The mechanism of current transport in the structure Al-p-CdTe-Mo with different thickness of the base

In this paper the mechanism of current’s transport in the structure Al-p-CdTe-Mo is studied, when the thickness of the base w ≤ 10 μm. The results of study of current-voltage characteristics of the structure Al-p-Cd-Te-Mo with different thicknesses of the base and the influence of the thickness of t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Mirsagatov, Sh.A., Uteniyazov, A.K.
Формат: Стаття
Мова:English
Опубліковано: Науковий фізико-технологічний центр МОН та НАН України 2015
Назва видання:Физическая инженерия поверхности
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/108760
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The mechanism of current transport in the structure Al-p-CdTe-Mo with different thickness of the base / Sh.A. Mirsagatov, A.K. Uteniyazov // Физическая инженерия поверхности. — 2015. — Т. 13, № 3. — С. 325-329. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-108760
record_format dspace
spelling irk-123456789-1087602016-11-16T03:02:46Z The mechanism of current transport in the structure Al-p-CdTe-Mo with different thickness of the base Mirsagatov, Sh.A. Uteniyazov, A.K. In this paper the mechanism of current’s transport in the structure Al-p-CdTe-Mo is studied, when the thickness of the base w ≤ 10 μm. The results of study of current-voltage characteristics of the structure Al-p-Cd-Te-Mo with different thicknesses of the base and the influence of the thickness of the base on the mechanism of current’s transport are given. В работе исследуется механизм переноса тока в структуре Al-p-CdTe-Mo, когда толщина базы w ≤ 10 μm. Приведены результаты исследований вольт-амперных характеристик структуры Al-p-CdTe-Mo с разными толщинами базы и влияния толщины базы на механизм переноса тока. У роботі досліджується механізм перенесення струму в структурі Al-p-CdTe-Mo, коли товщина бази w ≤ 10 μm. Наведено результати досліджень вольт-амперних характеристик структури Al-p-CdTe-Mo з різними товщинами бази та впливу товщини бази на механізм перенесення струму. 2015 Article The mechanism of current transport in the structure Al-p-CdTe-Mo with different thickness of the base / Sh.A. Mirsagatov, A.K. Uteniyazov // Физическая инженерия поверхности. — 2015. — Т. 13, № 3. — С. 325-329. — Бібліогр.: 15 назв. — англ. 1999-8074 http://dspace.nbuv.gov.ua/handle/123456789/108760 53.043, 53.023.539.234 en Физическая инженерия поверхности Науковий фізико-технологічний центр МОН та НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper the mechanism of current’s transport in the structure Al-p-CdTe-Mo is studied, when the thickness of the base w ≤ 10 μm. The results of study of current-voltage characteristics of the structure Al-p-Cd-Te-Mo with different thicknesses of the base and the influence of the thickness of the base on the mechanism of current’s transport are given.
format Article
author Mirsagatov, Sh.A.
Uteniyazov, A.K.
spellingShingle Mirsagatov, Sh.A.
Uteniyazov, A.K.
The mechanism of current transport in the structure Al-p-CdTe-Mo with different thickness of the base
Физическая инженерия поверхности
author_facet Mirsagatov, Sh.A.
Uteniyazov, A.K.
author_sort Mirsagatov, Sh.A.
title The mechanism of current transport in the structure Al-p-CdTe-Mo with different thickness of the base
title_short The mechanism of current transport in the structure Al-p-CdTe-Mo with different thickness of the base
title_full The mechanism of current transport in the structure Al-p-CdTe-Mo with different thickness of the base
title_fullStr The mechanism of current transport in the structure Al-p-CdTe-Mo with different thickness of the base
title_full_unstemmed The mechanism of current transport in the structure Al-p-CdTe-Mo with different thickness of the base
title_sort mechanism of current transport in the structure al-p-cdte-mo with different thickness of the base
publisher Науковий фізико-технологічний центр МОН та НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/108760
citation_txt The mechanism of current transport in the structure Al-p-CdTe-Mo with different thickness of the base / Sh.A. Mirsagatov, A.K. Uteniyazov // Физическая инженерия поверхности. — 2015. — Т. 13, № 3. — С. 325-329. — Бібліогр.: 15 назв. — англ.
