The comparative analysis of the compressible plasma streams generated in QSPA from the various gases
The numerical research of streams dynamics in the channel and the compressible flows at the QSPA output is carried out for the plasma generated from hydrogen, helium, argon and xenon. The MHD equations in the one-fluid approach taking into account the final conductivity of medium, the heat conductiv...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/109146 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The comparative analysis of the compressible plasma streams generated in QSPA from the various gases / A.N. Kozlov, S.P. Drukarenko, E.I. Seytkhalilova, D.G. Solyakov, M.A. Velichkin // Вопросы атомной науки и техники. — 2012. — № 6. — С. 120-122. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-109146 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1091462016-11-21T03:02:35Z The comparative analysis of the compressible plasma streams generated in QSPA from the various gases Kozlov, A.N. Drukarenko, S.P. Seytkhalilova, E.I. Solyakov, D.G. Velichkin, M.A. Динамика плазмы и взаимодействие плазмы со стенкой The numerical research of streams dynamics in the channel and the compressible flows at the QSPA output is carried out for the plasma generated from hydrogen, helium, argon and xenon. The MHD equations in the one-fluid approach taking into account the final conductivity of medium, the heat conductivity and the effective losses of radiation energy underlie the numerical model of the two-dimensional axisymmetric plasma flows. Features of the compressible plasma streams generated from various gases are revealed. Проведено численное исследование динамики потоков в канале и компрессионных течений на выходе из КСПУ для плазмы, генерируемой из водорода, гелия, аргона и ксенона. В основе численной модели двумерных осесимметричных течений плазмы лежат МГД-уравнения в одножидкостном приближении с учетом конечной проводимости среды, теплопроводности и эффективных потерь энергии на излучение. Выявлены особенности компрессионных потоков плазмы генерируемой из различных газов. Проведено чисельне дослідження динаміки потоків в каналі і компресійних течій на виході з КСПУ для плазми, яка генерується з водню, гелію, аргону і ксенону. В основі чисельної моделі двовимірних осесиметричних течій плазми лежать МГД-рівняння в однорідинному наближенні з урахуванням кінцевої провідності середовища, теплопровідності і ефективних витрат енергії на випромінювання. Виявлено особливості компресійних потоків плазми, які генерується з різних газів. 2012 Article The comparative analysis of the compressible plasma streams generated in QSPA from the various gases / A.N. Kozlov, S.P. Drukarenko, E.I. Seytkhalilova, D.G. Solyakov, M.A. Velichkin // Вопросы атомной науки и техники. — 2012. — № 6. — С. 120-122. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 52.30.Cv, 52.59.Dk, 52.65.-y http://dspace.nbuv.gov.ua/handle/123456789/109146 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Динамика плазмы и взаимодействие плазмы со стенкой Динамика плазмы и взаимодействие плазмы со стенкой |
spellingShingle |
Динамика плазмы и взаимодействие плазмы со стенкой Динамика плазмы и взаимодействие плазмы со стенкой Kozlov, A.N. Drukarenko, S.P. Seytkhalilova, E.I. Solyakov, D.G. Velichkin, M.A. The comparative analysis of the compressible plasma streams generated in QSPA from the various gases Вопросы атомной науки и техники |
description |
The numerical research of streams dynamics in the channel and the compressible flows at the QSPA output is carried out for the plasma generated from hydrogen, helium, argon and xenon. The MHD equations in the one-fluid approach taking into account the final conductivity of medium, the heat conductivity and the effective losses of radiation energy underlie the numerical model of the two-dimensional axisymmetric plasma flows. Features of the compressible plasma streams generated from various gases are revealed. |
format |
Article |
author |
Kozlov, A.N. Drukarenko, S.P. Seytkhalilova, E.I. Solyakov, D.G. Velichkin, M.A. |
author_facet |
Kozlov, A.N. Drukarenko, S.P. Seytkhalilova, E.I. Solyakov, D.G. Velichkin, M.A. |
author_sort |
Kozlov, A.N. |
title |
The comparative analysis of the compressible plasma streams generated in QSPA from the various gases |
title_short |
The comparative analysis of the compressible plasma streams generated in QSPA from the various gases |
title_full |
The comparative analysis of the compressible plasma streams generated in QSPA from the various gases |
title_fullStr |
The comparative analysis of the compressible plasma streams generated in QSPA from the various gases |
title_full_unstemmed |
The comparative analysis of the compressible plasma streams generated in QSPA from the various gases |
title_sort |
comparative analysis of the compressible plasma streams generated in qspa from the various gases |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2012 |
topic_facet |
Динамика плазмы и взаимодействие плазмы со стенкой |
url |
http://dspace.nbuv.gov.ua/handle/123456789/109146 |
citation_txt |
