Destruction of microparticles related to dusty plasma processes and possible technological applications

A method of destruction of microparticles related to dusty plasma processes is discussed. The method includes the achievement of anomalously high dust particle charges, for which the destruction process of the particles starts. Technological applications of dust particle destruction can be associate...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Morozova, T.I., Kopnin, S.I., Popel, S.I.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/109109
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Destruction of microparticles related to dusty plasma processes and possible technological applications / T.I. Morozova, S.I. Kopnin, S.I. Popel // Вопросы атомной науки и техники. — 2012. — № 6. — С. 84-86. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109109
record_format dspace
spelling irk-123456789-1091092016-11-21T03:02:43Z Destruction of microparticles related to dusty plasma processes and possible technological applications Morozova, T.I. Kopnin, S.I. Popel, S.I. Фундаментальная физика плазмы A method of destruction of microparticles related to dusty plasma processes is discussed. The method includes the achievement of anomalously high dust particle charges, for which the destruction process of the particles starts. Technological applications of dust particle destruction can be associated with the separation of nano- and microscale monomineral fractions from polymineral microparticles, that is of practical interest for enhancement of the efficiency of development of low-grade deposits and reprocessing of ore dumps and tailings which contain a definite amount of noble metals in the form of fine-dispersed fractions. Обсуждается метод дробления микрочастиц в плазменно-пылевых процессах. Метод включает достижение аномально высоких зарядов пылевых частиц, при которых начинается их разрушение. Технологическое применение разрушения частиц может быть связано с разделением полиминеральных частиц на нано- и микромасштабные мономинеральные фракции, что представляет практический интерес с точки зрения повышения эффективности разработки рудных месторождений и переработки рудных отвалов и хвостохранилищ, содержащих определенное количество благородных металлов в виде тонковкрапленных фракций. Обговорюється метод дроблення мікрочастинок в плазмово-пилових процесах. Метод включає досягнення аномально високих зарядів пилових частинок, при яких починається їх руйнування. Технологічне застосування руйнування частинок може бути пов'язано з поділом полімінеральних частинок на нано- і мікромасштабні мономінеральні фракції, що представляє практичний інтерес з точки зору підвищення ефективності розробки рудних родовищ і переробки рудних відвалів і хвостосховищ, що містять певну кількість благородних металів у вигляді тонковкраплених фракцій. 2012 Article Destruction of microparticles related to dusty plasma processes and possible technological applications / T.I. Morozova, S.I. Kopnin, S.I. Popel // Вопросы атомной науки и техники. — 2012. — № 6. — С. 84-86. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 52.27.Lw, 81.07.-b, 62.25.-g http://dspace.nbuv.gov.ua/handle/123456789/109109 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Фундаментальная физика плазмы
Фундаментальная физика плазмы
spellingShingle Фундаментальная физика плазмы
Фундаментальная физика плазмы
Morozova, T.I.
Kopnin, S.I.
Popel, S.I.
Destruction of microparticles related to dusty plasma processes and possible technological applications
Вопросы атомной науки и техники
description A method of destruction of microparticles related to dusty plasma processes is discussed. The method includes the achievement of anomalously high dust particle charges, for which the destruction process of the particles starts. Technological applications of dust particle destruction can be associated with the separation of nano- and microscale monomineral fractions from polymineral microparticles, that is of practical interest for enhancement of the efficiency of development of low-grade deposits and reprocessing of ore dumps and tailings which contain a definite amount of noble metals in the form of fine-dispersed fractions.
format Article
author Morozova, T.I.
Kopnin, S.I.
Popel, S.I.
author_facet Morozova, T.I.
Kopnin, S.I.
