Scaling laws for the helicon eigenmodes in a nonuniform plasma cylinder

The wave eigenmodes of a radially nonuniform plasma cylinder are examined analytically in the helicon frequency range. Conditions for the existence of almost pure helicon eigenmodes with on-axis localization are pointed out. The scaling (i.e. the relationship between the plasma density, the magnetic...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Shamrai, K.P., Beloshenko, N.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/109115
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Scaling laws for the helicon eigenmodes in a nonuniform plasma cylinder / K.P. Shamrai, N.A. Beloshenko // Вопросы атомной науки и техники. — 2012. — № 6. — С. 102-104. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109115
record_format dspace
spelling irk-123456789-1091152016-11-21T03:02:11Z Scaling laws for the helicon eigenmodes in a nonuniform plasma cylinder Shamrai, K.P. Beloshenko, N.A. Фундаментальная физика плазмы The wave eigenmodes of a radially nonuniform plasma cylinder are examined analytically in the helicon frequency range. Conditions for the existence of almost pure helicon eigenmodes with on-axis localization are pointed out. The scaling (i.e. the relationship between the plasma density, the magnetic field, and the mode frequency and wave number) for these eigenmodes is found and shown to depend on the azimuthal mode number. Аналитически исследованы волновые собственные моды радиально-неоднородного плазменного цилиндра в геликонном диапазоне частот. Указаны условия существования почти чистых геликонных мод, локализованных вблизи оси системы. Найден скейлинг (т.е. взаимоотношение между плотностью плазмы, магнитным полем и частотой, и волновым числом моды) для таких мод, и показано, что он зависит от азимутального волнового числа. Аналітично досліджено хвильові власні моди радіально-неоднорідного плазмового циліндра в геліконному діапазоні частот. Виявлено умови існування майже чистих геліконних мод, локалізованих поблизу осі системи. Знайдено скейлінг (тобто співвідношення між густиною плазми, магнітним полем та частотою, і хвильовим числом моди) для таких мод, і показано, що він залежить від азимутального хвильового числа. 2012 Article Scaling laws for the helicon eigenmodes in a nonuniform plasma cylinder / K.P. Shamrai, N.A. Beloshenko // Вопросы атомной науки и техники. — 2012. — № 6. — С. 102-104. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 52.35.Hr http://dspace.nbuv.gov.ua/handle/123456789/109115 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Фундаментальная физика плазмы
Фундаментальная физика плазмы
spellingShingle Фундаментальная физика плазмы
Фундаментальная физика плазмы
Shamrai, K.P.
Beloshenko, N.A.
Scaling laws for the helicon eigenmodes in a nonuniform plasma cylinder
Вопросы атомной науки и техники
description The wave eigenmodes of a radially nonuniform plasma cylinder are examined analytically in the helicon frequency range. Conditions for the existence of almost pure helicon eigenmodes with on-axis localization are pointed out. The scaling (i.e. the relationship between the plasma density, the magnetic field, and the mode frequency and wave number) for these eigenmodes is found and shown to depend on the azimuthal mode number.
format Article
author Shamrai, K.P.
Beloshenko, N.A.
author_facet Shamrai, K.P.
Beloshenko, N.A.
author_sort Shamrai, K.P.
