The comparative analysis of the compressible plasma streams generated in QSPA from the various gases

The numerical research of streams dynamics in the channel and the compressible flows at the QSPA output is carried out for the plasma generated from hydrogen, helium, argon and xenon. The MHD equations in the one-fluid approach taking into account the final conductivity of medium, the heat conductiv...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Kozlov, A.N., Drukarenko, S.P., Seytkhalilova, E.I., Solyakov, D.G., Velichkin, M.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/109146
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The comparative analysis of the compressible plasma streams generated in QSPA from the various gases / A.N. Kozlov, S.P. Drukarenko, E.I. Seytkhalilova, D.G. Solyakov, M.A. Velichkin // Вопросы атомной науки и техники. — 2012. — № 6. — С. 120-122. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109146
record_format dspace
spelling irk-123456789-1091462016-11-21T03:02:35Z The comparative analysis of the compressible plasma streams generated in QSPA from the various gases Kozlov, A.N. Drukarenko, S.P. Seytkhalilova, E.I. Solyakov, D.G. Velichkin, M.A. Динамика плазмы и взаимодействие плазмы со стенкой The numerical research of streams dynamics in the channel and the compressible flows at the QSPA output is carried out for the plasma generated from hydrogen, helium, argon and xenon. The MHD equations in the one-fluid approach taking into account the final conductivity of medium, the heat conductivity and the effective losses of radiation energy underlie the numerical model of the two-dimensional axisymmetric plasma flows. Features of the compressible plasma streams generated from various gases are revealed. Проведено численное исследование динамики потоков в канале и компрессионных течений на выходе из КСПУ для плазмы, генерируемой из водорода, гелия, аргона и ксенона. В основе численной модели двумерных осесимметричных течений плазмы лежат МГД-уравнения в одножидкостном приближении с учетом конечной проводимости среды, теплопроводности и эффективных потерь энергии на излучение. Выявлены особенности компрессионных потоков плазмы генерируемой из различных газов. Проведено чисельне дослідження динаміки потоків в каналі і компресійних течій на виході з КСПУ для плазми, яка генерується з водню, гелію, аргону і ксенону. В основі чисельної моделі двовимірних осесиметричних течій плазми лежать МГД-рівняння в однорідинному наближенні з урахуванням кінцевої провідності середовища, теплопровідності і ефективних витрат енергії на випромінювання. Виявлено особливості компресійних потоків плазми, які генерується з різних газів. 2012 Article The comparative analysis of the compressible plasma streams generated in QSPA from the various gases / A.N. Kozlov, S.P. Drukarenko, E.I. Seytkhalilova, D.G. Solyakov, M.A. Velichkin // Вопросы атомной науки и техники. — 2012. — № 6. — С. 120-122. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 52.30.Cv, 52.59.Dk, 52.65.-y http://dspace.nbuv.gov.ua/handle/123456789/109146 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Динамика плазмы и взаимодействие плазмы со стенкой
Динамика плазмы и взаимодействие плазмы со стенкой
spellingShingle Динамика плазмы и взаимодействие плазмы со стенкой
Динамика плазмы и взаимодействие плазмы со стенкой
Kozlov, A.N.
Drukarenko, S.P.
Seytkhalilova, E.I.
Solyakov, D.G.
Velichkin, M.A.
The comparative analysis of the compressible plasma streams generated in QSPA from the various gases
Вопросы атомной науки и техники
description The numerical research of streams dynamics in the channel and the compressible flows at the QSPA output is carried out for the plasma generated from hydrogen, helium, argon and xenon. The MHD equations in the one-fluid approach taking into account the final conductivity of medium, the heat conductivity and the effective losses of radiation energy underlie the numerical model of the two-dimensional axisymmetric plasma flows. Features of the compressible plasma streams generated from various gases are revealed.
format Article
author Kozlov, A.N.
Drukarenko, S.P.
Seytkhalilova, E.I.
Solyakov, D.G.
Velichkin, M.A.
author_facet Kozlov, A.N.
