for the same purposes as neutron generators, accelerating driven systems and other. It is provide to discussion about new acceleration and focusing methods which can to be used for this facilities. There are two ways to increase ion beam intensity: to enlarge the beam’s cross section and to use the space charge neutralization. The second way of the limit beam current enlargement is more discussable. It is known three (or more?) ideas for beam space charge neutralization: (i) neutralization using plasmas, ionized residual gas or electron cloud; (ii) so-called “funneling” method; (iii) simultaneous acceleration of positive and negative ions in the same bunch. Some results in beam space charge neutralization will discussed for RFQ, DTL, UNDULAC. Как принято считать, влияние объемного заряда пучка является основным фактором, ограничивающим интенсивность ионных пучков в линейных ускорителях на небольшие энергии. Можно утверждать, что в настоящее время в ускорителях на небольшие энергии достигнут (или вскоре будет достигнут) предел по току пучка. Для увеличения тока ионного пучка до 300…1000 мА, что требуется для некоторых приложений, таких как нейтронные генераторы или ядерные установки, управляемые ускорителем, существуют два основных пути: увеличение поперечного сечения пучка и использование нейтрализации влияния объемного заряда. В настоящее время второй путь обсуждается все более активно. Известно три (или более) способа нейтрализации влияния объемного заряда: использование плазмы, ионизованного остаточного газа или электронного облака; метод «сложения» пучков; ускорение ионов с разным знаком в одном сгустке. Некоторые результаты исследования динамики «нейтрализованного» ионного пучка в линейных ускорителях с ПОКФ, ускорителях Альвареца, линейных ондуляторных ускорителях представлены в данной работе. Як прийнято вважати, вплив об'ємного заряду пучка є основним чинником, що обмежує інтенсивність іонних пучків у лінійних прискорювачах на невеликі енергії. Можна стверджувати, що в даний час у прискорювачах на невеликі енергії досягнута (або незабаром буде досягнута) межа по струму пучка. Для збільшення струму іонного пучка до 300...1000 мА, що потрібно для деяких додатків, таких як нейтронні генератори або ядерні установки, керовані прискорювачем, існують два основних шляхи: збільшення поперечного перерізу пучка і використання нейтралізації впливу об'ємного заряду. В даний час другий шлях обговорюється все більш активно. Відомо три (або більше) способи нейтралізації впливу об'ємного заряду: використання плазми, іонізованого залишкового газу або електронної хмари; метод «складання» пучків; прискорення іонів з різним знаком в одному згустку. Деякі результати дослідження динаміки «нейтралізованого» іонного пучка в лінійних прискорювачах з ПОКФ, прискорювачах Альвареця, лінійних ондуляторних прискорювачах представлені в даній роботі. 2012 Article Ion beam space charge neutralization using for beam intensity increase in linacs / S.M. Polozov // Вопросы атомной науки и техники. — 2012. — № 3. — С. 131-136. — Бібліогр.: 36 назв. — англ. 1562-6016 PACS: 29.17.w, 29.27.Bd http://dspace.nbuv.gov.ua/handle/123456789/108676 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Динамика пучков
Динамика пучков
spellingShingle Динамика пучков
Динамика пучков
Polozov, S.M.
Ion beam space charge neutralization using for beam intensity increase in linacs
Вопросы атомной науки и техники
description As it is well known, the space charge is the main factor limiting the beam intensity in ion bunchers and low energy linacs. It can be declared that the limit low energy beam current is achieved or close now. But it must be enlarged up to 300…1000 mA for the same purposes as neutron generators, accelerating driven systems and other. It is provide to discussion about new acceleration and focusing methods which can to be used for this facilities. There are two ways to increase ion beam intensity: to enlarge the beam’s cross section and to use the space charge neutralization. The second way of the limit beam current enlargement is more discussable. It is known three (or more?) ideas for beam space charge neutralization: (i) neutralization using plasmas, ionized residual gas or electron cloud; (ii) so-called “funneling” method; (iii) simultaneous acceleration of positive and negative ions in the same bunch. Some results in beam space charge neutralization will discussed for RFQ, DTL, UNDULAC.