title Scaling laws for the helicon eigenmodes in a nonuniform plasma cylinder
title_short Scaling laws for the helicon eigenmodes in a nonuniform plasma cylinder
title_full Scaling laws for the helicon eigenmodes in a nonuniform plasma cylinder
title_fullStr Scaling laws for the helicon eigenmodes in a nonuniform plasma cylinder
title_full_unstemmed Scaling laws for the helicon eigenmodes in a nonuniform plasma cylinder
title_sort scaling laws for the helicon eigenmodes in a nonuniform plasma cylinder
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2012
topic_facet Фундаментальная физика плазмы
url http://dspace.nbuv.gov.ua/handle/123456789/109115
citation_txt Scaling laws for the helicon eigenmodes in a nonuniform plasma cylinder / K.P. Shamrai, N.A. Beloshenko // Вопросы атомной науки и техники. — 2012. — № 6. — С. 102-104. — Бібліогр.: 7 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT shamraikp scalinglawsfortheheliconeigenmodesinanonuniformplasmacylinder
AT beloshenkona scalinglawsfortheheliconeigenmodesinanonuniformplasmacylinder
first_indexed 2025-07-07T22:35:19Z
last_indexed 2025-07-07T22:35:19Z
_version_ 1837029360749510656
fulltext 102 ISSN 1562-6016. ВАНТ. 2012. №6(82) SCALING LAWS FOR THE HELICON EIGENMODES IN A NONUNIFORM PLASMA CYLINDER K.P. Shamrai, N.A. Beloshenko Institute for Nuclear Research NAS of Ukraine, Kiev, Ukraine The wave eigenmodes of a radially nonuniform plasma cylinder are examined analytically in the helicon frequency range. Conditions for the existence of almost pure helicon eigenmodes with on-axis localization are pointed out. The scaling (i.e. the relationship between the plasma density, the magnetic field, and the mode frequency and wave number) for these eigenmodes is found and shown to depend on the azimuthal mode number. PACS: 52.35.Hr INTRODUCTION The problem of helicon wave eigenmodes in a radially nonuniform plasma cylinder was examined in numerous papers in application to helicon discharges, fusion plasmas etc. (e.g., [1,2]). However, recently this problem was addressed again [3], for the following reason. As is known, the helicon wave dispersion relation for an infinite uniform plasma reads 2 2 pe z ce kck ω ωω = , (1) where peω is the electron plasma frequency, and ω , zk , ⊥k and 2/122 )( ⊥+= kkk z are the mode frequency and wave numbers, the longitudinal, transverse and total ones, respectively. If the frequency is fixed (in a helicon plasma, it is normally determined by an rf generator), the dispersion relation (1) yields the scaling for plane waves propagating along the magnetic field in the form 2 00 / zkBn ∝ where 0n is the plasma density and 0B an ambient magnetic field. For a radially bounded nonuniform plasma, the dispersion is normally evaluated from Eq. (1) by assuming k⊥ ∼ a−1 where a = min{R, Ln} (R and Ln: the cylinder radius and the characteristic scale of density nonuniformity). For long waves, 1<<akz , the total wave number k ∼ a−1, and then one obtains the scaling zkBn ∝0/ ( n : a radially averaged density). In some experiments with the excitation of non- axisymmetric waves (with the aximuthal number 0≠m ; normally )1+=m [4,5], it was found that the long-wave scaling is 2 0/ zkBn ∝ , which is similar to the plane wave case. To explain this fact, it was assumed [3] that excited in these experiments can be radially localized helicon modes of special type which have off- axis localization near the surface of strongest radial density gradient [6]. In this paper we examine on-axis localized eigenmodes whose scaling is likely to explain the aforementioned experiments. 1. THE MODEL We consider a radially nonuniform plasma cylinder of radius R immersed in a uniform axial magnetic field of strength B0. The plasma density is assumed to decrease from the center to periphery. We describe the electromagnetic fields by Maxwell equation with a cold- plasma dielectric tensor. The eigenmode fields are represented as )exp()(),( θω imziktirt z ++−= FrF where zk and m = 0, ±1, ±2… are the axial and azimuthal wave numbers. We shall examine the eigenmodes in the helicon approximation, i.e., assuming that the longitudinal electric field 0=zE . This approximation is valid under two conditions. First, a plasma should be considerably nonuniform radially, with the density at the boundary with