Drukarenko, S.P.
Seytkhalilova, E.I.
Solyakov, D.G.
Velichkin, M.A.
author_sort Kozlov, A.N.
title The comparative analysis of the compressible plasma streams generated in QSPA from the various gases
title_short The comparative analysis of the compressible plasma streams generated in QSPA from the various gases
title_full The comparative analysis of the compressible plasma streams generated in QSPA from the various gases
title_fullStr The comparative analysis of the compressible plasma streams generated in QSPA from the various gases
title_full_unstemmed The comparative analysis of the compressible plasma streams generated in QSPA from the various gases
title_sort comparative analysis of the compressible plasma streams generated in qspa from the various gases
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2012
topic_facet Динамика плазмы и взаимодействие плазмы со стенкой
url http://dspace.nbuv.gov.ua/handle/123456789/109146
citation_txt The comparative analysis of the compressible plasma streams generated in QSPA from the various gases / A.N. Kozlov, S.P. Drukarenko, E.I. Seytkhalilova, D.G. Solyakov, M.A. Velichkin // Вопросы атомной науки и техники. — 2012. — № 6. — С. 120-122. — Бібліогр.: 10 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kozlovan thecomparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases
AT drukarenkosp thecomparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases
AT seytkhalilovaei thecomparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases
AT solyakovdg thecomparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases
AT velichkinma thecomparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases
AT kozlovan comparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases
AT drukarenkosp comparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases
AT seytkhalilovaei comparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases
AT solyakovdg comparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases
AT velichkinma comparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases
first_indexed 2025-07-07T22:37:49Z
last_indexed 2025-07-07T22:37:49Z
_version_ 1837029518064222208
fulltext 120 ISSN 1562-6016. ВАНТ. 2012. №6(82) THE COMPARATIVE ANALYSIS OF THE COMPRESSIBLE PLASMA STREAMS GENERATED IN QSPA FROM THE VARIOUS GASES A.N. Kozlov1, S.P. Drukarenko2, E.I. Seytkhalilova3 , D.G. Solyakov4, M.A. Velichkin3 1Keldysh Institute for Applied Mathematics, RAS, Moscow, Russia; 2Bauman Moscow State Technical University, Moscow, Russia; 3Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia; 4Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine The numerical research of streams dynamics in the channel and the compressible flows at the QSPA output is carried out for the plasma generated from hydrogen, helium, argon and xenon. The MHD equations in the one-fluid approach taking into account the final conductivity of medium, the heat conductivity and the effective losses of radiation energy underlie the numerical model of the two-dimensional axisymmetric plasma flows. Features of the compressible plasma streams generated from various gases are revealed. PACS: 52.30.Cv, 52.59.Dk, 52.65.-y INTRODUCTION Studying of the multicomponent plasma dynamics is one of the actual directions of researches in the modern plasma physics and the computing plasmadynamics. Presence of impurity renders the essential influence on the dynamic characteristics of the plasma streams. The first stage of these complex researches is directed on revealing of properties and the comparative analysis of plasma streams of various structures. The modern level of researches of the quasi-steady plasma accelerators (QSPA) (see, for example, [1-4]) including their modifications at the presence of an additional longitudinal magnetic field [5-6], and the magneto plasma compressors (MPC) (see, for example, [7-8]) allows using the various gases for plasma generation. The plasma accelerator