format Article
author Polozov, S.M.
author_facet Polozov, S.M.
author_sort Polozov, S.M.
title Ion beam space charge neutralization using for beam intensity increase in linacs
title_short Ion beam space charge neutralization using for beam intensity increase in linacs
title_full Ion beam space charge neutralization using for beam intensity increase in linacs
title_fullStr Ion beam space charge neutralization using for beam intensity increase in linacs
title_full_unstemmed Ion beam space charge neutralization using for beam intensity increase in linacs
title_sort ion beam space charge neutralization using for beam intensity increase in linacs
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2012
topic_facet Динамика пучков
url http://dspace.nbuv.gov.ua/handle/123456789/108676
citation_txt Ion beam space charge neutralization using for beam intensity increase in linacs / S.M. Polozov // Вопросы атомной науки и техники. — 2012. — № 3. — С. 131-136. — Бібліогр.: 36 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT polozovsm ionbeamspacechargeneutralizationusingforbeamintensityincreaseinlinacs
first_indexed 2025-07-07T21:54:37Z
last_indexed 2025-07-07T21:54:37Z
_version_ 1837026800280010752
fulltext ISSN 1562-6016. ВАНТ. 2012. №3(79) 131 ION BEAM SPACE CHARGE NEUTRALIZATION USING FOR BEAM INTENSITY INCREASE IN LINACS S.M. Polozov National Research Nuclear University - Moscow Engineering Physics Institute, Moscow, Russia E-mail: smpolozov@mephi.ru As it is well known, the space charge is the main factor limiting the beam intensity in ion bunchers and low en- ergy linacs. It can be declared that the limit low energy beam current is achieved or close now. But it must be enlarged up to 300…1000 mA for the same purposes as neutron generators, accelerating driven systems and other. It is provide to discussion about new acceleration and focusing methods which can to be used for this facilities. There are two ways to increase ion beam intensity: to enlarge the beam’s cross section and to use the space charge neu- tralization. The second way of the limit beam current enlargement is more discussable. It is known three (or more?) ideas for beam space charge neutralization: (i) neutralization using plasmas, ionized residual gas or electron cloud; (ii) so-called “funneling” method; (iii) simultaneous acceleration of positive and negative ions in the same bunch. Some results in beam space charge neutralization will discussed for RFQ, DTL, UNDULAC. PACS: 29.17.w, 29.27.Bd 1. INTRODUCTION Production of high intensity ion beams in a linac is a challenging task of contemporary accelerator physics and technology. Such accelerators can be employed in nuclear energetic, neutron sources, thermonuclear syn- thesis as well as in other applications. The RFQ struc- tures are usually used as the buncher of linac. The cur- rent in the RFQ can be limited by the losses due to in- fluence of the space charge fields. Therefore, the maxi- mum proton beam current achieved in the RFQ is 120…150 mA [1]. As it is well known, the space charge is the main factor limiting the beam intensity in ion bunchers and low energy accelerators. We can say that the limit low energy beam current is achieved or close now. But it must be enlarged up to 300…1000 mA for same uses. It is provide to discussion about new accel- eration and focusing methods which can to be used for this facilities. There are two ways to increase ion beam intensity: to enlarge beam’s cross section and to use space charge neutralization. The aperture of accelerator and the necessary RF potential on electrodes should be enlarged in first case. The ribbon or hollow ion beam acceleration can be used as an alternative method of beam current enlarging. The second way to limit beam current enlargement is more discussable. It is known three (or more?) ideas for beam space charge neutralization: (i) neutralization