Kinetic simulation of low pressure RF discharge in nonuniform axisymmetric magnetic field
An implicit 2D3V PIC/MCC code has been developed for the kinetic simulation of low pressure RF discharges. The code uses coupled particle-in-cell method (PIC) for calculation collisionless dynamic of the plasma particles and Monte-Carlo method (MCC) for taking in account the particle collisions. For...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/109107 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Kinetic simulation of low pressure RF discharge in nonuniform axisymmetric magnetic field / V.V. Olshansky // Вопросы атомной науки и техники. — 2012. — № 6. — С. 77-80. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-109107 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1091072016-11-21T03:02:41Z Kinetic simulation of low pressure RF discharge in nonuniform axisymmetric magnetic field Olshansky, V.V. Фундаментальная физика плазмы An implicit 2D3V PIC/MCC code has been developed for the kinetic simulation of low pressure RF discharges. The code uses coupled particle-in-cell method (PIC) for calculation collisionless dynamic of the plasma particles and Monte-Carlo method (MCC) for taking in account the particle collisions. For the computation time reduction a number of physical and numerical methods of speeding up the code were introduced, such as the implicit schemes of the particles motion and fields computation, the electron sub-cycling and so on. The developed code is applied to the plasma dynamic investigation in capacitively coupled plasma RF discharge enhanced by the external magnetic field which is used in the neutral loop discharges (NLD). Для кинетического моделирования ВЧ-разрядов низкого давления разработан неявный 2D3V PIC/MCC код. Код использует метод «частица в ячейке» (PIC) для расчета бесстолкновительной динамики частиц плазмы и метод «Монте-Карло» (MCC) для учета парных столкновений частиц. Для сокращения компьютер- ного времени в коде применяются различные численные и физические методы ускорения расчета, такие как неявный метод расчета движения частиц и полей, электронные подциклы и другие методы. Разработанный код применяется для исследования динамики плазмы в ёмкостном плазменном ВЧ-разряде, усиленном внешним магнитным полем, используемом в разрядах с нейтральным контуром (NLD). Для кінетичного моделювання ВЧ-розрядів низького тиску розроблено неявний 2D3V PIC/MCC код. Код використовує метод «частинка в клітинці» (PIC) для розрахунку динаміки частинок плазми без зіткнень і метод «Монте-Карло» (MCC) для врахування парних зіткнень частинок. Для скорочення комп’ютерного часу в коді застосовано різні числові та фізичні методи прискорення розрахунку, такі як неявний метод обчислення руху частинок і полів, електронні підцикли та інші методи. Розроблений код застосовується для дослідження динаміки плазми в ємнісному плазмовому ВЧ-розряді, підсиленому зовнішнім магнітним полем, що використовується в розрядах з нейтральним контуром (NLD). 2012 Article Kinetic simulation of low pressure RF discharge in nonuniform axisymmetric magnetic field / V.V. Olshansky // Вопросы атомной науки и техники. — 2012. — № 6. — С. 77-80. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.65.Rr; 52.80.Pi http://dspace.nbuv.gov.ua/handle/123456789/109107 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Фундаментальная физика плазмы Фундаментальная физика плазмы |
spellingShingle |
Фундаментальная физика плазмы Фундаментальная физика плазмы Olshansky, V.V. Kinetic simulation of low pressure RF discharge in nonuniform axisymmetric magnetic field Вопросы атомной науки и техники |
description |
An implicit 2D3V PIC/MCC code has been developed for the kinetic simulation of low pressure RF discharges. The code uses coupled particle-in-cell method (PIC) for calculation collisionless dynamic of the plasma particles and Monte-Carlo method (MCC) for taking in account the particle collisions. For the computation time reduction a number of physical and numerical methods of speeding up the code were introduced, such as the implicit schemes of the particles motion and fields computation, the electron sub-cycling and so on. The developed code is applied to the plasma dynamic investigation in capacitively coupled plasma RF discharge enhanced by the external magnetic field which is used in the neutral loop discharges (NLD). |
format |
Article |
author |
Olshansky, V.V. |
author_facet |
Olshansky, V.V. |
author_sort |
Olshansky, V.V. |
title |
Kinetic simulation of low pressure RF discharge in nonuniform axisymmetric magnetic field |
title_short |
Kinetic simulation of low pressure RF discharge in nonuniform axisymmetric magnetic field |
title_full |
Kinetic simulation of low pressure RF discharge in nonuniform axisymmetric magnetic field |
title_fullStr |
Kinetic simulation of low pressure RF discharge in nonuniform axisymmetric magnetic field |
title_full_unstemmed |
Kinetic simulation of low pressure RF discharge in nonuniform axisymmetric magnetic field |
title_sort |
kinetic simulation of low pressure rf discharge in nonuniform axisymmetric magnetic field |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2012 |
topic_facet |
Фундаментальная физика плазмы |
url |
http://dspace.nbuv.gov.ua/handle/123456789/109107 |
citation_txt |
Kinetic simulation of low pressure RF discharge in nonuniform axisymmetric magnetic field / V.V. Olshansky // Вопросы атомной науки и техники. — 2012. — № 6. — С. 77-80. — Бібліогр.: 9 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT olshanskyvv kineticsimulationoflowpressurerfdischargeinnonuniformaxisymmetricmagneticfield |
first_indexed |
2025-07-07T22:34:43Z |
last_indexed |
2025-07-07T22:34:43Z |
_version_ |
1837029323175886848 |
fulltext |
ISSN 1562-6016. ВАНТ. 2012. №6(82) 77
KINETIC SIMULATION OF LOW PRESSURE RF DISCHARGE IN
NONUNIFORM AXISYMMETRIC MAGNETIC FIELD
V.V. Olshansky
Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
An implicit 2D3V PIC/MCC code has been developed for the kinetic simulation of low pressure RF discharges.