series Физическая инженерия поверхности
work_keys_str_mv AT mirsagatovsha themechanismofcurrenttransportinthestructurealpcdtemowithdifferentthicknessofthebase
AT uteniyazovak themechanismofcurrenttransportinthestructurealpcdtemowithdifferentthicknessofthebase
AT mirsagatovsha mechanismofcurrenttransportinthestructurealpcdtemowithdifferentthicknessofthebase
AT uteniyazovak mechanismofcurrenttransportinthestructurealpcdtemowithdifferentthicknessofthebase
first_indexed 2025-07-07T22:01:38Z
last_indexed 2025-07-07T22:01:38Z
_version_ 1837027242006282240
fulltext Mirsagatov Sh. A., Uteniyazov A. K., 2015 © 325 УДК: 53.043, 53.023.539.234 THE MECHANISM OF CURRENT TRANSPORT IN THE STRUCTURE Al-p-CdTe-Mo WITH DIFFERENT THICKNESS OF THE BASE Sh. A. Mirsagatov1, A. K. Uteniyazov2 1Physical technical institute of the Academy of Sciences of Uzbekistan, Tashkent, 2Karakalpak State University, Nukus, Received 08.07.2015 In this paper the mechanism of current’s transport in the structure Al-p-CdTe-Mo is studied, when the thickness of the base w ≤ 10 μm. The results of study of current-voltage characteristics of the structure Al-p-Cd-Te-Mo with different thicknesses of the base and the influence of the thickness of the base on the mechanism of current’s transport are given. The above results at current densities ~8.62∙10–8–4.36∙10–5 A/cm2 and ~5.08∙10–7–2,44∙10–5 A/cm2 for samples No. 1 and No. 2, respectively, were obtained by the theory that takes into account only duffusion components of the current and the applied voltage to the base of the diode structures. At high current densities ~4.36∙10–5–1.95 A/cm2 and ~2.44∙10–5–3.98 A/cm2 for samples No. 1 and No. 2, respectively, results were obtained by the theory of the drift current transport mechanism, taking into account the possibility exchange of free carriers inside the recombination complex. Keywords: film, Schottky barrier, diode structure. МЕХАНИЗМ ПЕРЕНОСА ТОКА В СТРУКТУРЕ Al-p-CdTe-Mo С РАЗЛИЧНОЙ ТОЛЩИНОЙ БАЗЫ Ш. А. Мирсагатов, А. К. Утениязов В работе исследуется механизм переноса тока в структуре Al-p-CdTe-Mo, когда толщина базы w ≤ 10 μm. Приведены результаты исследований вольт-амперных характеристик структуры Al-p-CdTe-Mo с разными толщинами базы и влияния толщины базы на механизм переноса тока. Соответственно для образцов № 1 и № 2 при плотностях тока ~8,62∙10–8–4,36∙10–5A/cm2 и ~5,08∙10–7–2,44∙10–5A/cm2 результаты получены по теории, в которой учитываются только диффузионные составляющие тока и падение приложенных напряжений на толщине базы в диодных структурах. При больших плотностях тока ~4,36∙10–5–1,95 A/cm2 и ~2,44∙10–5– 3,98 A/cm2, соответственно для образцов № 1 и № 2, результаты получены по теории дрейфо- вого механизма переноса тока, учитывающей возможность обмена свободными носителями внутри рекомбинационного комплекса. Ключевые слова: пленка, барьер Шоттки, диодная структура. МЕХАНІЗМ ПЕРЕНЕСЕННЯ СТРУМУ В СТРУКТУРІ Al-p-CdTe-Mo З РІЗНОЮ ТОВЩИНОЮ БАЗИ Ш. А. Мірсагатов, А. К. Утеніязов У роботі досліджується механізм перенесення струму в структурі Al-p-CdTe-Mo, коли товщи- на бази w ≤ 10 μm. Наведено результати досліджень вольт-амперних характеристик структури Al-p-CdTe-Mo з різними товщинами бази та впливу товщини бази на механізм перенесен- ня струму. Відповідно для зразків № 1 і № 2 при щільності струму ~8,62∙10–8–4,36∙10–5A/cm2 