with an azimuthal magnetic field schematically consists of two coaxial electrodes connected to the electric circuit. The plasma current j has mainly radial direction proceeds between electrodes of the plasma accelerator. At presence of the azimuthal magnetic field ϕH which is generated by an electric current passing into the internal electrode the plasma is accelerated in the channel along the axis of system due to the Ampere force [ ]Hj ,1 c . The QSPA are multipurpose systems taking into account the opportunity of operation in the accelerating and compressible modes. Use of the plasma accelerators as the electro jet engines assumes the optimum organization of the accelerating modes. The compression of plasma is carried out on axis of system. It is of interest for the various plasma technologies. Basis of the axisymmetric plasma flows theory are presented in the monography [1], for example. The essential role in the development of QSPA and the understanding of the occurring processes is allocated to the mathematical models and numerical researches of plasma dynamics and the ionizing gas in the accelerator channels. A lot of the publications (see, for example, [1, 9-10]) are devoted to these researches. Theoretical and numerical researches of the enough dense plasma are spent within the framework of MHD-models. 1. FORMULATION OF PROBLEM The two-dimensional axisymmetric plasma flows is considered in the channel between the two coaxial profile electrodes (Fig. 1) and also outlet from the accelerator provided that the internal electrode is shorter external. At presence only the azimuthal components of a magnetic field ϕH the two components of velocity ( )0,, rz VV=V participate in the problem. Taking into account of the parameters it is possible to consider the quasi-neutral plasma nnn ei == . Also we neglect the inertia of electrons ( ie mm << ). Within the framework of the one-fluid model ( VVV == ie ) the statement of a problem includes the traditional equations magnetic gas dynamics in case of the final conductivity of medium 0=+ Vρ ∂ ρ∂ div t ; [ ]HjV ,1 c P td d =∇+ρ (1) ( ) radQTdivdivP td d −∇+=+ κ σ ερ 2jV ; Tcv2=ε [ ] σ∂ ∂ jHVH rotcrot t −= , ; Hj rotc π4 = ( )∇+ ∂ ∂ = ,V ttd d ; nmi=ρ ; TnkPPP Bei 2=+= Here all variables have usual sense, and the conductivity of medium is equal eee mne /2 τσ = . We neglect the molecular viscosity of the plasma component. The standard estimations of the heat transfer and the characteristic time of the energy exchange between components show that TTT ei =≈ . The heat conductivity of medium is defined by means of relation ( ) eeieeBe mTnk /0 2 χγτκκ == ⊥ where the function ( )χγ 0 considers the influence of the magnetized electronic components of plasma eieτωχ = . The effective losses of the radiation energy are caused by radiation of the spectral lines, recombination and braking radiation ISSN 1562-6016. ВАНТ. 2012. №6(82) 121 freereclinrad QQQQ ++= ; 2/3 6 23108 e i ie lin T Z nn Q −⋅= ; e i e rec T Z nn Q 4 24104.4 −⋅= ; ei ie free TZ nn Q 2251054.1 −⋅= Here iZ is the atomic charge, and temperature eT is expressed in eV. In the numerical model the dimensionless variables were used. Units of measure are the length of the channel L , the characteristic values of concentration on ( oio nm=ρ ), temperature oT and the azimuthal component of the magnetic field in the channel inlet cross section op o o RcJHH /2== ϕ where oR is the radius of the external electrode, pJ is the discharge current. By means of these values we form the units of velocity oioo nmHV π4/= and time oo VLt /= . Thus the following dimensionless parameters participate in a problem: 2/8 oo HPπβ = - the ration of gas and magnetic pressure in the inlet where ooo TnkP 2= ; σπν om VLc 4/Re/1 2== - the magnetic viscosity which is inversely proportional to magnetic Reynolds number; the dimensionless values κ~ and radQ~ . Statement of a problem includes the traditional boundary conditions. In the