The code uses coupled particle-in-cell method (PIC) for calculation collisionless dynamic of the plasma particles
and Monte-Carlo method (MCC) for taking in account the particle collisions. For the computation time reduction a
number of physical and numerical methods of speeding up the code were introduced, such as the implicit schemes of
the particles motion and fields computation, the electron sub-cycling and so on. The developed code is applied to the
plasma dynamic investigation in capacitively coupled plasma RF discharge enhanced by the external magnetic field
which is used in the neutral loop discharges (NLD).
PACS: 52.65.Rr; 52.80.Pi
INTRODUCTION
RF discharges at low pressures, such as capacitively
coupled plasmas (CCP), have played important roles as
etching and deposition devices in semiconductor
industry, as well as in some other applications, such as
plasma lighting, displays and Hall thrusters. Computer
simulation is an important tool, which helps to clarify its
physical mechanisms. There are three commonly used
simulation techniques, namely, the fluid, Particle-in-cell
(PIC), and Boltzmann models in plasma physics
research. PIC model solves the Newton and Maxwell
equations directly. Kinetic, non-local and non-
equilibrium effects can be included. PIC simulations of
RF discharges are attractive because the fields and
energy distributions can be obtained self-consistently
from first principles. No assumptions need be made
about the electric field or the bulk plasma velocity
distributions, and the boundary conditions are realistic
for both particles and fields. Collisions can be included
in PIC simulations by coupling PIC methods with
Monte-Carlo collisions (MCC). A detailed reference for
PIC-MCC is provided in [1]. But PIC-MCC has a
considerable disadvantage. It is computationally
expensive compared to other numerical methods.
Plasma simulations using fluid models run faster than
PIC-MCC codes, but make assumptions about the
velocity distributions of the electrons and ions and
ignore kinetic effects such as stochastic electron
heating. To keep the first-principle and self-consistent
approach of PIC-MCC model while reducing execution
time, the implicit 2D3V code was developed in
axisymmetric geometry by introducing several
numerical schemes. Then the code is applied to the
plasma dynamic investigation in capacitively coupled
plasma RF discharge enhanced by the external magnetic
field which is used in the neutral loop discharges (NLD.
CODE DESCRIPTION
Numerous methods for speeding up PIC-MCC codes
have been published in detail and widely applied, but
usually one at a time (see, for example, [2]). In the
developed code several speedup methods have been
applied together to electrostatic simulations of RF
discharges.
