About physical parameters of experimental reactor- stellarator in the conditions of ambipolarity of neoclassical transport fluxes

Parameters of an experimental stellarator reactor operating under conditions of ambipolarity of neoclassical transport fluxes are calculated with the use of a space-time numerical code. Dimensions of the system and the confinement magnetic field are taken the same as in the ITER tokamak reactor. The...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автор: Rudakov, V.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/109085
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:About physical parameters of experimental reactor- stellarator in the conditions of ambipolarity of neoclassical transport fluxes / V.A. Rudakov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 16-18. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109085
record_format dspace
spelling irk-123456789-1090852016-11-21T03:02:08Z About physical parameters of experimental reactor- stellarator in the conditions of ambipolarity of neoclassical transport fluxes Rudakov, V.A. Магнитное удержание Parameters of an experimental stellarator reactor operating under conditions of ambipolarity of neoclassical transport fluxes are calculated with the use of a space-time numerical code. Dimensions of the system and the confinement magnetic field are taken the same as in the ITER tokamak reactor. The paper shows a possibility of engineering development of an experimental stellarator reactor with parameters comparable to these of an experimental tokamak reactor. C использованием пространственно-временного численного кода рассчитаны параметры экспериментального реактора-стелларатора в условиях амбиполярности неоклассических транспортных потоков. Размеры системы и удерживающее магнитное поле приняты такими же, как и в реакторе-токамаке ITER. Показана возможность создания экспериментального реактора-стелларатора с характеристиками, сопоставимыми с характеристиками экспериментального реактора-токамака. З використанням просторово-часового чисельного коду розраховано параметри експериментального реактора-стеларатора в умовах амбіполярності неокласичних транспортних потоків. Розміри системи і утримуюче магнітне поле прийняті такими ж, як і в реакторі-токамаці ITER. Показана можливість створення експериментального реактора-стеларатора з характеристиками, порівнянними з характеристиками експериментального реактора-токамака. 2012 Article About physical parameters of experimental reactor- stellarator in the conditions of ambipolarity of neoclassical transport fluxes / V.A. Rudakov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 16-18. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 52.55.Hc, 52.55.Rk, 52.55.Dj http://dspace.nbuv.gov.ua/handle/123456789/109085 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Магнитное удержание
Магнитное удержание
spellingShingle Магнитное удержание
Магнитное удержание
Rudakov, V.A.
About physical parameters of experimental reactor- stellarator in the conditions of ambipolarity of neoclassical transport fluxes
Вопросы атомной науки и техники
description Parameters of an experimental stellarator reactor operating under conditions of ambipolarity of neoclassical transport fluxes are calculated with the use of a space-time numerical code. Dimensions of the system and the confinement magnetic field are taken the same as in the ITER tokamak reactor. The paper shows a possibility of engineering development of an experimental stellarator reactor with parameters comparable to these of an experimental tokamak reactor.
format Article
author Rudakov, V.A.
author_facet Rudakov, V.A.
author_sort Rudakov, V.A.
title About physical parameters of experimental reactor- stellarator in the conditions of ambipolarity of neoclassical transport fluxes
title_short About physical parameters of experimental reactor- stellarator in the conditions of ambipolarity of neoclassical transport fluxes
title_full About physical parameters of experimental reactor- stellarator in the conditions of ambipolarity of neoclassical transport fluxes
title_fullStr About physical parameters of experimental reactor- stellarator in the conditions of ambipolarity of neoclassical transport fluxes
title_full_unstemmed About physical parameters of experimental reactor- stellarator in the conditions of ambipolarity of neoclassical transport fluxes