і ~5,08∙10–7–2,44∙10–5A/cm2 результати отримані по теорії, в якій враховуються тільки дифузійні складові струму і падіння прикладених напруг на товщині бази в діодних структурах. При великій щільності струму ~4,36∙10–5–1,95 A/cm2 і ~2,44∙10–5–3,98 A/cm2, відповідно для зразків № 1 і № 2, результати отримані з теорії дрейфового механізму перенесення струму, що враховує можливість обміну вільними носіями всередині рекомбінаційного комплексу. Ключові слова: плівка, бар’єр Шотткі, діодна структура. THE MECHANISM OF CURRENT TRANSPORT IN THE STRUCTURE Al-p-CdTe-Mo WITH DIFFERENT THICKNESS OF THE BASE ФІП ФИП PSE, 2015, т. 13, № 3, vol. 13, No. 3326 INTRODUCTION Cadmium telluride is widely used to create X-ray detectors and those of γ-radiation. The mono- crystal CdTe and Cd1–xZnxTe-detectors have already demonstrated their advantage over Si and GaAs-detectors and have been successfully used for spectrometry and γ-radiation. In the last years, detectors with Schottky barrier [1–3], based on CdTe and Cd1–xZnxTe began in- tensively developed. The essential advantage of such detectors are small reverse currents (~10–7 A) and high operating temperature (T ≥ 300 °K). In addition, detectors based on the diodes with Schottky barrier can de- tect high-energy photons with energies up to 1 MeV and higher within energy limit [4]. For the first time we obtained in [5] injec- tion photodetector based on p-type conductivity coarse-film cadmium telluride with the thick- ness of the base d ≥ 50 μm, and in [6] current transport mechanism of injection of photodetec- tors was examined. Resistance of the base of these photodetectors was close to the intrinsic conductivity. The aim of this study is to investigate the in- fluence of the thickness of the base on the cur- rent transport mechanism. The studied film structures were prepared using formerly developed technology described in [7]. Current-voltage characteristics were studied at the forward (when the «+» was applied to Mo) and reverse (where «–» was applied to Mo) directions at the wide range of current and voltage changes. Total analysis of the current- voltage characteristics shows that they possess rectifying properties and their rectification co- efficient defined as the ratio of forward current and reverse one at the fixed voltage (5 V), is more than four orders of magnitude. Figure 1 shows the dependence of current-voltage char- acteristics for direct current in semi-log scale for the two types of samples. Current-voltage characteristics of these samples fit well into direct lines of fig. 2. Consequently, they are described by dependence of type J ~ AVα. Seg- uence of the current-voltage characteristics’ parts of the sample are different at forward cur- rent and at reverse one. 100 Ig J, A /c m 2 10–1 10–2 10–3 10–4 10–5 10–6 10–7 10–8 0 2 4 6 8 U, V 10 1 2 3 4 a b 100 J, A /c m 2 10–1 10–2 10–3 10–4 10–5 10–6 10–7 10–8 0 2 4 6 8 U, V 10 1 2 3 4 Fig. 1. Direct branch of the CVC for typical Schottky barrier diodes (Al-p-CdTe-Mo) in semi-log scale in the dark at T = 300 K. The area of Al-contact S ≈ 0.07 cm2, (a – w = 8 µm, ρ ≈ 2·108 Ω∙cm, base — sample No. 1, b – w = 10 µm, ρ ≈ 2·107 Ω∙cm, base — sample No. 2) 100 Ig J, A /c m 2 10–1 10–2 10–3 10–4 10–5 10–6 10–7 10–8 0,01 0,1 1 U, V 10 4 3 2 1 a 100 J, A /c m 2 10–1 10–2 10–3 10–4 10–5 10–6 