The comparative analysis of the compressible plasma streams generated in QSPA from the various gases / A.N. Kozlov, S.P. Drukarenko, E.I. Seytkhalilova, D.G. Solyakov, M.A. Velichkin // Вопросы атомной науки и техники. — 2012. — № 6. — С. 120-122. — Бібліогр.: 10 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT kozlovan thecomparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases AT drukarenkosp thecomparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases AT seytkhalilovaei thecomparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases AT solyakovdg thecomparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases AT velichkinma thecomparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases AT kozlovan comparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases AT drukarenkosp comparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases AT seytkhalilovaei comparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases AT solyakovdg comparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases AT velichkinma comparativeanalysisofthecompressibleplasmastreamsgeneratedinqspafromthevariousgases |
first_indexed |
2025-07-07T22:37:49Z |
last_indexed |
2025-07-07T22:37:49Z |
_version_ |
1837029518064222208 |
fulltext |
120 ISSN 1562-6016. ВАНТ. 2012. №6(82)
THE COMPARATIVE ANALYSIS OF THE COMPRESSIBLE PLASMA
STREAMS GENERATED IN QSPA FROM THE VARIOUS GASES
A.N. Kozlov1, S.P. Drukarenko2, E.I. Seytkhalilova3 , D.G. Solyakov4, M.A. Velichkin3
1Keldysh Institute for Applied Mathematics, RAS, Moscow, Russia;
2Bauman Moscow State Technical University, Moscow, Russia;
3Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia;
4Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
The numerical research of streams dynamics in the channel and the compressible flows at the QSPA output is
carried out for the plasma generated from hydrogen, helium, argon and xenon. The MHD equations in the one-fluid
approach taking into account the final conductivity of medium, the heat conductivity and the effective losses of
radiation energy underlie the numerical model of the two-dimensional axisymmetric plasma flows. Features of the
compressible plasma streams generated from various gases are revealed.
PACS: 52.30.Cv, 52.59.Dk, 52.65.-y
INTRODUCTION
Studying of the multicomponent plasma dynamics is
one of the actual directions of researches in the modern
plasma physics and the computing plasmadynamics.
Presence of impurity renders the essential influence on
the dynamic characteristics of the plasma streams. The
first stage of these complex researches is directed on
revealing of properties and the comparative analysis of
plasma streams of various structures. The modern level
of researches of the quasi-steady plasma accelerators
(QSPA) (see, for example, [1-4]) including their
modifications at the presence of an additional
longitudinal magnetic field [5-6], and the magneto
plasma compressors (MPC) (see, for example, [7-8])
allows using the various gases for plasma generation.
The plasma accelerator with an azimuthal magnetic
field schematically consists of two coaxial electrodes
connected to the electric circuit. The plasma current j
has mainly radial direction proceeds between electrodes
of the plasma accelerator. At presence of the azimuthal
magnetic field ϕH which is generated by an electric
current passing into the internal electrode the plasma is
accelerated in the channel along the axis of system due
to the Ampere force [ ]Hj ,1
c
.
The QSPA are multipurpose systems taking into
account the opportunity of operation in the accelerating
and compressible modes. Use of the plasma accelerators
as the electro jet engines assumes the optimum
organization of the accelerating modes. The
compression of plasma is carried out on axis of system.
It is of interest for the various plasma technologies.
Basis of the axisymmetric plasma flows theory are
presented in the monography [1], for example. The
essential role in the development of QSPA and the
understanding of the occurring processes is allocated to
the mathematical models and numerical researches of
plasma dynamics and the ionizing gas in the accelerator
channels. A lot of the publications (see, for example, [1,
9-10]) are devoted to these researches. Theoretical and
numerical researches of the enough dense plasma are
spent within the framework of MHD-models.
1. FORMULATION OF PROBLEM
The two-dimensional axisymmetric plasma flows is
considered in the channel between the two coaxial
profile electrodes (Fig. 1) and also outlet from the
accelerator provided that the internal electrode is shorter
external. At presence only the azimuthal components of
a magnetic field ϕH the two components of
velocity ( )0,, rz VV=V participate in the problem.
Taking into account of the parameters it is possible
to consider the quasi-neutral plasma nnn ei == . Also
we neglect the inertia of electrons ( ie mm << ). Within
the framework of the one-fluid model ( VVV == ie )
the statement of a problem includes the traditional
equations magnetic gas dynamics in case of the final
conductivity of medium
0=+ Vρ
∂
ρ∂ div
t
; [ ]HjV ,1
c
P
td
d
=∇+ρ (1)
( ) radQTdivdivP
td
d
−∇+=+ κ
σ
ερ
2jV ; Tcv2=ε
[ ]
σ∂
∂ jHVH rotcrot
t
−= , ; Hj rotc
π4
=
( )∇+
∂
∂
= ,V
ttd
d
; nmi=ρ ; TnkPPP Bei 2=+=
Here all variables have usual sense, and the conductivity
of medium is equal eee mne /2 τσ = .
We neglect the molecular viscosity of the plasma
component. The standard estimations of the heat
transfer and the characteristic time of the energy
exchange between components show that TTT ei =≈ .