inlet cross section we believe that plasma inflows with the known values of density ( ) ( )rfr 1=ρ and temperature ( ) ( )rfrT 2= . We consider that the current is a constants and it passes in system only through electrodes, i.e. 0=zj at 0=z or constrHr o ==ϕ ( LRr oo /= ). The plasma inflowing is carried out along the certain direction, for example, along coordinate lines. On the outlet for the investigated transonic streams we believe that plasma follows freely. Except for that the electrodes forming the channel walls represent the equipotential ( 0=τE ) and impenetrable surfaces for plasma ( 0=nV ). On the axis ( 0=r ) we have the obvious boundary conditions: 0=rV ; 0=ϕH The technique of numerical integration is presented in [5]. The numerical solution of the non-stationary problem is carried out by the establishing method. 2. CALCULATIONS OF PLASMA FLOWS On the basis of the given model a series of the numerical experiments for the various values im and identical magnitudes on , oT , pJ and L corresponding the experiments under the QSPA program [1-4] is lead. For example, for values 31510 −= сmno , эВTo 2= , kAJ p 300= , сmL 60= , сm20=oR we have 009.0=β . Numerical experiments answer small values 1<<β which are characteristic for plasma accelerators. The geometry of the channel corresponds to the analytical researches of two-dimensional plasma flow Fig. 1. The compressible flow of the hydrogen plasma [5] according to which for the cold plasma ( 0=β ) the density on the channel inlet varies under the law ( ) 22 / rrr o=ρ . Assuming that the inflowing plasma is isentropic we have 1−= γρT at 0=z . For parameters specified above the quasi-stationary compressible flow of the hydrogen plasma is presented in Fig. 1 under condition of the non-uniform inflowing on the inlet. The level lines of functions ( )zr,ρ and ( )zrT , are represented in Fig. 1,a and 1b accordingly. The conic shock wave is distinctly observed. The level lines of function constHr =ϕ in Fig. 1,c define the direction of the plasma current depending on polarity of electrodes. For determinacy we shall consider that the external electrode is the anode. The projections of the vector ( zr VV , ) onto the ( )zr, plane is given in Fig. 1,d. The length of vectors is equal to the dimensionless value of velocity. The scale of vectors is defined by the characteristic velocity oV specified in figure. The dotted line in Fig. 1,d answers to the transition of the stream velocity through the signal velocity [1]. 0,0 0,5 1,0 1,5 2,0 0 5 10 15 20 25 30 Xe He Ar H Z V 10-6 (cm/c) Fig. 2. The change of the velocity module along the average coordinate line of the channel for the plasma generated from hydrogen, helium, argon and xenon 122 ISSN 1562-6016. ВАНТ. 2012. №6(82) Table of the maximal values of concentration and temperature in the compressible flow of plasma generated from hydrogen, helium, argon and xenon The characteristic break of stream lines is observed on the conic shock wave. There is the discontinuous change and the sharp increase in density, temperature and pressure. Behind the shock wave there is a further growth of density and temperature in the adiabatic compression mode. The following results concern the evolution of the compressible flow at change of values im , i.e. at the transition from one gas to another. Dependencies of velocity module on z along average coordinate line for different gases are presented in fig. 2. We can see that the stream velocity decreased in the QSPA channel with increasing ion mass. The behavior of variables on the conic shock wave where jump of all values is observed is kept at use of the various gases. However the value of the velocity jump on a shock wave decreases at transition to heavier gases. With the increasing ion mass we observe increasing the corner between conic surface of the shock wave and system axis. The decreasing of the stream velocity at the transition to heavier gas leads to decrease of the