There are two kinds of algorithms, namely, direct
implicit simulation and implicit movement method
simulation. In the direct implicit method, the field
equations are given by extrapolation of the particles
equations of motion [3]. In the implicit movement
method, the field equations are given by solving the
lower fluid moment equations each cycle in conjunction
with Poisson's equation for an implicit electric field and
then by advancing the particle equation with this
predicted electric field [4]. The code uses the direct
implicit simulation method by Landon and Friedman
[3]. The essence of this method is that the recursive
filtering of the electric field damps out high frequency
modes. If we apply the simple harmonic oscillator
model to the implicit scheme, we obtain the following
characteristic equation:
( ) ( ) ( ) 01
4
112 322
0
2
22
2 =Δ−⎥
⎦
⎤
⎢
⎣
⎡
+
Δ
+−− ξωξ
ω
ξξ α ttc , (1)
where [ ]ti Δ−= ωξ exp , αωc is the cyclotron frequency,
0ω is a frequency of the external filed and tΔ is a time
step. With ( ) 12 <<Δtcαω and 10 <<Δtω the equation
(1) gives the relative error in real and imaginary parts of
the oscillation frequency: ( ) 22
11 05.1Re tΔ< ωωδω ,
( ) 33
11 75.0Im tΔ< ωωδω , where ( )2
1
22
01 αωωω c+= . For
10 >>Δtω there is the root that corresponds to strongly
damped oscillations:
( )[ ] ( ) 3
2
0
3
1
2 21 −ΔΔ+= tttg ca ωωξ . (2)
This implies that the high frequency oscillations are
strongly damped while low frequency oscillations are
weakly affected. Thus, the physics that is not accurately
resolved by the use of large time steps is removed by
the damping.
With the time steps used in order to satisfy stability
and accuracy conditions for the electrons, the conside-
rably more heavier ions make very short advance in one
electron time step. Hence, the ions might be moved less
frequently, every kth electron time step, where k may be
from 10 to 100, depending on the ion mass. To exploit
the difference in inertia of ions and electrons the code
uses the numerical technique that is called "sub-cycling"
[6]. For each complete cycle of time integration, there is
one cycle for the ions and several sub-cycles for the
electrons. As the mass of ions makes them insensitive to
high frequencies, one can use a larger time step for ions
78 ISSN 1562-6016. ВАНТ. 2012. №6(82)
than electrons, which quickly makes the cost of pushing
ions very low. This algorithm use the fact that ions do
not respond to the high frequency waves. This allows
suppression of the high frequencies in the field seen by
the ions and permits to push them with a time-step
larger than that used for electrons. The electron density
is defined at integer time steps simultaneously with the
ions, and at fractional time steps. Namely, the ion
density is known at time tntn Δ= , while the electron
density is known at time ( ) eNn tntNnt Δ=Δ=/ .
Electrons are pushed from time teMtn i Δ−Δ to time
teMtn i Δ+Δ , where ( ) 21−= NM , assuming ion
positions as defined at time tnΔ . The electric field seen
by the ions is then computed as a function of the electric
field calculated from the intermediate positions of
electrons. Ions are then advanced one time step and the
cycle is repeated.
The PIC-MCC simulations usually continues while
the density profiles evolve to their equilibrium states.
With initial spatially uniform ion and electron density
profiles it takes the long computation time. The time to
reach equilibrium is improved by starting off with non-
uniform initial density profiles that are close to their
final equilibrium values. These profiles are deduced
from previous runs or may be estimates from physical
considerations.
One method of obtaining a better initial starting
point for a simulation is the use of ''light ions" [7]. The
light ion speedup method is done in two steps. First, the
real ion masses are replaced with the light ion masses
and simulation runs until it comes to a "light ion"
equilibrium. Reducing the mass of the ions increases
their speed, which enables them to reach an equilibrium
state in a smaller number of RF cycles, and hence less
computer time. Then the real masses are restored, and
run until equilibrium again. The overall running time is
found to be less than that running with the real ion mass
throughout, since the light ions reach equilibrium faster
than real ions.
CCP-NLD DISCHARGE SIMULATION
As an application of the code the simulation of the
low pressure RF discharge enhanced by the nonuniform
magnetic field was carried out. The magnetic field
topology is like in neutral loop discharges (NLD). In
NLD inductive or capacitive plasma coupling may be
used. The simulation of NLD with inductive coupled
plasma was performed earlier in [8]. In this work the
case of the capacitively coupled neutral loop discharge
is considered (CCP-NLD). The NLD magnetic field
configuration can be created by three coils that are
placed coaxially around an axisymmetric discharge
chamber. The currents of the first and last coils have the
same direction, and the current of the middle coil has
the opposite direction. The resulting magnetic field is
axisymmetric with X-point. At X-point the magnetic
field vanishes. The region near X-point, which is
usually defined by the inequality ECRBB < , forms
toroid -like structure that is the neutral loop itself. Here
( ) 0ω⋅= ecmB eECR is a magnetic field strength
corresponding to the electron cyclotron frequency,
which is equal to the RF frequency 0ω . For the RF
frequency 13.56 MHz 8.4≈ECRB G. Such magnetic
coils configuration allows to change the position and the
diameter of the NL contour by varying the currents in
the coils. As a result the diameter of the plasma ring
with maximum plasma density changes.