using plasmas, ionized residual gas or electron cloud; (ii) so-called “funneling” method; (iii) simultaneous acceleration of positive and negative ions in the same bunch. The idea of beam space charge neutralization by means of electron cloud was proposed and analytically studied in [2, 3]. It was shown that electron cloud can really provide to the proton or heavy ion partially neu- tralization. The neutralization of Coulomb field influ- ence by means of plasma lenses is widely used in beam transport lines [4]. More interest results were analyti- cally shown and experimentally verified by number of research groups [5-9] for bunched and continuous pro- ton and ion beams. The ionized residual gas influence was studied in all noted experiments. It was shown that influence of ionized gas can provide to beam emittance decreasing. 2. FUNNELING TECHNOLOGY The term “funneling” we can find in 30-yars old re- ports [10, 11]. The LAMPF DTL linac long time works in LANL uses the funneling (but not use this term) [12, 13]. The previously accelerated to 200 MeV H+ and H- beams were injecting in last section of LAMPF linac and simultaneously accelerated to 800 MeV. The accel- eration was provided in different (opposite) reference phases and bunches of H+ and H- ions were spatially separated. The systems for beam bunching and low en- ergy acceleration with funneling were proposed later in LANL [14] and Frankfurt University [15-17] using RFQ or magnetic quadrupole lenses. In these linacs funneling is used to increase the total beam current. The four stage funneling scheme was presented in [18]. Frequency multiplying is necessary in funneling method if only positive or negative ion beam are accelerates. The linac with very high current can be used for designing fusion technologies facilities or spallation neutron sources [19]. Other bunching and acceleration mechanism can be realized in case when the positive and negative ions were accelerated simultaneously. 3. SIMULTANEOUS ACCELERATION OF POSITIVE AND NEGATIVE IONS IN RFQ As it is well known, RFQ linacs are more useful for low energy proton and ion beams bunching and accelera- tion. This linac was proposed by V.A. Teplyakov and I.M. Kapchinskiy [20] and the beam dynamics in RFQ was studied by many authors [21-24]. Popular codes as simplest LANL PARMTEQ or more accurately DYNAMION [21] and LIDOS [25] uses for numerical beam dynamics simulation in RFQ linacs. It was shown by numerical simulation that the total beam flux is lower and beam transverse emittance de- creases in case of simultaneously acceleration of H+ and H- ions [26]. The decreasing of output beam flux seems very strange result and can be caused by specific model used for simulation. The space-charge forces in these models are calculated by assuming that the charge dis- tribution is periodic and treating by following a separate group of particles for each beam. In case when the two beams have equal input parameters the problem is sim- plified by following only the positive ions. ISSN 1562-6016. ВАНТ. 2012. №3(79) 132 The results of simulation and experiential study of simultaneously acceleration of O+ and O- ions were rep- resented in [27]. It was shown that the total beam flux can be sufficiently (approximately 1.8 times) increased using funneling method. Analysis of beam dynamics shows that in RFQ or DTL the intensity of the ion beam can be made twice as higher by simultaneous accelera- tion of ions with opposite charge signs. The accelerating force in these linacs is proportional to the charge of the ion. Oppositely charged ions are bunched and acceler- ated in the different phases of the accelerating wave. Two bunches (one with a positive and another one with a negative charge) become separated and weakly inter- act with each other after the initial part of the buncher. In this case the phase separation of the bunch is large and the space