10–7 10–8 1Е-3 0,01 0,1 1 U, V 10 4 3 2 1 b Fig. 2. Direct branch of the CVC for typical Schottky di- odes (Al-p-CdTe-Mo) in double logarithmic scale in the dark at T = 300 K. The area of Al-contact S ≈ 0.07 cm2, (a – w = 8 µm, ρ ≈ 2·108 Ω∙cm, base — sample No. 1, b – w = 10 µm, ρ ≈ 2·107 Ω∙cm, base — sample No. 2) SH. A. MIRSAGATOV, A. K. UTENIYAZOV ФІП ФИП PSE, 2015, т. 13, № 3, vol. 13, No. 3 327 equal to one, C = 1 and the potential barrier’s height is calculated as it is described in [6], equal respectively to W = 0,84 eV and W = 0,83 eV for samples No. 1 and No. 2. The second part of the characteristic (see. Figure 1) is probably described as in [6] by the theory of V. I. Stafeev [9], because in it value of the exponent (c) more than 2 and it is equal to 4.05 and 4.08 for samples No. 1 and No. 2 respectively. Current-voltage characteristics is described [9]: , (1) where and  o 2 1 ρ tg 2 n n n wch LkT SI q b L w L         , (2) here b = μn/μp — the ratio of electron’s and hole’s mobilities. At the second part have been also identified the pre-exponential factors, they are 1.59∙10–8A and 6.43∙10–8A. Using the above mentioned experimental data and formulas (1) and (2) values of the diffusion length of minor- ity carriers-electron Ln, mobility product for the lifetime of the electron — μn·τn and the resistiv- ity of the base — ρ, were determined for the values w ≈ 8 μm, w ≈ 10 μm for samples No. 1 and number 2, respectively, b = μn/μp = 10 [8] and T = 300 K. Table 1 gives also the param- eters calculated from the third and fourth parts of CVC from formulas (1) and (2) to compare the results. 0 1 qV ckTI I e   = −    1 2 + ++ = b b L wbCh C n EXPERIMENTAL RESULTS AND DISCUSSION Direct branch of CVC measured in the dark at room temperature is shown in Fig.1. As the figure shows the direct branch of the CVC consists mainly of four parts, which are described by the following exponential functions: 1) ( )01 1exp / 1I I qV c kT= −   , where 11 =c and I01 = 2.61·10–9 A; 2 ) ( )02 2exp / 1I I qV c kT= −   , w h e r e c2 = 4.05 и I02 = 1.59·10–8 A; 3 ) ( )03 3exp / 1I I qV c kT= −   , w h e r e c3 = 23.98 and I03 = 1.96·10–5 A; 4 ) ( )04 4exp / 1I I qV c kT= −   , w h e r e c4 = 73.62 and I04 = 1.93·10–3 A for the sample No. 1 and 1) ( )01 1exp / 1I I qV c kT= −   , where 11 =c and I01 = 3.32·10–9 A; 2 ) ( )02 2exp / 1I I qV c kT= −   , w h e r e c2 = 4.08 and I02 = 6.43·10–8 A; 3 ) ( )03 3exp / 1I I qV c kT= −   , w h e r e c3 = 16.96 and I03 = 6.72·10–5 A; 4 ) ( )04 4exp / 1I I qV c kT= −   , w h e r e c4 = 78.96 and I04 = 3.86·10–3 A for the sample No. 2. In the first part of the CVC the current is probably limited by the thermal electron emis- sion [8]. Since ideal factor for both samples is Table 1 Parameters, determined from the first parts of the CVC Number of sample C W/L Ln, μm μnτn, сm2∙V–1 τn, s I0, А ρ, Ω∙сm 1 4.05 1.87 4.27 7.01∙10–6 7.01∙10–8 1.59∙10–8 2.48 1010 23.98 3.91 2.04 1.6∙10–6 1.6∙10–8 1.96∙10–5 1.53∙108 73.62 5.07 1.57 9.56∙10–7 9.56∙10–9 1.93∙10–3 4.95∙106 2 4.08 1.88 5.3 1.08∙10–6 1.08∙10–8 6.43∙10–8 4.86∙109 16.96 3.55 2.81 3.04∙10–6 3.04∙10–8 6.72∙10–5 2.55∙107 78.96 5.14 1.94 1.45∙10–6 1.45∙10–8 3.86∙10–3 2.15∙106 THE MECHANISM OF CURRENT TRANSPORT IN THE STRUCTURE Al-p-CdTe-Mo WITH DIFFERENT THICKNESS OF THE BASE ФІП ФИП PSE, 2015, т. 13, № 3, vol. 13, No. 3328 