Fig. 1. Configuration of the magnetic field
A configuration of the external magnetic field near
NL is shown in Fig. 1 in r-z plane. In this figure the
magnetic field contour lines, the calculated profile of
the magnetic field strength lines, X-point and separatrix
are depicted. The radius and the axial position of NL are
equal to 2.5 cm. The point where ECRBB = lies on the
distance 0.6 mm from X-point.
The problem is solved in cylindrical geometry. The
dimensions of the computational domain are as follows :
the radius of the discharge chamber 5=R cm, the axial
extent 5=zL cm. The usual number of mesh points
6464× . Consequently the cell size is
078.0=Δ=Δ zr cm. The operation gas is argon. The
pressure values varies from 5 to 50 mTorr. Initial
plasma profile is parabolic. The collisions between the
electrons and the neutral background, including elastic
scattering, excitation and ionization, are treated by the
Monte Carlo method. The typical time step 1110−=Δt s.
It is less than the fastest time scale in the discharge,
which is defined either by the inverse electron plasma
frequency, the inverse collision frequency, or the “grid
travel time” υxΔ , where υ is the typical electron
velocity. The electric field is calculated self-consistently
by the PIC algorithm. The boundary conditions are
determined by treating the bottom and top of the
simulation domain as powered and grounded electrodes,
respectively, while the mantle is a dielectric. At the
powered electrode the RF voltage 50=RFV V is applied
with the frequency 13.56 MHz. More than 5·105 super-
particles are used in each simulation run to represent the
plasma. This is large enough to avoid problems with
artificial self-heating and other numerical noise errors.
Every simulation runs for several thousand RF cycles to
reach steady-state operation.
The simulation results show the strong influence of
the magnetic field. In Fig. 2 the spatial profiles of
electron energy distribution are depicted. In Fig. 2,a the
electron energy distribution with presence of the
ISSN 1562-6016. ВАНТ. 2012. №6(82) 79
magnetic field is shown. For comparison Fig. 2,b shows
the electron energy distribution for the case, when the
external magnetic field is turned off.
b)
a)
Fig. 2. Electron energy distribution with (a) and without
(b) magnetic field ( =p 5 mTorr)
Fig. 2,a shows that with the magnetic field turned on
the maximum of electron energy is located at the neutral
loop with a small shift from X-point outward. The
electron energy is high also in adjacent regions which
are linked with neutral loop by magnetic field strength
lines. High electron energy in these regions is due to
presence of the additional to collisional heating
mechanism. Collisional heating becomes inefficient at
pressures below 10 mTorr. However, in the magnetic
field configuration with NL an alternative collisionless
heating mechanism exists. Motion of the electrons far
from the NL is regular. But in the region close to NL,
where the magnetic field is low and inhomogeneous, the
adiabatic invariance of the magnetic moment is
destroyed, and the degree of freedom increases enough
to generate chaotic motion of electrons.
In the process of electrons energy losing through
inelastic collisions a sink of the energy in a high-energy
region of the velocity space appears. A steady state is
achieved when the same number of electrons are
supplied from a low-energy region, and then they are
moved towards the sink in the velocity space by the
cascade process driven by the mixing effect. The chaos
accelerates the cascade process, and enhances the
energy dissipation into the sink. The energy dissipation
is determined by the speed of the cascade, which is
defined by the Lyapunov exponent, and the energy
removal rate in the sink region [9].
On the other hand the electron energy is lower in
zones, where electrons are magnetized. Here the
electrons are confined by the magnetic traps and heated
due to Ohmic dissipation, diffusion and heat transfer
across the magnetic field which transport electrons and
energy from the regions with higher magnetic filed to
the lower ones. However, these processes are not
effective in the low pressure discharges.
a)
b)
Fig. 3. Electron density distribution with (a) and
without (b) magnetic field ( =p 5 mTorr)
The computer simulation results show that the
electron density profile has complex enough structure.
In figure 3a the electron density profile is depicted for
the turned on magnetic field, and Fig. 3,b shows the
electron density without magnetic field. Fig. 3,a argues
that the electron density near NL is inhomogeneous both
in radial and axial directions. The density maximum is
not located at the X-point but is shifted inwards in radial
direction, and additional local maxima appear above and
below the NL. This results qualitatively agree with
several experimental studies, where such behavior of the
electron density is explained by electron confinement in
the local magnetic traps. Indeed, there are several
magnetic traps in NLD as it can be seen from Fig. 1.
Near these traps boundary of the high density region
coincides with the magnetic surfaces.