charge neutralization can’t be achieved. The intensity of the ion beam can be made twice as higher therefore. These results were confirmed in gen- eral by numerical simulation [27-28]. Thus the simulation shows that the total beam flux can be only twice enlarged in RFQ using simultaneous negative and positive ions acceleration. Note that the simulation results [26-29] were observed using modified PARMTEQ code. The distribution of ions and Coulomb fields was calculated separately for positive and nega- tive ions on 2D grid. The full field is calculates by su- perposition that is not all correct for two beam accelera- tion because the beams of oppositely charged particles are overlapping in buncher. Different results were done by A.P. Durkin using LIDOS code. It was shown [30] that the current trans- mission coefficient can be “significantly (up to 10%) diminishes”. These differences provide us to necessary of more detail investigation of simultaneous negative and positive ions acceleration in RFQ. 4. USING BEAMDULAC CODE FOR DUAL BEAM DYNAMICS SIMULATION IN RFQ The BEAMDULAC code is developing in MEPhI for self-consistent beam dynamics investigation in RF linacs and transport channels [31-32]. The 2D and 3D ion beam dynamics can be studied by means of this code. The motion equation for each particle is solved in the external fields and the inter-particle Coulomb field simultaneously. The BEAMDULAC code utilizes the cloud-in-cell (CIC) method for accurate treatment of the space charge effects. The charge density is deposited on the grid points using the CIC technique. To determine the potential of the Coulomb field, the Poisson equation is solved on the grid with periodic boundary conditions at both ends of the domain in the longitudinal direction. The aperture of the channel is represented as an ideally conducting surface of rectangular or circular cross- section. Therefore the Dirichlet boundary conditions are applied at transverse boundaries of the simulation do- main. In such an approach, the interaction of the bunch space charge with the accelerating channel boundaries is taken into account. This allows consideration of the shielding effect, which is sufficiently important for transverse focusing in the narrow channel. The fast Fou- rier transform (FFT) algorithm is used to solve the Pois- son equation on a 3D grid. The Fourier series for the space charge potential obtained can be analytically dif- ferentiated, and thus each component of the Coulomb electrical field can be found as a series with known co- efficients. Accordingly in our code, the space charge field can be calculated with the same precision as the Coulomb potential. Fig.1. Current transmission coefficient versus initial beam current for proton and dual beam. The simulation was done using BEAMDULAC code for RFQ linac with parameters [29] Fig.2. Main parameters of RFQ channel Fig.3. Current transmission coefficient (a) and output transverse emittance (b) versus initial beam current for proton and dual beam b a ISSN 1562-6016. ВАНТ. 2012. №3(79) 133 The code modification was provided for the investi- gation of multi ion beam dynamics [33]. The Coulomb field calculation was updated mainly. The modification of space charge distribution calculation and algebraic equation for Fourier coefficients was provided for multi ion beam self-consistent dynamics simulation in espe- cial BEAMDULAC-2B code version. At first the results obtained by Y. Ogury in [29] were verified: it was shown that the current transmission coefficient is lower that he predicates. The limit beam current for such linac is equal to 80 mA approximately (Fig.1). Next the dual beam dynamics in this linac was simulated using BEAMDULAC-2B code. It was shown that the total beam flux can achieve 200 mA (Fig.1). This value not confirms the simulation results which were done by Y. Ogury using modified PARMTEQ code. Note