Popel, S.I.
author_sort Morozova, T.I.
title Destruction of microparticles related to dusty plasma processes and possible technological applications
title_short Destruction of microparticles related to dusty plasma processes and possible technological applications
title_full Destruction of microparticles related to dusty plasma processes and possible technological applications
title_fullStr Destruction of microparticles related to dusty plasma processes and possible technological applications
title_full_unstemmed Destruction of microparticles related to dusty plasma processes and possible technological applications
title_sort destruction of microparticles related to dusty plasma processes and possible technological applications
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2012
topic_facet Фундаментальная физика плазмы
url http://dspace.nbuv.gov.ua/handle/123456789/109109
citation_txt Destruction of microparticles related to dusty plasma processes and possible technological applications / T.I. Morozova, S.I. Kopnin, S.I. Popel // Вопросы атомной науки и техники. — 2012. — № 6. — С. 84-86. — Бібліогр.: 3 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT morozovati destructionofmicroparticlesrelatedtodustyplasmaprocessesandpossibletechnologicalapplications
AT kopninsi destructionofmicroparticlesrelatedtodustyplasmaprocessesandpossibletechnologicalapplications
AT popelsi destructionofmicroparticlesrelatedtodustyplasmaprocessesandpossibletechnologicalapplications
first_indexed 2025-07-07T22:34:52Z
last_indexed 2025-07-07T22:34:52Z
_version_ 1837029332801814528
fulltext 84 ISSN 1562-6016. ВАНТ. 2012. №6(82) DESTRUCTION OF MICROPARTICLES RELATED TO DUSTY PLASMA PROCESSES AND POSSIBLE TECHNOLOGICAL APPLICATIONS T.I. Morozova 1,2, S.I. Kopnin1,2, S.I. Popel1,2 1Institute for Dynamics of Geospheres RAS, Moscow, Russia; 2Moscow Institute of Physics and Technology, Moscow, Russia A method of destruction of microparticles related to dusty plasma processes is discussed. The method includes the achievement of anomalously high dust particle charges, for which the destruction process of the particles starts. Technological applications of dust particle destruction can be associated with the separation of nano- and microscale monomineral fractions from polymineral microparticles, that is of practical interest for enhancement of the efficiency of development of low-grade deposits and reprocessing of ore dumps and tailings which contain a definite amount of noble metals in the form of fine-dispersed fractions. PACS: 52.27.Lw, 81.07.-b, 62.25.-g INTRODUCTION Dust particles are found in interstellar medium, in magnetospheres and ionospheres of planets, in cometary atmospheres, etc. Influence of dust on the properties of the matter is often significant and sometimes determinative. Laboratory experiments on dusty plasmas are carried out beginning from 1990s. Since then understanding of the processes in dusty plasmas is improved significantly. An important topic of investigations related to dusty plasmas is the consideration of possible technological applications of dusty plasma methods. In this paper we discuss a possibility of the use of dusty plasma methods for destruction of dust particles, which can be utilized for processing of noble metal ore from particular deposits. The exhaustion of high-grade deposits in the process of mining and production of noble metals demands enhancement of the efficiency of development of low- grade deposits and reprocessing of ore dumps and tailings, which contain a certain amount of noble metals in the form of finely disseminated fractions. The recovery of disseminated metals from fractions which are less than 100 µm in size is a complicated problem. Here, we present an attempt to solve this problem using dusty plasma methods. 