80 ISSN 1562-6016. ВАНТ. 2012. №6(82)
a)
b)
Fig. 4. Electron energy distribution with (a) and without
(b) magnetic field ( =p 50 mTorr)
At higher pressure, the plasma becomes more
collisional. This increases the transport across the
magnetic field lines and collision heating becomes more
efficient. Therefore the spatial structures in the electron
energy and the electron density become less expressed.
This is clearly seen in Fig. 4, where the electron energy
distribution for more high pressure (50 mTorr) is presented.
CONCLUSIONS
The computer simulation results have shown that the
stochastic heating mechanism exists in the NLD
discharge and it is more effective at lower pressure.
REFERENCES
1. V. Vahedi and M. Surendra. Monte-Carlo Collision
Model for Particle-in-Cell method: Application to
Argon and Oxygen Discharges // Comp. Phys. Comm.
1995, v. 87, p. 179-198.
2. V. Vahedi, G. DiPeso, C.K. Birdsall,
M.A. Lieberman, and T. D. Rognlien. Capacitive RF
Discharges Modelled by Particle-in-Cell Monte Carlo
Simulation. I: Anaylsis of Numerical Techniques
//Plasma Sources Sci. Technol. 1993, v. 2, p. 261-272.
3. A.B. Langdon, B.I. Cohen and A. Friedman. Implicit
Time Integration for Plasma Simulation //J. Comput.
Phys. 1982, v. 46, p. 15-38.
4. R.J. Mason. Implicit Moment Particle Simulation of
Plasmas //J. Comput. Phys., 1981, v. 41, p. 233.
5. C.K. Birdsall and A.B. Langdon. Plasma Physics via
Computer Simulation. McGraw-Hill, 1985.
6. J.C. Adam and A. Gourdin Serveniere. Electron Sub-
Cycling in Particle Simulation of Plasma. // J. Comput.
Phys. 1982, v. 47, p. 229-244.
7. E. Kawamura, C.K. Birdsall and V. Vahedi. Physical
and numerical methods of speeding up particle codes
and paralleling as applied to RF discharges // Plasma
Sources Sci. Technol. 2000, v. 9, №.3, p. 413-428.
8. A.V. Arsenin, V.G. Leiman, V.P. Tarakanov. Self-
consistent simulation and analysis of the electron
heating process in a neutral loop discharge // 13th
International Congress on Plasma Physics. Kiev, May
22-26, 2006, D018p.
9. Z. Yoshida et al. Anomalous Resistance Induced by
Chaos of Electron Motion and its Application to Plasma
Production. // Phys. Rev. Lett. 1998, v. 81, № 12,
p. 2458-2461.
Article received 30.10.12
КИНЕТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ВЧ-РАЗРЯДА НИЗКОГО ДАВЛЕНИЯ ВНЕОДНОРОДНОМ
АКСИАЛЬНО-СИММЕТРИЧНОМ МАГНИТНОМ ПОЛЕ
В.В. Ольшанский
Для кинетического моделирования ВЧ-разрядов низкого давления разработан неявный 2D3V PIC/MCC
код. Код использует метод «частица в ячейке» (PIC) для расчета бесстолкновительной динамики частиц
плазмы и метод «Монте-Карло» (MCC) для учета парных столкновений частиц. Для сокращения компьютер-
ного времени в коде применяются различные численные и физические методы ускорения расчета, такие как
неявный метод расчета движения частиц и полей, электронные подциклы и другие методы. Разработанный
код применяется для исследования динамики плазмы в ёмкостном плазменном ВЧ-разряде, усиленном
внешним магнитным полем, используемом в разрядах с нейтральным контуром (NLD).
КІНЕТИЧНЕ МОДЕЛЮВАННЯ ВЧ-РОЗРЯДУ НИЗЬКОГО ТИСКУ В НЕОДНОРІДНОМУ
АКСІАЛЬНО-СИМЕТРИЧНОМУ МАГНІТНОМУ ПОЛІ
В.В. Ольшанський
Для кінетичного моделювання ВЧ-розрядів низького тиску розроблено неявний 2D3V PIC/MCC код. Код
використовує метод «частинка в клітинці» (PIC) для розрахунку динаміки частинок плазми без зіткнень і
метод «Монте-Карло» (MCC) для врахування парних зіткнень частинок. Для скорочення комп’ютерного
часу в коді застосовано різні числові та фізичні методи прискорення розрахунку, такі як неявний метод
обчислення руху частинок і полів, електронні підцикли та інші методи. Розроблений код застосовується для
дослідження динаміки плазми в ємнісному плазмовому ВЧ-розряді, підсиленому зовнішнім магнітним
полем, що використовується в розрядах з нейтральним контуром (NLD).
|