that the very low value of initial transverse emittance was used in [29]. It can be expected that the differences between the results are caused by non correct Coulomb field influ- ence treatment in PARMTEQ code. The main differ- ences should be observer in bunching part of linac in which the H+ and H- bunches will overlap. The abstract RFQ linac with long buncher and conventional dynamic matching part at front end of linac was proposed to study of dual beam bunching process. The main pa- rameters of this linac are shown in Fig.2. The limit pro- ton beam current for this linac is also equal to 80 mA and up to 400 mA for dual beam (Fig.3). It is also clear from Fig.3,b that the limit beam flux is defined by non linear effects in the beam: the transverse emittance grows nonlinearly if the beam flux is higher than any limit value. The process of dual beam bunching in RFQ linac with described above parameters is shown in Fig.4 for different beam fluxes. It is clear that positive and negative ions are interacting appreciably in bunching part of linac and interaction is stronger for largest cur- rent. This interaction partially compensates the Cou- lomb field influence and the limit beam flux can be 4-5 lager than limit current for proton or H- beam. But this interaction provides to more intensive halo formation if the flux is lager than any limit value. Fig.4. Dual beam bunching process: longitudinal and transverse beam spaces in different channel cross-sections. Current of each particles type: I=0 (left), I=100 mA (middle), I=250 mA (right) ISSN 1562-6016. ВАНТ. 2012. №3(79) 134 It is also interest to study the beam dynamics in case when the initial beam currents are not equally for pro- tons and H-. This case is illustrated in Fig.5 and 6. Fig.5. Current transmission coefficient (a) and output transverse emittance (b) versus of the ratio of initial beam fluxes of H- and protons, I+=100 mA Fig.6. Current transmission coefficient (a) and output transverse emittance (b) versus of the ratio of initial beam fluxes of H- and protons, I++|I-|=150 mA The current transmission coefficient Kt (a) and out- put transverse emittance E (b) versus of the ratio of ini- tial beam fluxes of H- and protons I-/I+ are shown in Fig.5 in case when proton beam current is fixed and equals to I+=100 mA. The same dependences are shown in Fig.6 in case when initial beam flux is fixed and I++|I-|= 150 mA. The transmission coefficient of H- ions, Kt (-), in the dual beam is approximately equal to the transmission coefficient for the single H- beam with current I=|I(-)|-|I(+)|. The Kt (+) for H+ ions increases and Kt (-) for H- decreases when the ratio of |I(-)|/|I(+)| enlarges. The beam with smaller current has the smaller output emittance. The simulation shows that in “quasi-neutral” beam current transmission coefficients for H+ and H- are closely, even in case when I- and I+ differs significantly. Fig.7. Current transmission coefficient versus initial beam current in RFQ for bunched dual beam Finally it is interest to study the bunched dual beam dynamics in RFQ. It was shown that bunches of H+ and H- are interact but the interaction is weakly compara- tively not bunched beam. The current transmission ver- sus initial beam flux is shown in Fig.7 for bunched beam. It was shown that the longitudinal interaction is observing and the bunch phase size will smaller for largest currents. This effect explains the limit flux value enlargement. 