The effect of low-density background plasma on frequency and energy characterictics of coaxial gyrotron cavity

The effect of low density background plasma on the electromagnetic field energy density in the ITER relevant coaxial gyrotron cavity is studied. The model of cold collisionless magnitoactive plasma is used. The dispersion relation and expression for the density of RF energy in plasma-filled coaxial...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Moskvitina, Yu.K., Zaginaylov, G.I., Tkachenko, V.I.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/109094
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The effect of low-density background plasma on frequency and energy characterictics of coaxial gyrotron cavity / Yu.K. Moskvitina, G.I. Zaginaylov, V.I. Tkachenko // Вопросы атомной науки и техники. — 2012. — № 6. — С. 31-33. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109094
record_format dspace
spelling irk-123456789-1090942016-11-21T03:02:31Z The effect of low-density background plasma on frequency and energy characterictics of coaxial gyrotron cavity Moskvitina, Yu.K. Zaginaylov, G.I. Tkachenko, V.I. Магнитное удержание The effect of low density background plasma on the electromagnetic field energy density in the ITER relevant coaxial gyrotron cavity is studied. The model of cold collisionless magnitoactive plasma is used. The dispersion relation and expression for the density of RF energy in plasma-filled coaxial gyrotron cavity are derived in the analytical form and analyzed numerically. It is shown that presence of low density plasma in coaxial gyrotron cavity leads to downshift of the operational frequency and to decreasing Ohmic loads of both the outer and inner conductors of coaxial gyrotron cavity. Изучено влияние фоновой плазмы низкой плотности на плотность энергии электромагнитного поля в коаксиальном резонаторе гиротрона ITER. Используется модель бесстолкновительной, магнитоактивной плазмы. Дисперсионное соотношение и выражение для плотности СВЧ-энергии в плазмонаполненном коаксиальном резонаторе гиротрона получены аналитически и исследованы численно. Показано, что наличие плазмы низкой плотности в коаксиальном резонаторе гиротрона приводит к уменьшению рабочей частоты и уменьшению омических потерь на внешней стенке и внутреннем проводнике резонатора коаксиального гиротрона. Вивчено вплив фонової плазми низької щільності на густину енергії електромагнітного поля в коаксіальному резонаторі гіротрона ITER. Використовується модель беззіткненної, магнітоактивної плазми. Дисперсійні співвідношення та вираз для густини НВЧ-енергії в плазмонаповненому коаксіальному резонаторі гіротрона отримані аналітично та досліджені чисельно. Показано, що наявність плазми малої густини в коаксіальному резонаторі гіротрона призводить до зменшення робочої частоти та зменшення омічних втрат на зовнішній стінці та на внутрішньому провіднику резонатора коаксіального гіротрона. 2012 Article The effect of low-density background plasma on frequency and energy characterictics of coaxial gyrotron cavity / Yu.K. Moskvitina, G.I. Zaginaylov, V.I. Tkachenko // Вопросы атомной науки и техники. — 2012. — № 6. — С. 31-33. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 52.35.Hr, 84.40.Ik http://dspace.nbuv.gov.ua/handle/123456789/109094 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Магнитное удержание
Магнитное удержание
spellingShingle Магнитное удержание
Магнитное удержание
Moskvitina, Yu.K.
Zaginaylov, G.I.
Tkachenko, V.I.
The effect of low-density background plasma on frequency and energy characterictics of coaxial gyrotron cavity
Вопросы атомной науки и техники
description The effect of low density background plasma on the electromagnetic field energy density in the ITER relevant coaxial gyrotron cavity is studied. The model of cold collisionless magnitoactive plasma is used. The dispersion relation and expression for the density of RF energy in plasma-filled coaxial gyrotron cavity are derived in the analytical form and analyzed numerically. It is shown that presence of low density plasma in coaxial gyrotron cavity leads to downshift of the operational frequency and to decreasing Ohmic loads of both the outer and inner conductors of coaxial gyrotron cavity.
format Article
author Moskvitina, Yu.K.
Zaginaylov, G.I.
Tkachenko, V.I.
author_facet Moskvitina, Yu.K.
Zaginaylov, G.I.