1. ELECTROSTATIC PRESSURE In a plasma dust particles acquire often high electric charges q eZd d= . Here, e− is the electron charge. In experiments [1] the charges of about 5·107e are observed. Under the assumption of spherical form of a dust particle of the size a and homogeneous distribution of the charge over its surface, the electrostatic pressure which acts on the dust particle surface is 2 1 2 4 8 e P Zd aπ = . (1) When the electrostatic pressure (1) is higher than the strength σ of the particle, then the particle destroys. Furthermore, in the case of polymineral particles [2] their separation to monomineral fractions is possible. The conditions for the dust particle destruction can be satisfied when dusty plasma is formed by the action of high-powered ultraviolet radiation or X-rays. In this case the photoelectric effect plays an important role in the dust particle charging process resulting in positive charges of dusts. Possible sources of such hard radiation are synchrotron radiation, laser-electron generators, etc. 2. BASIC EQUATIONS Dynamics of dust particle charge in plasma medium is described by the equation ( )qd I qd t ∂ = ∂ , (2) where I(qd) is the total current which is represented by a sum of microscopic electron and ion currents, as well as the photoelectron current. Photoelectrons are generated as a result of photoelectric effect when electromagnetic radiation interacts with the surface of the particle. For simplicity, we consider a situation when the plasma consists of positively charged dust particles and photoelectrons. Such a situation can be realized in vacuum chamber (Fig. 1) where dust particles are injected by means of dispenser. Walls of vacuum chamber are supposed to be transparent for UV- radiation and X-rays. Fig. 1. Installation for destruction of microparticles by dusty plasma methods Dust particles sediment under the action of the gravity, are irradiated by hard photons which knock out electrons from the surfaces of dust particles, and finally ISSN 1562-6016. ВАНТ. 2012. №6(82) 85 acquire positive charges due to the action of hard electromagnetic (UV and X-ray) radiation. In this situation the steady-state charge on the particle surface is defined by the equation ( ) ( ) 0,I q I qph d eph d+ = (3) where photoelectron current to dust particle (return current) is 2 82 ( ) 1 Z eTe dI q n eZ aeph d d d m aTe e π π = − + ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ , (4) while the current of the photoelectrons which leave particle surface is ( ) ( ) ( ){ } max2 max , min I q a e j dph d pheq aR d ω βπ ω ω ω ω = ∫ + h . (5) Here, dn is the number density of dust particles, Te is the electron temperature, me is the electron mass, ( )j ph ω is the spectral density of electromagnetic radiation flux, maxω ( minω ) is the upper (lower) boundary of the spectrum of electromagnetic radiation, Rω is the work function of dust matter, β is the probability to knock out electron by photon from particle surface, h is the Plank’s constant. Taking in the consideration Eqs. (4) and (5) we rewrite Eq. (3) in the form 2 2 8 1 0.d e d ph d d e e Z T Z ea j n Z t m aT π β π ⎡ ⎤⎛ ⎞∂ = < > − + =⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦ (6) Here, ( ) ( ){ } max max , mineq aR d j j dph ph ω ω ω ω ω + = ∫ h . Finally, we find a solution of Eq. (6) which corresponds to positive particle charge ( )2 41 1 1 .2 2 8 e aT jaT e pheZd e n T me ed β π < > = + − ⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ (7) 3. DUST PARTICLE DESTRUCTION Condition for dust particle destruction (coincident with the condition of polymineral particle separation to monomineral fractions) can be found from Eqs. (1) and (7). It takes the form 3 16 2 j T me eph a nd β πσ < > < . (8) Further calculations are performed under the assumption that the main dust particle component part is quartz. This assumption presents a practical interest for gold-bearing ores of concrete deposits [2]. For such particles the strength σ  is equal approximately to 90 kbar. Fig. 2 shows the minimum density of electromagnetic radiation flux required for dust particle destruction in dependence on particle radius. The typical parameters are chosen to be Te = 1 eV, 0.1β = , σ  ≈ 90 kbar. Fig. 2. Minimum radiation flux density required for particle destruction vs particle radius for different values of dust number density A possibility of polymineral particle destruction and its separation to monomineral fractions is estimated on the basis of Eq. (8). For the estimates we use the parameters of synchrotron radiation generated on VEPP-3 electron-positron storage ring at the Budker Institute of Nuclear Physics, where the flux density of synchrotron radiation from viggler with the magnetic field 2 Т, electron energy 2 GeV, and current 100 mA at the distance of 20 m from the source is higher than 1012 photon/mm2·s [3]. The average energy of radiation is close to 20 keV. Correspondingly, at less distances from the source one can expect much more intensive electromagnetic radiation flux. For instance, at the