a confining vessel much lesser than the center density, so that the surface mode conversion is negligible. Second, the mode axial wave number should lie in the range ( )( ) ( )( )cepzcep ckc ωωωωωωω ////2 00 << , (2) where 0pω is the center plasma frequency. The right inequality in Eq. (2) signifies that the central part of the plasma column is transparent whereas the peripheral part is opaque for the helicon waves. These parts are separated by the helicon cut-off surface determined by equation ( )( ) 222 /4/)( ckemrn zcee ωωπ= . (3) The left inequality in Eq. (2) signifies that the surface of the helicon wave coalescence with the quasi- electrostatic (Trivelpiece-Gould) wave is lacking in the plasma bulk, so that the process of bulk mode conversion of these waves is excluded [7]. If both aforementioned conditions are true, the helicon waves and the Trivelpiece-Gould waves are decoupled and the former can be described in the helicon approximation. In this approximation one puts 0=zE , and obtains from Maxwell equations the following equations for the θE and zB fields z zv v z B N m rk ik r E N m dr dE ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − +=⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − ++ 1 2 2 22 1 2 2 111 εε ε θθ ; θεε ε E N Vik r B N m dr dB z v z z z 1 2 1 2 2 − −= − − , (4) where 22 2 1 1 ce pe ωω ωε − −= and ( )22 2 2 ce cepe ωωω ωω ε − = are the dielectric tensor components, ω/ckN zz = is a longitudinal refractive index, ckv /ω= is a vacuum wave number, and ( ) 2 2 2 1 2 εε −−= zNV . The rest of field components are determined from algebraic equations ISSN 1562-6016. ВАНТ. 2012. №6(82) 103 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + − = z vz r B rk mEi N E θε ε 2 1 2 1 ; θENB zr −= , rz ENB =θ . (5) One can eliminate the zB field from Eqs. (4) to obtain a second-order equation for the θE field +⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − +⎥ ⎦ ⎤ ⎢ ⎣ ⎡ θ θ ε ε E qr m Ndr d dr rEd qrdr d z 2 1 2 2)(1 ( ) 022 2 1 2 2 2 2 1 2 2 = ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − + − + θε ε ε E rk m NqN V N k zzzz z , (6) where 22 2 1 2 2 1 rk m N Nq zz z ε− += . (7) 2. AXISYMMETRIC MODES Examine first the helicon eigenmodes with the azimuthal wave number 0=m . In this case, the parameter 1=q , and Eq. (6) simplifies to the form ( ) ( ) ( ) 01 1 22 2 1 22 22 = − −− +⎥⎦ ⎤ ⎢⎣ ⎡ θ θ ε εε E NN Nk dr rEd rdr d zz z z . (8) As long as the left inequality in Eq. (2) implies that 10 2 4ε>zN where )0(110 == rεε , with a reasonable accuracy one can neglect 1ε in comparison to 2 zN in Eq. (8). Assuming that the density profile is parabolic ( )22 0 /1)( arnrn −= , (9) where Ra ≥ , and that ωω >>ce , one can write ( )222 20 2 2 /21 ar−≈ εε , (10) where 224 0 2 20 / cep ωωωε = . Then Eq. (8) takes the form ( ) ( ) 01 2 20 =−+⎥⎦ ⎤ ⎢⎣ ⎡ θ θ Erbb dr rEd rdr d , (11) where ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −= 14 2 202 0 z z N kb ε , 24 2 202 2 2 aN kb z z ε = . (12) Introducing a dimensionless variable dr /=ς , 4/1 2 −= bd (13) reduces Eq. (11) to the following ( ) ( ) 01 2 =−+⎥ ⎦ ⎤ ⎢ ⎣ ⎡ θ θ ςλ ς ς ςς E d Ed d d , (14) where ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −== 1 2 4 2 20 20 2 0 2 z zz N akNbd ε ε λ (15) is an eigenvalue to be determined. Introducing a new function g ( ) gE ς ς θ 2/exp 2− = (16) and changing the independent variable, 2ςξ = , converts Eq. (14) to the following 0 42 2 =+− g d dg d gd λ ξ ξ ξ ξ . (17) With the eigenvalue specified as p= 4 λ , (18) where ...,3,2,1=p is a natural number, solutions of Eq. (17) are the orthogonal Laguerre polynomials )(1 ξ− pL . Taking the first polynomial, 21 1 )( ξξ =−L , one obtains finally the θE field of first radial helicon eigenmode in the form ( )22 0 )1( 2/exp drrCE −=θ , (19) where 0C is a constant. The value of d , Eq. (13), determines the width of the mode localization. The eigenvalue equation for the first radial mode, 4=λ , can be resolved to give the following relationship ⎟ ⎠ ⎞⎜ ⎝ ⎛ ++= 22 2 2 2 0 )16/1(1122 akak a c zz ce p ω ω ω . (20) The consequence of this equation is the scaling law for the 0=m modes: for long waves ( 1<<akz ) akBn z∝00 / (21) and for short waves ( 1>>akz ) 22 00 / akBn z∝ . (22) 3. NON-AXISYMMETRIC MODES For the non-axisymmetric modes with azimuthal wave numbers 0≠m , an