Tkachenko, V.I.
author_sort Moskvitina, Yu.K.
title The effect of low-density background plasma on frequency and energy characterictics of coaxial gyrotron cavity
title_short The effect of low-density background plasma on frequency and energy characterictics of coaxial gyrotron cavity
title_full The effect of low-density background plasma on frequency and energy characterictics of coaxial gyrotron cavity
title_fullStr The effect of low-density background plasma on frequency and energy characterictics of coaxial gyrotron cavity
title_full_unstemmed The effect of low-density background plasma on frequency and energy characterictics of coaxial gyrotron cavity
title_sort effect of low-density background plasma on frequency and energy characterictics of coaxial gyrotron cavity
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2012
topic_facet Магнитное удержание
url http://dspace.nbuv.gov.ua/handle/123456789/109094
citation_txt The effect of low-density background plasma on frequency and energy characterictics of coaxial gyrotron cavity / Yu.K. Moskvitina, G.I. Zaginaylov, V.I. Tkachenko // Вопросы атомной науки и техники. — 2012. — № 6. — С. 31-33. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT moskvitinayuk theeffectoflowdensitybackgroundplasmaonfrequencyandenergycharactericticsofcoaxialgyrotroncavity
AT zaginaylovgi theeffectoflowdensitybackgroundplasmaonfrequencyandenergycharactericticsofcoaxialgyrotroncavity
AT tkachenkovi theeffectoflowdensitybackgroundplasmaonfrequencyandenergycharactericticsofcoaxialgyrotroncavity
AT moskvitinayuk effectoflowdensitybackgroundplasmaonfrequencyandenergycharactericticsofcoaxialgyrotroncavity
AT zaginaylovgi effectoflowdensitybackgroundplasmaonfrequencyandenergycharactericticsofcoaxialgyrotroncavity
AT tkachenkovi effectoflowdensitybackgroundplasmaonfrequencyandenergycharactericticsofcoaxialgyrotroncavity
first_indexed 2025-07-07T22:33:41Z
last_indexed 2025-07-07T22:33:41Z
_version_ 1837029261071876096
fulltext ISSN 1562-6016. ВАНТ. 2012. №6(82) 31 THE EFFECT OF LOW-DENSITY BACKGROUND PLASMA ON FREQUENCY AND ENERGY CHARACTERICTICS OF COAXIAL GYROTRON CAVITY Yu.K. Moskvitina1,2, G.I. Zaginaylov1,2, V.I Tkachenko1,2 1NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 2V.N. Karazin Kharkov National University, Kharkov, Ukraine E-mail: Yu.Moskvitina@gmail.com The effect of low density background plasma on the electromagnetic field energy density in the ITER relevant coaxial gyrotron cavity is studied. The model of cold collisionless magnitoactive plasma is used. The dispersion relation and expression for the density of RF energy in plasma-filled coaxial gyrotron cavity are derived in the ana- lytical form and analyzed numerically. It is shown that presence of low density plasma in coaxial gyrotron cavity leads to downshift of the operational frequency and to decreasing Ohmic loads of both the outer and inner conduc- tors of coaxial gyrotron cavity. PACS: 52.35.Hr, 84.40.Ik INTRODUCTION AND MOTIVATION Gyrotrons are seen as the most promising configura- tions for high-power Electron Cyclotron Resonance Heating (ECRH) and current drive in tokamaks and stel- larators [1, 2]. New generation of millimeter-wave gyro- trons developed for plasma heating utilize coaxial cavi- ties operating in high-order modes. The choice of modes is dictated by the mode selection requirements and the admissible level of the heat load on the cavity walls. These devices can deliver microwave power more than 2 MW and have potentials for further increasing power- handling capabilities. For example, 170 GHz coaxial cavity gyrotrons with 2 MW output power are regarded as potential ECRH sources in ITER [3, 4]. Low density background plasma appears in the coaxial gyrotron cav- ity in the long pulse regimes and can influence gyrotron operation. The main goal of the work is to study the effect of low-density background plasma on electromagnetic properties of the ITER relevant coaxial gyrotron cavity. For illustration of the results we use parameters of the 170 GHz, 2 MW, CW coaxial-cavity gyrotron (rele- vant to the ITER requirements), which is developed in Karlsruhe Institute of Technology (KIT), For- schungszentrum Karlsruhe, Germany. 