title_sort about physical parameters of experimental reactor- stellarator in the conditions of ambipolarity of neoclassical transport fluxes
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2012
topic_facet Магнитное удержание
url http://dspace.nbuv.gov.ua/handle/123456789/109085
citation_txt About physical parameters of experimental reactor- stellarator in the conditions of ambipolarity of neoclassical transport fluxes / V.A. Rudakov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 16-18. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT rudakovva aboutphysicalparametersofexperimentalreactorstellaratorintheconditionsofambipolarityofneoclassicaltransportfluxes
first_indexed 2025-07-07T22:32:58Z
last_indexed 2025-07-07T22:32:58Z
_version_ 1837029213520003072
fulltext 16 ISSN 1562-6016. ВАНТ. 2012. №6(82) ABOUT PHYSICAL PARAMETERS OF EXPERIMENTAL REACTOR- STELLARATOR IN THE CONDITIONS OF AMBIPOLARITY OF NEOCLASSICAL TRANSPORT FLUXES V.A. Rudakov Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: rudakov@kipt.kharkov.ua Parameters of an experimental stellarator reactor operating under conditions of ambipolarity of neoclassical transport fluxes are calculated with the use of a space-time numerical code. Dimensions of the system and the confinement magnetic field are taken the same as in the ITER tokamak reactor. The paper shows a possibility of engineering development of an experimental stellarator reactor with parameters comparable to these of an experimental tokamak reactor. PACS: 52.55.Hc, 52.55.Rk, 52.55.Dj INTRODUCTION Successful results of investigations at tokamaks were used as a base for development of an experimental ITER tokamak reactor [1]. The ITER project implementation will allow one to carry out investigations on the plasma with characteristics corresponding to a full-scale fusion reactor and to solve engineering problems concerned with construction and exploitation of many systems providing the reactor operation. Similarly, investigations at the experimental stellarator rector will be a necessary stage of works aimed to solving the problems of controlled thermonuclear fusion with the use of such a system. Despite attractive features which allow steady-state operation of a stellarator, investigations with such traps are limited because of the high plasma losses predicted by the neoclassical theory. Investigations with the purpose of stellarator optimization have demonstrated that it is possible to reduce the neoclassical losses by decreasing the helical magnetic field ripple hε [2]. Solutions of the system of equations determining the plasma loss-energy balance under ambipolarity conditions have shown that the plasma confinement can be much improved under conditions of fuel injection into the plasma center [3]. The present paper considers the process of starting and sustaining of the steady-state fusion burn in the experimental stellarator-reactor having plasma parameters and magnetic characteristics corresponding to the design objectives of the ITER reactor. SYSTEM OF EQUATIONS A system of equations which is a combination of the heat conduction equations for electrons and ions and the diffusion equations has been solved. The system describes the time-space plasma behavior in the 1D space case under the assumption of the minor plasma radius averaged over magnetic surface. Ecbeieh 2 e e 4 QQQQQE σvNK r rr 1 t T N 2 3 α f +−−−++ ∂ ∂ −= ∂ ∂ Π , (1) Eiheii i QQQr rr 1 t T N 2 3 −++ ∂ ∂ −= ∂ ∂ Π , (2) δSrS rr 1 t N + ∂ ∂ −= ∂ ∂ j . (3) Here Πi, Πe, Si and Se are the heat fluxes and fluxes of ion and electron particles corresponding to the electron transfer mode 1/ν and to the square root of ion collision frequency [4], Eα − α − particle energy; eiQ − collision heat exchange; bQ − bremsstrahlung; cQ − cyclotron radiation; jhQ − external source heating. Here and below the index j marks a particle type. The content of deuterium and tritium in the reactor plasma was taken equal. The coefficient fK =0.95 determines the α− particle energy part transferred to electrons. It has been supposed that the most part of cyclotron radiation is absorbed in the plasma and the power loss is only 5 %. In calculations it has been assumed that the specific heating power is proportional to the plasma density. The ambipolar