plasma compression parameters. In table the maximal values of concentration and temperature in the compressible plasma stream generated from various gases are presented. The value maxn for hydrogen is essentially more than for helium, argon and xenon. CONCLUSIONS On the basis of the numerical MHD-model the comparative analysis of the compressible plasma streams generated by QSPA from the various gases was performed. For all gases the zone of compression contains the conic shock wave on which there is the discontinuous change of density, temperature and pressure. As a whole the compression zone represents an area of the compressed and heated plasmas. At transition to heavier gases the stream velocity in the channel accordingly compression of plasma and value of the velocity jump on the conic shock wave decreases. The work has been executed at the financial support of Russian Foundation of Basic Research (grants N 12- 02-90427 and N 11-01-12043) and Russian Academy of Science (the program N 25 of Presidium RAS). REFERENCES 1. A.I. Morozov. Introduction in Plasmadynamics. Moscow: “Fizmatlit”, 2nd issue, 2008 (in Russian). 2. V.I. Tereshin, A.N. Bandura, O.V. Byrka, V.V. Chebotarev, I.E. Garkusha, I. Landman, V.A. Makhlaj, I.M. Neklyudov, D.G. Solyakov, A.V. Tsarenko. // Plasma Phys.Contr.Fusion.2007, v.49, p. А231-A239. 3. N. Klimov, V. Podkovyrov, A. Zhitlukhin, D. Kovalenko, B. Bazylev, I. Landman, S. Pestchanyi, G. Janeschitz, G. Federici, M. Merola, A. Loarte, J. Linke, T. Hirai, J. Compan. // J. Nuclear Materials. 2009, v. 390-391, p.721-726. 4. S.I. Ananin, V.M. Astashinskii, E.A. Kostyukevich, A.A. Man’kovskii, L.Ya. Min’ko // Plasma Physics Reports. 1998, v. 24, p. 936. 5. A.N. Kozlov // J. Plasma Physics. 2008, v. 74, №2, p. 261-286. 6. A.N. Kozlov, S.P. Drukarenko, N.S. Klimov, A.A. Moskacheva, V.L. Podkovyrov. // Problems of Atomic Science and Technology. Series «Plasma Physics». 2009, № 1, p. 92-94. 7. I.E. Garkusha, V.I. Tereshin, V.V. Chebotarev, D.G. Solyakov, Yu.V. Petrov, M.S. Ladygina, A.K. Marchenko, V.V. Staltsov, and D.V. Yelisyeyev // Plasma Physics Reports. 2011, v. 37, p. 948-954. 8. V.V. Uglov, V.M. Anishchik, V.V. Astashynski, V.M. Astashynski, S.I. Ananin, V.V. Askerko, E.A. Kostyukevich, A.M. Kuzmitski, N.T. Kvasov, A.L. Danilyuk // J. Surface and Coating Technology. 2002, v. 158-159, p. 273-276. 9. K.V. Brushlinsky, A.M. Zaborov, A.N. Kozlov, A.I. Morozov, V.V. Savelyev // Sov. J. Plasma Phys. 1990, v. 16, №2, p. 79. 10. A.N. Kozlov // Problems of Atomic Science and Technology. Series «Plasma Physics». 2008, № 6, p. 101-103. Article received 20.09.12 СРАВНИТЕЛЬНЫЙ АНАЛИЗ КОМПРЕССИОННЫХ ПОТОКОВ ПЛАЗМЫ, ГЕНЕРИРУЕМОЙ В КСПУ ИЗ РАЗЛИЧНЫХ ГАЗОВ А.Н. Козлов, М.А. Величкин, С.П. Друкаренко, Э.И. Сейтхалилова, Д.Г.Соляков Проведено численное исследование динамики потоков в канале и компрессионных течений на выходе из КСПУ для плазмы, генерируемой из водорода, гелия, аргона и ксенона. В основе численной модели двумерных осесимметричных течений плазмы лежат МГД-уравнения в одножидкостном приближении с учетом конечной проводимости среды, теплопроводности и эффективных потерь энергии на излучение. Выявлены особенности компрессионных потоков плазмы генерируемой из различных газов. ПОРІВНЯЛЬНИЙ АНАЛІЗ КОМПРЕСІЙНИХ ПОТОКІВ ПЛАЗМИ, ЯКІ ГЕНЕРУЮТЬСЯ В КCПУ ІЗ РІЗНИХ ГАЗІВ А.Н. Козлов, М.А. Велічкін, С.П. Друкаренко, Е.І. Сейтхалілова, Д.Г.Соляков Проведено чисельне дослідження динаміки потоків в каналі і компресійних течій на виході з КСПУ для плазми, яка генерується з водню, гелію, аргону і ксенону. В основі чисельної моделі двовимірних осесиметричних течій плазми лежать МГД-рівняння в однорідинному наближенні з урахуванням кінцевої провідності середовища, теплопровідності і ефективних витрат енергії на випромінювання. Виявлено особливості компресійних потоків плазми, які генерується з різних газів. hydrogen helium argon xenon 15 max 10−⋅n 3.45 5.32 4.19 4.16 eVT ,max 0.67 6.75 9.107 4.130