1. MODEL OF A COAXIAL GYROTRON CAVITY FILLED WITH PLASMA Due to significant difficulties of the direct analysis of the plasma-filled coaxial gyrotron cavity we assume several idealizations. First, instead of the cavity we con- sider infinitely long coaxial waveguide with perfect conducting walls. Second, we assume that the inner rod is smooth (in reality it is corrugated). Also it is assumed that the waveguide is filled by a homogeneous cold magnetized plasma with the tensor of dielectric permit- tivity (1). We have started our study, considering plasma effect on cutoff frequencies of the cavity (kz = 0). ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ −= 3 12 21 00 0 0 ε εε εε ε i i , (1) where ( )22 1 11 τξε −−= , ( )22 2 1 ττξε −−= and 2 3 1 ξε −= , ωωξ p= , ωωτ H= , 0 2 εω eep men= , eH meB0=ω . Using Maxwell equations and the dielectric tensor of plasma (1) we derived the equation for zH in the form ( ) 02 =+Δ ⊥⊥ zHk , (2) 0 1 2 1 2 0, 0, i z z r R z z r R H m H r r H m H r r ε ε ε ε = = ∂⎡ ⎤+ =⎢ ⎥∂⎣ ⎦ ∂⎡ ⎤+ =⎢ ⎥∂⎣ ⎦ (3) where 1 2 2 2 1 εεε −=⊥ kk and 00μεω=k . Boundary conditions express that tangent electric field at the outer and inner conductors should be equal to zero. The solution of (2) with boundary conditions (3) is where 2 2 1 1 m m m m mC mCJ J N N C C C C ε εχ χ χ χα ε χ ε χ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞′= − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ oRk⊥=χ and iRRC /0= . The other components of electromagnetic fields are expressed using zH . The dispersion relation for determination the cutoff frequencies for TEm,n mode is ( ) 0)()( 12 =+′ χχεεχ mm ZmZ . (5) It should be noted that in the case considered cut-off frequencies of co-rotating (m>0) and counter-rotating (m<0) modes are different. Assuming 1ε = and 2 0ε = we come to the dispersion relation for a vacuum coaxial waveguide. 2. NUMERICAL RESULTS The dependence of the normalized cutoff frequency versus the plasma density for the operational mode is presented in Fig. 1. Calculational parameters are pre- sented in the Table. As it can be seen, background plasma leads to decrease of the cutoff frequency. ( ) ( ( ) ( )) ( ),z m m mH r A J k r Y k r AZ k rα⊥ ⊥ ⊥= + ≡ (4) 32 ISSN 1562-6016. ВАНТ. 2012. №6(82) The effect of plasma on eigenvalues of competing modes (two triplets {TE35,19; TE34,19; TE33,19} and {TE-33,20; TE-32,20; TE-31,20}) is demonstrated in Fig. 2. Parameters of the Coaxcial Gyrotron Cavity Parameters value Frequency, GHz 170=f Magnetic field, T 72.6=B Operational mode 19,34TE Inner radius (middle cross-section), cm 8.0=iR Outer radius(middle cross-section) , cm 955.2=oR Fig. 1. Dependence of the cut-off frequency for operational modeon plasma density Fig. 2 shows that for ‘plasma’ case the pair of modes (TE-33,20; TE35,19) become closer, as well as (TE-32,20; TE34,19) and (TE-31,20; TE33,19). Besides, co-rotating and counter-rotating modes show different behavior versus plasma density. For co-rotating modes the positive slope becomes larger and for counter-rotating smaller. Fig. 2. The effect of plasma on eigenvalues of the most dangerous competing modes The effect of plasma density on eigenvalues of TE34,19 and TE-34,19 modes is demonstrated in the Fig. 3 for fixed value of C, which corresponds to the middle cross-section of the coaxial gyrotron cavity. One can see that for co-rotating mode (m > 0) the eigenvalue shift is negative, and for counter-rotating mode (m<0) the ei- genvalue shift is positive. In contrast, in the vacuum case eigenvalues for these modes coincide. Fig. 3. The effect of plasma density on eigenvalues of TE34,19 and TE-34,19 modes In conclusion, we present the plasma influence on energy characteristics of the coaxial gyrotron cavity. For this purpose, analytical expression for the energy den- sity was derived ( ) ( ) ( ) 2 2 210 1 2 1 1 2 2 324 2 k W I I I k ω ωεπμ ε ε ε ε ⊥ ⎧ ⎫′⎪ ⎪⎡ ⎤= + + − +⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭ , (6) where ( )rdrrkZI R R m i ⊥−∫= 0 2 11 , ( )rdrrkZI R R m i ⊥+∫= 0 2 12 , ( )rdrrkZI R R m i ⊥∫= 0 2 3 . Using expression (6) the dependence of the linear en- ergy density (energy per unit length of coaxial gyrotron cavity) on the plasma density was calculated for fixed value of radiuses ratio, which corresponds to the middle cross-section of the coaxial gyrotron cavity (Fig. 4). One can see that energy increases with increasing plasma density. The values on Fig. 4 are normalized with the vacuum value of the linear energy density for which the axial magnetic field on the outer conductor is the same. Fig. 4. The energy content versus plasma density In order to estimate the effect of the background plasma on Ohmic losses in the inner conductor we cal- culated the axial magnetic field on the inner conductor and compared it