electric field influence on the plasma particle energy was taken into account by QE =-Sj·Er. The term with a source δS in the right side of equation (3) provide the plasma density maintenance at a level close to the constant one. To the system of equations (1)-(3) added were boundary and initial conditions in which the spatial derivatives of density, temperature and potential are equal to zero in the plasma center, and the values of these parameters at the boundary are equal to the low constant values. The electric field was determined from the equation of balance between ion and electric fluxes at every step of numerical code spatial grid. In all cases the solution was corresponding to the left (ion) root giving the negative values of Er. CALCULATION RESULTS In the paper, similarly to the case of ITER reactor, the tore radius R=6.2 m, minor radius a-2 m, confinement field B0=5.3 Т. Plasma losses substantially depend on the quantity hε , the value of which at the plasma boundary is taken equal to 0.06, as in [3], that approximately corresponds to its value in the LHD facility where the ISSN 1562-6016. ВАНТ. 2012. №6(82) 17 magnetic configuration center position is located at the radius R=3.53 m [2]. The injection of fuel pellets has been simulated by the expression )x/(1nδn Δ−= p , which determines their throwing into the plasma center from the half-width evaporation region Δ . The expenditure of energy for injected particle heating is taken into account. Fig. 1 shows the reactor fusion power behavior during the plasma heating with 40 MW power. In this case the energy input to plasma ions and electrons was 20 MW. The fusion power reached approximately 600 MW with heating power conservation. If the heating power decreases to 10 MW, then the steady- state burn is set with a fusion power of about 440 MW. The full heating stopping leads to the reaction damping. Fig. 2 and 3 illustrate the spatial distribution of the plasma density and ambipolar electric field for three values of half-width ablation region (Δ=0.5; 0.75 and 1). Maximum values of the plasma density and the deepest field minimum Er are formed at minimal values of ablation region Δ=0.5. A phenomenon of the deepest minimum Er has been found in experiments and is confirmed by calculations for the facility W7-AS [5]. To the small width Δ the peak values of the reactor heat power are corresponding (Fig. 4). Spatial distributions of ion and electron temperature are shown in Fig. 5. Their significant difference in the peripheral region is because of the ambipolar field influence. As a result there is a notable discrepancy between the average values of Te and Ti (Fig. 6). The increase of the average plasma density value from 7·1019 to 8·1019m-3 leads to the heat power increase almost by a factor of 1.5 (Fig. 7). In this case the steady-state burn mode was sustained by the additional heating power of 10 MW shared equally between ions and electrons. 0 2 4 6 8 10 12 14 0 100 200 300 400 500 600 M W S Ph=0 10 MW 40 MW 40 MW Fig. 1. Reactor heat power in the process of ignition with a plasma heating power of 40 MW, N=0.7·1020 m-3, Δ=0.5 Besides the additional heating powers, in the plasma the α− particle energy is absorbed that makes a one fifth part of the reactor heat power. And a half power is lost as a result of bremsstrahlung and cyclotron radiation. Note, that the bremsstrahlung is calculated under the assumption that Z = 1 that is possible only in the case of ideal operation of a divertor. RESULTS AND DISCUSSION Some variants of stellarator reactor parameters are given in the Table in comparison with the ITER reactor parameters. The investigation results show that the stellarator reactor may have fusion energy release modes similar to those which have been planned in the ITER reactor. An important condition in principle is the necessary fuel injection directly into the plasma center. Thus the spatial distributions with sharply peaked profiles of parameters can be realized. The design quantity β in the plasma center reaches 25 % that can make a problem in providing the stability of such modes. The calculations have shown that a significant part of the plasma heat energy is taken away with bremsstrahlung and cyclotron radiation despite the assumption about the high reflection power of the first wall and minimum value of the plasma charge Z. Implementation of the above-mentioned conditions can be realized with appropriate designs of the first wall and plasma divertor. 