5. DUAL BEAM DYNAMICS SIMULATION IN DTL The DTL (Alvarez type) linac is the classical system for ion beam acceleration in energy range 0.5…100 MeV. One of DTL linacs was the first accel- erator in which protons and H- ions were successfully accelerated simultaneously (LAMPF, LANL). The pa- rameters of LAMPF DTL linac are unavailable but it is known that the operation current is 100 mA for protons and I+=100 mA, I-≈80 mA in dual mode. It is interest to verify this result for other DTL linac. The first tank of LINAC4 for CERN SPL linac was R&D in MEPhI, ITEP and VNIIEF (Sarov). The parameters of this DTL linac can be founded in [31], the input/output energy is equal to 3/10 MeV and operation current 40 mA. The simulation was done using especially designed version of BEAMDULAC_DTL-2B code. It was shown that bunches of H+ and H- interact weakly and space charge influence not compensates but transverse emit- tance and beam envelope will some smaller for dual beam. b a a b ISSN 1562-6016. ВАНТ. 2012. №3(79) 135 6. ACCELERATION OF POSITIVE AND NEGATIVE IONS IN THE SAME BUNCH In a conventional RF linac the beam is accelerated by a synchronous wave of the RF field. An alternative method of ion acceleration can be realized if the oppo- sitely charged ions will bunched and accelerated in the same bunch. The structure where such acceleration mechanism can be realized was proposed by E.S. Masunov and called linear undulator accelerator (UNDULAC) [34, 35]. The acceleration mechanism in UNDULAC is similar to the acceleration mechanism in an inverse free electron laser (IFEL), where the electron beam is accelerated by a ponderomotive force. In UNDULAC the beam bunching, acceleration and focus- ing are realized in the accelerating force which is driven by a combination of two non-synchronous waves (two undulators). As it has been shown, one of the undulators must be of the RF type, the second one being, option- ally, of magnetic (UNDULAC-M), electrostatic (UNDULAC-E) or RF (UNDULAC-RF) types. The accelerating structure of UNDULAC can be realized as an interdigital H-type (IH) periodic resonator with drift tubes. As it is well known the ponderomotive force is proportional to charge of ion squared. It is possible to bunch and to accelerate the positive and negative ions simultaneously in the same bunch by means this prop- erty. As two examples, the equation of ion motion is ϕβπλ=τβ 2sin)/()2/(d/d 10 22 EEmce , ϕβπλ=τβ cos)2/()2/(d/d 00 22 oEEmce for UNDULAC-E. Here β is the ion velocity, τ=ωt is the dimensionless time, λ – the length of wave, e and m – the ion charge and mass, ϕ – the phase of particle in accelerating com- bined wave, E0 and E1 are the amplitudes of base and first RF field spatial harmonics in periodical resonator, oE0 is the amplitude of electrostatic undulator field. The analysis of numerical simulation results shows that the limit dual beam flux value is very high: about 4 A for UNDULAC-RF and 20 A for UNDULAC-E [36]. Note that this flux value is unachievable for contemporary accelerator technology because the limit beam current of modern ribbon ion sources is achieves 1 A approxi- mately. The beam power could be equal to 10 MW when the total beam flux is equal to 10 A and the output beam energy is 1 MeV. This is impossible for modern RF generators. CONCLUSIONS The efficiency of space charge neutralization for ion limit beam current enlargement was discussed. It was shown that this mechanism can be very effective for ion bunchers as RFQ. The high accuracy codes are need for dual beam dynamics simulation and correct physical interpretation should be done for all results. REFERENCES 1. A. Schempp, et al. // Proc. of PAC’97, p.1084. 2. S. Hamphries, et al. // IEEE Transactions on Nu- clear Science, v. NS-26. 1979, № 3, p.4220. 3. T. Waiss, et al. // Proc. of EPAC’88, p.535. 4. S. Robertson // Proc. of. PAC’93, p.2641. 5. T. Waiss, et al. // Proc. of EPAC’90, p.809. 6. X. Fleury, et al. // Proc. of EPAC’98, p.1300. 7. I.D. Kaganovich, et al. // Proc. of. PAC’93, p.2975. 8. A. BenIsmail, et al. // Proc. of LINAC’04, p.324. 9. J. S. Pennington, et al. // Proc. of PAC’07, p.3675. 10. R.II. Stokes, et al. // IEEE. Vol. NS-32 NOS. 1985. 11. K. Bongardt, et al. // HIIF. GSI 82-8. 1982, p.224. 12. D.C. Hagerman, et al. // Proc. of. PAC’73, p.905. 