with the vacuum value at the same lin- ear energy density. The results are presented in Fig. 5. Calculations were made for the middle cross-section of the coaxial gyrotron cavity. ISSN 1562-6016. ВАНТ. 2012. №6(82) 33 Fig. 5. The dependence of axial magnetic field on the inner rod on plasma density Since the density of Ohmic losses is proportional to 2 zH one can conclude that the background plasma lead to decreasing of Ohmic losses in the inner rod of the coaxial gyrotron cavity. SUMMARY The analytical model of the plasma-filled coaxial gy- rotron cavity is developed. The effect of the low-density plasma on the cutoff frequencies and the RF energy density of the coaxial gyrotron cavity are studied. It is assumed that the inner rod is smooth and the coaxial gyrotron cavity is filled uniformly by a cold low-density magnetized plasma. The dispersion relation (5) for cutoff frequencies (kz=0) is derived taking into account the effect the back- ground plasma. It is shown that plasma leads to down- shift of cutoff frequency of the operational mode and consequently to the downshift the operational frequency of TE34,19 coaxial cavity gyrotron. The effect of plasma on frequencies of the triplets of competing modes {TE35,19; TE34,19; TE33,19} and {TE-33,20; TE-32,20; TE-31,20} is shown as well (see Fig. 2). The analytical expression for the RF energy linear density was derived. Using this expression the depend- ence of the linear energy density on the background plasma density was calculated. Also influence of plasma on Ohmic losses in the outer and inner conductors of coaxial gyrotron cavity is investigated. It is showed that plasma lead to increasing the energy density in the co- axial gyrotron cavity (due to the additional energy of plasma electrons oscillating in RF field) and decreasing Ohmic losses in both outer and inner conductor of coax- ial gyrotron cavity (due to plasma influence on trans- verse distribution of field in the coaxial gyrotron cav- ity). REFERENCES 1. G. Dammertz, S. Alberti, et al. Development of mul- timegawatt gyrotrons for fusion plasma heating and current drive // IEEE Trans. Plasma Sci. 2005, v. 52, №5, p. 808-817. 2. K. McCormick, P. Grigull, et al. New advanced op- erational regime on the W7-AS stellarator // Phys. Rev. Lett. 2002, v. 89, №1, p. 015001. 3. J.-P. Hogge, F. Albajar, et al. The European 2 MW, 170 GHz Coaxial Cavity Gyrotron for ITER // The Joint 32nd International Conference on Infrared and Millime- tre Waves and 15th International Conference on Tera- hertz Electronics, Cardiff, UK, 2-7 September 2007, p. 38-40. 4. B. Piosczyk, G. Dammertz, et al. A 2-MW, 170 GHz Coaxial Cavity Gyrotron // IEEE Transactions on Plasma Science. 2004, v. 32, №3, p. 413-417. 5. B. Piosczyk, G. Dammertz, et al. Development of multi-megawatt gyrotrons at Forschungszentrum Karlsruhe // Twenty-First IEEE/NPS Symposium on Fusion Engineering, Knoxville, Tennessee, USA, 26-29 September 2005, p. 1-9. Article received 03.10.12 ВЛИЯНИЕ ФОНОВОЙ ПЛАЗМЫ НИЗКОЙ ПЛОТНОСТИ НА ЧАСТОТНЫЕ И ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ КОАКСИАЛЬНОГО ГИРОТРОНА Ю.К. Москвитина, Г.И. Загинайлов, В.И. Ткаченко Изучено влияние фоновой плазмы низкой плотности на плотность энергии электромагнитного поля в ко- аксиальном резонаторе гиротрона ITER. Используется модель бесстолкновительной, магнитоактивной плазмы. Дисперсионное соотношение и выражение для плотности СВЧ-энергии в плазмонаполненном коак- сиальном резонаторе гиротрона получены аналитически и исследованы численно. Показано, что наличие плазмы низкой плотности в коаксиальном резонаторе гиротрона приводит к уменьшению рабочей частоты и уменьшению омических потерь на внешней стенке и внутреннем проводнике резонатора коаксиального ги- ротрона. ВЛИВ ФОНОВОЇ ПЛАЗМИ НИЗЬКОЇ ГУСТИНИ НА ЧАСТОТНІ ТА ЕНЕРГЕТИЧНІ ХАРАКТЕРИСТИКИ КОАКСІАЛЬНОГО ГІРОТРОНА Ю.К. Москвітіна, Г.І. Загінайлов, В.І. Ткаченко Вивчено вплив фонової плазми низької щільності на густину енергії електромагнітного поля в коаксіаль- ному резонаторі гіротрона ITER. Використовується модель беззіткненної, магнітоактивної плазми. Диспер- сійні співвідношення та вираз для густини НВЧ-енергії в плазмонаповненому коаксіальному резонаторі гі- ротрона отримані аналітично та досліджені чисельно. Показано, що наявність плазми малої густини в коак- сіальному резонаторі гіротрона призводить до зменшення робочої частоти та зменшення омічних втрат на зовнішній стінці та на внутрішньому провіднику резонатора коаксіального гіротрона.