Results of Table 1 shows that at increas- ing current density the diffusion length of mi- nority carriers (electrons) Ln decreases and, accordingly, mobility product for the lifetime of electrons — μn·τn , decreases. This experimen- tal result is explained by rechanging recombina- tion centers and as a result, decreasing lifetime of minority nonequilibrium carriers too. Researhed diode structure at high current den- sities transforms to the diode structure with a thick base. If it is so, the current–voltage char- acteristic of this diode structure at high current densities should be described well by depen- dence of the current on voltage of type J ~ Vα voltage. Indeed, built in double logarithmic current-voltage characteristics at current den- sities ~4.36∙10–5–1.95 A/cm2 and ~2.44∙10–5– 3.98 A/cm2, respectively, for samples No. 1 and No. 2, 3 and 4 parts (See Figure 2) are described well by the dependence of the current on the voltage of type J ~ Vα . According to the theory [10], CVC’s part with a sharp increasing cur- rent appears when together with point impurities and defect-impurity centers complex recom- bination systems involve in recombination processes. They can be such complexes as «neg- atively charged acceptor + positively charged intercenter» or «positively charged donor + negatively charged vacancy», causing by recombination-stimulated processes [11, 12], «small donor + vacancy» appearing from the decay of complex systems [13, 14] and so on. So in highly compensated p-CdTe film, to- gether with simple point defects complex recom- bination systems are too. In this case, the rate of recombination is de- scribed by [10]:       2 1 1 τ n p i R n p i c c np n U N c n n c p p a np       , (3) where NR — concentration of recombination centers (complexes); n, p — concentration of electrons and holes; ni — intrinic con- centration in the semiconductor; cn, сp — coefficients of capture of electrons and holes; n1, p1 — equilibrium concentrations of electrons and holes on conditions when Fermi level co- incides with the level of impurities (so-called statistical Shockley-Read factors); τ i — time taking into account the inertia of those or other processes of electronic exchange within the recombination complex; a-coeffi- cient depending on the specific type of impu- rity or defect-impurity complexes (see [10]). According to the theory [10], CVC’s parts of type J ~ Vα, where α > 2, are realized when the recombination of nonequilibrium carri- ers is delayed, that is, involving complexes in which the electronic exchange takes place. In this case, in the denominator of (3) inequality    1 1 τn p ic n n c p p a np    (4) is realised and CVC has the following analytic expression:       2 2 1 μ τ μ 1 2 1 _ μ τ R A n i n R n A n i b w N w JV N q b C b w N c DA B J N a C J J          . (5) In this case, AN – the concentration of shallow acceptor centers and the parameter C is related to the concentration of electrons [10, 15]: JCn =)0( . (6) From (5) we can determine such parameters as / τ , (0), τ n R i i cN n a (τi — delay time within the complex, RN the concentration of complexes). Equating straight line for two given data points (J1, V1 и J2, V2), we define the value of the voltage 1 2 1 1 2 1 V VV V JJ J − = − − , (7) which then equate to the value   21 μ τ R A n i b w N A N   