0,0 0,2 0,4 0,6 0,8 1,0 -1 0 1 2 3 4 5 6 7 8 9 N , 1 020 m -3 radius Δ=0.5 0.75 1 Fig. 2. Spatial distributions of the plasma density for different pellet evaporation widths: Δ=0.5; 0.75; 1. N=0.7·1020 m-3, Ph=40 MW 0,0 0,2 0,4 0,6 0,8 1,0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 E r, 10 k V /m radius Δ=1 0.75 0.5 Fig. 3. Spatial distributions of Er for different pellet ablation widths: Δ=0.5; 0.75; 1. N=0.7·1020 m-3, Ph=40 MW 0 2 4 6 8 10 12 14 16 18 0 100 200 300 400 500 600 P t, M W S Δ=0.5 Δ=0.75 Δ=1 Fig. 4. Reactor thermal power in the process of ignition for different pellet evaporation widths: Δ=0.5; 0.75; 1. N=0.7·1020 m-3, Ph=40 MW The investigation results obtained enable to conclude that an experimental stellarator rector can have characteristics comparable with these of an experimental tokamak reactor. 18 ISSN 1562-6016. ВАНТ. 2012. №6(82) 0,0 0,2 0,4 0,6 0,8 1,0 0,0 0,2 0,4 0,6 0,8 1,0 1,2 10 k eV radius Te Ti Fig. 5. Spatial distribution of the plasma temperature in the steady- state burn mode: Δ=0.5, N=0.7·1020 m-3, Ph=40 MW 5 10 15 20 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 10 k eV S Te Ti Fig. 6. Temperature of ions and electrons in the process of ignition and after transition into the steady- state burn mode: Δ=0.5, N=0.7·1020 m-3, Ph=20+20 MW 0 5 10 15 20 0 100 200 300 400 500 600 700 800 M W S N=0.8 N=0.75 N=0.7 Fig. 7. Reactor thermal power in the process of ignition for different values of the plasma density: Ph=40 M, Δ=0.5, N=0.7; 0.75; 0.8·1020 m-3 Table of reactor parameters ERSt-1 ERSt-2 ERSt- 3 ITER Confinement magnetic field –B, T 5.3 5.3 5.3 5.3 Major tore radius – R, m 6.2 6.2 6.2 6.2 Minor radius – a, m 2 2 2 2 Average density – <N>, 1020/m3 0.7 0.7 0.8 0.8…1.0 Electron temperature – Te, кeV 9.3 9 9 8.9 Ion temperature – Ti, кeV 6.8 6.7 7 8.1 Helical ripple at the boundary –εhmax 0.06 0.06 0.06 0 Total heat power – Pt, MW 540 510 660 500 Load on the first wall – Qw, МW/m2 0.68 0.64 0.82 0.6 Plasma pressure – <β>, % 1.6 1.55 1.83 2.2 Energy lifetime – τΕ, s 1.1 1.09 1.08 2.1 Particle confinement time – τn, s 1,8 2.8 2.5 - Additional heating power, МW 40 30 40 40 REFERENCES 1. O. Mitarai and K. Muraoka. Ignition analyses with ITER89P and ITER93HP scaling for burn control and diagnostics in ITER-ID // Plasma Phys. Control. Fusion. 1998, v. 40, p. 1349-1372. 2. S. Murakami, A. Wakasa, H. Maaβberg, C.D. Beidler, H. Yamada, K.Y. Watanabe. LHD Experimental Group Neoclassical Transport Optimization of LHD // Nucl. Fusion. 2002, v. 42, p. L19-L22. 3. V.А. Rudakov On parameters of stellarator reactor under conditions of ambipolarity of neoclassic transport fluxes // Visnyk Kharkivs’kogo Natsionalnogo Universytetu. Seriya fizychna “Yadra, chastynky, polya”. 2012, N2/54/, p. 15-23 (in Russian), 4. L.M. Kovrizhnykh. The Energy Confinement Time in Stellarators// Nucl. Fusion. 1984, v. 24, p. 435. 5. Y. Turkin, C.D. Beidler, H. Maaβberg, et al. Neoclassical transport simulations for stellarators // Physics of Plasmas. 2011, v. 18, p. 022505. Article received 10.10.12 О ФИЗИЧЕСКИХ ПАРАМЕТРАХ ЭКСПЕРИМЕНТАЛЬНОГО РЕАКТОРА-СТЕЛЛАРАТОРА В УСЛОВИЯХ АМБИПОЛЯРНОСТИ НЕОКЛАССИЧЕСКИХ ТРАНСПОРТНЫХ ПОТОКОВ В.А. Рудаков C использованием пространственно-временного численного кода рассчитаны параметры экспериментального реактора-стелларатора в условиях амбиполярности неоклассических транспортных потоков. Размеры системы и удерживающее магнитное поле приняты такими же, как и в реакторе-токамаке ITER. Показана возможность создания экспериментального реактора-стелларатора с характеристиками, сопоставимыми с характеристиками экспериментального реактора-токамака. ПРО ФІЗИЧНІ ПАРАМЕТРИ ЕКСПЕРИМЕНТАЛЬНОГО РЕАКТОРА-СТЕЛАРАТОРА В УМОВАХ АМБІПОЛЯРНОСТІ НЕОКЛАСИЧНИХ ТРАНСПОРТНИХ ПОТОКІВ В.А. Рудаков З використанням просторово-часового чисельного коду розраховано параметри експериментального реактора-стеларатора в умовах амбіполярності неокласичних транспортних потоків. Розміри системи і утримуюче магнітне поле прийняті такими ж, як і в реакторі-токамаці ITER. Показана можливість створення експериментального реактора-стеларатора з характеристиками, порівнянними з характеристиками експериментального реактора-токамака.