analytic analysis can be performed for the axially long waves, 1<<akz . In this case, the parameter q , Eq. (7), can be approximated as 222 / rkmq z≈ . (23) Substituting this into Eq. (6) and neglecting 1ε in comparison with 2 zN , one obtains 013 2 22 =⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −+′+′+′′ θθθ ε Emr N mErEr z , (24) where the prime denotes the derivative with respect to r. Assuming again a parabolic density profile, as in Eq. (9), and changing the variable, ruE /=θ , one obtains the following equation 01 2 2 =⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −+′+′′ u r mu r u μ , (25) where the eigenvalue to be determined cez p Na m ωω ω μ 22 2 02 = . (26) Equation (25) is the mth-order Bessel equation which has physically reasonable solution only for the positive azimuthal numbers ( 0>m ), )( rJu m μ= . Finally, for the long waves 1<<akz with 0>m , the θE field takes the form 104 ISSN 1562-6016. ВАНТ. 2012. №6(82) )()( rJ r CE m mm μθ = , (27) where mC is a constant. Note that the right hand side of Eq. (27) is finite at 0→r , as long as mm rE ∝)( θ there. The eigenvalue (26) is specified by the boundary condition. For instance, if the plasma confining vessel is conducting, 0)()( == RrE m θ , one has to put mpR βμ = where mpβ is the pth root of the mth Bessel function. This gives the following relation for the pth radial mode mp cez p aN Rm β ωω ω =22 22 02 . (28) The relationship (28) determines the scaling for the long ( 1<<akz ) helicon modes with the azimuthal wave numbers 0>m in the form 22 00 / akBn z∝ . (29) It is parabolic on zk , contrary to the linear scaling for the long 0=m modes, Eq. (21). CONCLUSIONS It was found that the scaling of cylindrical helicon eigenmodes in a radially nonuniform plasma depends on the azimuthal mode number m. For the axisymmetric modes ( 0=m ) the scaling is parabolic on zk for the short modes, 22 00 / akBn z∝ ( 1>>akz ), whereas it is linear for the long modes, akBn z∝00 / ( 1<<akz ). On the contrary, the scaling for the non- axisymmetric ( 0>m ) long modes is parabolic on zk . The latter finding can explain the appropriate experimental results [4,5]. REFERENCES 1. F.F. Chen, M.J. Hsieh, and M. Light. Helicon waves in a non-uniform plasma // Plasma Sources Sci. Technol. 1994, v. 3, p. 49-57. 2. G. Kamelander and Ya.I. Kolesnichenko. Localized whistler eigenmodes in tokamaks // Phys. Plasmas. 1996, v. 3, p. 4102-4105. 3. R. Boswell. Helicon mysteries: fitting a plane wave into a cylinder // APS/DPP Meeting (Salt Lake City, November 14–18, 2011); Bull. Amer. Phys. Soc. 2011, v. 56, №15, DT1.00004. http://meetings.aps.org/link/BAPS.2011.GEC.DT1.4. 4. A.W. Degeling, C.O. Jung, R.W. Boswell, and A.R. Ellingboe. Plasma production from helicon waves // Phys. Plasmas. 1996, v. 3, p. 2788-2796. 5. J. Prager, T. Ziemba, R. Winglee, and B.R. Roberson. Wave propagation downstream of a high power helicon in a dipolelike magnetic field // Phys. Plasma. 2010, v. 17, p. 013504-1-9. 6. B.N. Breizman and A.V. Arefiev. Radially localized helicon modes in nonuniform plasma // Phys. Rev. Lett. 2000, v. 84, p. 3863-3866. 7. K.P. Shamrai. Stable modes and abrupt density jumps in a helicon plasma source // Plasma Sources Sci. Technol. 1998, v. 7, p. 499-511. Article received 19.09.12 ЗАКОНЫ ПОДОБИЯ ДЛЯ ГЕЛИКОННЫХ СОБСТВЕННЫХ МОД В НЕОДНОРОДНОМ ПЛАЗМЕННОМ ЦИЛИНДРЕ К.П. Шамрай, Н.А. Белошенко Аналитически исследованы волновые собственные моды радиально-неоднородного плазменного цилиндра в геликонном диапазоне частот. Указаны условия существования почти чистых геликонных мод, локализованных вблизи оси системы. Найден скейлинг (т.е. взаимоотношение между плотностью плазмы, магнитным полем и частотой, и волновым числом моды) для таких мод, и показано, что он зависит от азимутального волнового числа. ЗАКОНИ ПОДІБНОСТІ ДЛЯ ГЕЛІКОННИХ ВЛАСНИХ МОД У НЕОДНОРІДНОМУ ПЛАЗМОВОМУ ЦИЛІНДРІ К.П. Шамрай, М.А. Бєлошенко Аналітично досліджено хвильові власні моди радіально-неоднорідного плазмового циліндра в геліконному діапазоні частот. Виявлено умови існування майже чистих геліконних мод, локалізованих поблизу осі системи. Знайдено скейлінг (тобто співвідношення між густиною плазми, магнітним полем та частотою, і хвильовим числом моди) для таких мод, і показано, що він залежить від азимутального хвильового числа.