distance of 20 cm from the source the flux density of synchrotron radiation reaches the magnitudes higher than 1016 photon/mm2·s. This value is used in further calculations. The other parameters are Te = 1 eV, 0.1β = , σ  ≈ 90 kbar. Using Eq. (8) one can find that the destruction of quartz particles with sizes less or equal to 1 µm occurs for nd < 10-3 сm-3, with sizes less or equal to 100 nm for nd < 1 сm-3, and with sizes less or equal to10 nm for nd < 103 сm-3. Thus we show a possibility of dust particle destruction (and its possible separation to monomineral fractions in the case of polymineral dust particles) by dusty plasma methods. Fig. 3 illustrates charges of dust particles for different values of dust number densities in the presence of synchrotron radiation flux with the density of 1016 photon/mm2·s. It is seen that the charges of micron- sized particles can reach the magnitudes exceeding 107 elementary charges. Such large dust particle charges can be achieved only for small dust number densitites. For larger dust number densities the effect of strong dust particle charging can be achieved if a method of removal of electrons from the vacuum chamber will be proposed. The electrons formed in the vacuum chamber due to the photoelectric effect on dust particle surfaces prevent strong dust particle charging, because they tend 86 ISSN 1562-6016. ВАНТ. 2012. №6(82) to return to the dust particle surfaces in the form of microscopic electron currents. Fig. 3. Charge number Z d vs dust particle radius. Radiation flux density is equal to 1016 photon/mm2·s CONCLUSIONS Thus, we have considered a possibility of destruction of dust particles and their separation to monomineral fractions by dusty plasma methods. These processes can be accomplished in vacuum chamber where dust particles are injected. The destruction effect can be achieved with anomalously high dust particle charging due to irradiation of dusts by hard and intensive electromagnetic radiation (UV and X-rays) performed with the aid of modern installations. This problem and its further technological elaboration present practical interest for enhancement of the efficiency of development of low-grade deposits and reprocessing of ore dumps and tailings. This work is supported by the Division of Earth Sciences of the Russian Academy of Sciences (the basic research program № 5 "Nanoscale particles: conditions of formation, methods of analysis and recovery from mineral raw"). REFERENCES 1. M.N. Vasil’ev, N.A. Vorona, et al. Anomalously high charging of dispersed particles by 25-keV electron beam// Technical Physics Letters. 2010, v. 36, № 2, p. 1143-1145. 2. V.V. Adushkin, S.N. Andreev, S.I. Popel. Cavitation separation of nano- and microscale monomineral fractions from polymineral microparticles // Geology of Ore Deposits. 2007, v. 49, № 3, p. 201-207. 3. V.M. Aulchenko, O.V. Evdokov, et al. A Detector for imaging of explosions on a synchrotron radiation beam// Instruments and Experimental Techniques. 2010, v. 53, № 3, p. 334-349. Article received 19.09.12 ДРОБЛЕНИЕ МИКРОЧАСТИЦ В ПЛАЗМЕННО-ПЫЛЕВЫХ ПРОЦЕССАХ И ВОЗМОЖНЫЕ ТЕХНОЛОГИЧЕСКИЕ ПРИМЕНЕНИЯ Т.И. Морозова, С.И. Копнин, С.И. Попель Обсуждается метод дробления микрочастиц в плазменно-пылевых процессах. Метод включает достижение аномально высоких зарядов пылевых частиц, при которых начинается их разрушение. Технологическое применение разрушения частиц может быть связано с разделением полиминеральных частиц на нано- и микромасштабные мономинеральные фракции, что представляет практический интерес с точки зрения повышения эффективности разработки рудных месторождений и переработки рудных отвалов и хвостохранилищ, содержащих определенное количество благородных металлов в виде тонковкрапленных фракций. ДРОБЛЕННЯ МІКРОЧАСТИНОК У ПЛАЗМОВО-ПИЛОВИХ ПРОЦЕСАХ І МОЖЛИВІ ТЕХНОЛОГІЧНІ ЗАСТОСУВАННЯ Т.І. Морозова, С.І. Копнін, С.І. Попель Обговорюється метод дроблення мікрочастинок в плазмово-пилових процесах. Метод включає досягнення аномально високих зарядів пилових частинок, при яких починається їх руйнування. Технологічне застосування руйнування частинок може бути пов'язано з поділом полімінеральних частинок на нано- і мікромасштабні мономінеральні фракції, що представляє практичний інтерес з точки зору підвищення ефективності розробки рудних родовищ і переробки рудних відвалів і хвостосховищ, що містять певну кількість благородних металів у вигляді тонковкраплених фракцій.