13. D.C. Hagerman, et al. // Proc. of. PAC’81, p.2910. 14. F. W. Guy, et al. // Proc. of PAC’89, p.833. 15. W. Barth, et al. // Proc. of PAC’91, p.3076. 16. J.E. Stovall, et al. // NIM A. 1989, v.278, Issue 1. p.143. 17. A. Schempp, et al. // Proc. of LINAC’98, p.424. 19. Y. Senichev, et al. Report ESS01-119-L, 2001. 20. I.M. Kapchinskiy, V.A. Teplyakov // Prib. Tekh. Eksp. 1970, v.119, №2, p. 17. 21. A.A. Kolomiets, et al. // Proc. of EPAC’98, p.1201. 22. T.V. Kulevoy, et al. // Proc. of EPAC 2000, p.854. 23. D.A. Ovsyannikov, et al. // Technical Physics., 2009, №11, p.102 24. D.A. Ovsyannikov, et al. // International Journal of Modern Physics A. 2009, v.24(5), p.941. 25. A. Durkin, et al. // Proc. of APAC’01, p.403. 26. K.R. Crandall // Proc. of PAC’91, p.401. 27. J.X. Fang, et al. // Proc. of LINAC’02, p.335. 28. Q.Z. Xing, et al. // NIM A. 2005, 538, p.143. 29. Y. Oguri // NIM A. 1998, 373, p. 175. 30. A. Durkin, et al. // Proc. of APAC’01, p.400. 31. E.S. Masunov, S.M. Polozov // NIM A. 2006, 558, p.184-187. 32. E.S. Masunov, S.M. Polozov // Phys. Rev. ST AB (11). 2008, 074201. 33. D.A. Kashinsky, et al. // Proc. of EPAC’06, p.1621. 34. E.S. Masunov // Sov. Phys. Tech. Phys. (35). 1990, №8, p.962-965. (in Russian). 35. E.S. Masunov // Technical Physics (46). 2001, №11, p.1433-1436. 36. E.S. Masunov, S.M. Polozov // Problems of Atomic Science and Technology, Series “Nuclear Physics Investigations”, 2010, №2, (53), p.118. Статья поступила в редакцию 25.09.2011 г. ISSN 1562-6016. ВАНТ. 2012. №3(79) 136 ИСПОЛЬЗОВАНИЕ НЕЙТРАЛИЗАЦИИ ВЛИЯНИЯ ОБЪЕМНОГО ЗАРЯДА ПУЧКА ДЛЯ ПОВЫШЕНИЯ ИНТЕНСИВНОСТИ ПУЧКОВ В ЛИНЕЙНЫХ УСКОРИТЕЛЯХ С.М. Полозов Как принято считать, влияние объемного заряда пучка является основным фактором, ограничивающим интенсивность ионных пучков в линейных ускорителях на небольшие энергии. Можно утверждать, что в настоящее время в ускорителях на небольшие энергии достигнут (или вскоре будет достигнут) предел по току пучка. Для увеличения тока ионного пучка до 300…1000 мА, что требуется для некоторых приложе- ний, таких как нейтронные генераторы или ядерные установки, управляемые ускорителем, существуют два основных пути: увеличение поперечного сечения пучка и использование нейтрализации влияния объемного заряда. В настоящее время второй путь обсуждается все более активно. Известно три (или более) способа нейтрализации влияния объемного заряда: использование плазмы, ионизованного остаточного газа или электронного облака; метод «сложения» пучков; ускорение ионов с разным знаком в одном сгустке. Неко- торые результаты исследования динамики «нейтрализованного» ионного пучка в линейных ускорителях с ПОКФ, ускорителях Альвареца, линейных ондуляторных ускорителях представлены в данной работе. ВИКОРИСТАННЯ НЕЙТРАЛІЗАЦІЇ ВПЛИВУ ОБ'ЄМНОГО ЗАРЯДУ ПУЧКА ДЛЯ ПІДВИЩЕННЯ ІНТЕНСИВНОСТІ ПУЧКІВ У ЛІНІЙНОМУ ПРИСКОРЮВАЧІ С.М. Полозов Як прийнято вважати, вплив об'ємного заряду пучка є основним чинником, що обмежує інтенсивність іонних пучків у лінійних прискорювачах на невеликі енергії. Можна стверджувати, що в даний час у при- скорювачах на невеликі енергії досягнута (або незабаром буде досягнута) межа по струму пучка. Для збіль- шення струму іонного пучка до 300...1000 мА, що потрібно для деяких додатків, таких як нейтронні генера- тори або ядерні установки, керовані прискорювачем, існують два основних шляхи: збільшення поперечного перерізу пучка і використання нейтралізації впливу об'ємного заряду. В даний час другий шлях обговорю- ється все більш активно. Відомо три (або більше) способи нейтралізації впливу об'ємного заряду: викорис- тання плазми, іонізованого залишкового газу або електронної хмари; метод «складання» пучків; прискорен- ня іонів з різним знаком в одному згустку. Деякі результати дослідження динаміки «нейтралізованого» іон- ного пучка в лінійних прискорювачах з ПОКФ, прискорювачах Альвареця, лінійних ондуляторних приско- рювачах представлені в даній роботі.