SH. A. MIRSAGATOV, A. K. UTENIYAZOV ФІП ФИП PSE, 2015, т. 13, № 3, vol. 13, No. 3 329 of the formula (5). To determine the param- eters of the sharp increase of current we choose three experimental points (V1, J1), (V2, J2), (V3, J3) and then we compose two equation for them to determine coefficients B and D 1 22 1 2 1 2 1 1 1D J JV VB J J J J   −  −  = − − − , (8) ( ) ( ) 3 2 3 2 2 1 2 1 3 2 2 3 1 2 2 1 1 1 1 1 J J V V V V J J D J J J J J J J J − − − − − =     − − − −      −   , (9) which can be equated to their analytical value from the formula (5). Using the formula (5) µnC is determined, and using the formula (6) we can estimate the concentration of injected electrons n(0) at the beginning and at the end of these parts of CVC. All parameters calculated from the parts of CVC are given in Table 2. Experimental results show that at changing current density concentration of recombination centers taking part in the processes of current transport is changed. This implies that at low current densities CVC is described well by current-voltage characteristics, which takes into account the diffusion component of the current. At the same time for large current densities CVC is described well by drift current component. Jf we could have the theory of the current-voltage characteristics, taking into account both the diffusion and drift current components, we would get the full dynamics of the current’s dependence on voltage. REFERENCES 1. Takahashi T., Watanabe S. // IEEE Trans. Nucl. Sci. — 2001. — Vol. 48. — 950 p. 2. Watanabe S., Takahashi T., Okada Y., Sato G., Kouda M., Mitani T., Kabayashi Y., Naka- zawa K., Kuroda Y., Onishi M. // IEEE Trans. Nucl. Sci. — 2002. — Vol. 49. — 210 p. 3. Tanaka T., Kabayashi T., Mitani T., Naka- zawa K., Oonuki K., Sato G., Takahashi T., Watanabe S. // New Astronomy Reviews. — 2004. — Vol. 48. — 309 p. 4. Kosyachenko L. A., Sklyarchuk V. M., Maslya- n chuk O. L., Grushko E. V., Gnatyuk V. A., Hatanaka Y. Letters to the RUs. — 2006. — Vol. 32, No. 24. — P. 29–37. 5. Mirsagatov Sh. A., Uteniyazov A. K. Technical Phy sics Letters. — 2012. — Vol. 38, No. 1. — P. 70–76. 6. Mirsagatov Sh. A., Uteniyazov A. K., Achi lov A. S. // FTT. — 2012. —Vol. 54. — No. 9. — 1643 p. 7. Zhanabergenov Zh., Mirsagatov Sh. A., Kara- zhanov S. Zh. Inorganic Materials. — 2005. — Vol. 41. — No. 8. — 915 p. 8. Sze S., Physics of Semiconductor devices. — Moscow.: «Mir». — 1984. — Vol. 1. — 455 p. 9. Stafeev V. I. // JTP. — 1958. — Vol. 28. — No. 8. — 1631 p. 10. Leyderman A. Yu., Minbaeva M. K. // FTP. — 1996. — Vol. 30. — 1729 p. 11. Leyderman A. Yu. DAN UzSSR. — 1987. — Vol. 7. — 21 p. 12. Leyderman A. Yu. DAN UzSSR 1989. — Vol. 4. — 25 p. 13. Sheynkman M. G., Korsunskaya N. E. In: Physics connections A2. / Science, M. — 1986. — Vol. 6. — 109 p. 14. Leyderman A. Yu. DAN UzSSR. — 1989. — Vol. 1. — 24 p. 15. Adirovich E. I., Karageorgy-Alkalaev P. M., Leyderman A. Yu. Double injection currents in semiconductors. — M.: Sov. radio, 1978. — 249 p. Table 2 Parameters determined from the CVC’s parts of type J ~ Vα Number of sample Branchesd CVC NR/τi, cm3∙s–1 n(0), cm–3 NA, cm–3 Cn/aτi, cm–3 1 2 J ~ V6 J ~ V2.44 J ~ V5.53 J ~ V2.42 1.72∙1015 4.65∙1015 2.21∙1016 9.6∙1016 7.6∙109–1.12∙1011 8.39∙1012–1.22∙1014 3.17∙109–1.33∙1011 6.74∙1011–8.6∙1012 3.12∙108 6.25∙109 2.21∙109 2.41∙1012 6∙108 4.65∙1011