The heat conductivity of medium is defined by means of
relation ( ) eeieeBe mTnk /0
2 χγτκκ == ⊥ where the
function ( )χγ 0 considers the influence of the
magnetized electronic components of plasma eieτωχ = .
The effective losses of the radiation energy are caused
by radiation of the spectral lines, recombination and
braking radiation
ISSN 1562-6016. ВАНТ. 2012. №6(82) 121
freereclinrad QQQQ ++= ; 2/3
6
23108
e
i
ie
lin
T
Z
nn
Q −⋅= ;
e
i
e
rec
T
Z
nn
Q 4
24104.4 −⋅= ; ei
ie
free TZ
nn
Q 2251054.1 −⋅=
Here iZ is the atomic charge, and temperature eT is
expressed in eV.
In the numerical model the dimensionless variables
were used. Units of measure are the length of the
channel L , the characteristic values of concentration
on ( oio nm=ρ ), temperature oT and the azimuthal
component of the magnetic field in the channel inlet
cross section op
o
o RcJHH /2== ϕ where oR is the
radius of the external electrode, pJ is the discharge
current. By means of these values we form the units of
velocity oioo nmHV π4/= and time oo VLt /= .
Thus the following dimensionless parameters participate
in a problem: 2/8 oo HPπβ = - the ration of gas and
magnetic pressure in the inlet where ooo TnkP 2= ;
σπν om VLc 4/Re/1 2== - the magnetic viscosity
which is inversely proportional to magnetic Reynolds
number; the dimensionless values κ~ and radQ~ .
Statement of a problem includes the traditional
boundary conditions. In the inlet cross section we
believe that plasma inflows with the known values of
density ( ) ( )rfr 1=ρ and temperature ( ) ( )rfrT 2= . We
consider that the current is a constants and it passes in
system only through electrodes, i.e. 0=zj at 0=z or
constrHr o ==ϕ ( LRr oo /= ). The plasma inflowing
is carried out along the certain direction, for example,
along coordinate lines. On the outlet for the investigated
transonic streams we believe that plasma follows freely.
Except for that the electrodes forming the channel
walls represent the equipotential ( 0=τE ) and
impenetrable surfaces for plasma ( 0=nV ). On the axis
( 0=r ) we have the obvious boundary conditions:
0=rV ; 0=ϕH
The technique of numerical integration is presented in
[5]. The numerical solution of the non-stationary
problem is carried out by the establishing method.
2. CALCULATIONS OF PLASMA FLOWS
On the basis of the given model a series of the
numerical experiments for the various values im and
identical magnitudes on , oT , pJ and L corresponding
the experiments under the QSPA program [1-4] is lead.
For example, for values 31510 −= сmno , эВTo 2= ,
kAJ p 300= , сmL 60= , сm20=oR we have
009.0=β . Numerical experiments answer small values
1<<β which are characteristic for plasma accelerators.
The geometry of the channel corresponds to the
analytical researches of two-dimensional plasma flow
Fig. 1. The compressible flow of the hydrogen plasma
[5] according to which for the cold plasma ( 0=β ) the
density on the channel inlet varies under the law
( ) 22 / rrr o=ρ . Assuming that the inflowing plasma is
isentropic we have 1−= γρT at 0=z .
For parameters specified above the quasi-stationary
compressible flow of the hydrogen plasma is presented
in Fig. 1 under condition of the non-uniform inflowing
on the inlet. The level lines of functions ( )zr,ρ and
( )zrT , are represented in Fig. 1,a and 1b accordingly.
The conic shock wave is distinctly observed. The level
lines of function constHr =ϕ in Fig. 1,c define the
direction of the plasma current depending on polarity of
electrodes. For determinacy we shall consider that the
external electrode is the anode. The projections of the
vector ( zr VV , ) onto the ( )zr, plane is given in Fig. 1,d.
The length of vectors is equal to the dimensionless
value of velocity. The scale of vectors is defined by the
characteristic velocity oV specified in figure. The dotted
line in Fig. 1,d answers to the transition of the stream
velocity through the signal velocity [1].
0,0 0,5 1,0 1,5 2,0
0
5
10
15
20
25
30
Xe
He
Ar
H
Z
V 10-6 (cm/c)
Fig. 2. The change of the velocity module along the
average coordinate line of the channel for the plasma
generated from hydrogen, helium, argon and xenon
122 ISSN 1562-6016. ВАНТ. 2012. №6(82)
Table of the maximal values of concentration and
temperature in the compressible flow of plasma
generated from hydrogen, helium, argon and xenon
The characteristic break of stream lines is observed on
the conic shock wave. There is the discontinuous change
and the sharp increase in density, temperature and pressure.
Behind the shock wave there is a further growth of density
and temperature in the adiabatic compression mode.
The following results concern the evolution of the
compressible flow at change of values im , i.e. at the
transition from one gas to another. Dependencies of
velocity module on z along average coordinate line for
different gases are presented in fig. 2. We can see that
the stream velocity decreased in the QSPA channel with
increasing ion mass. The behavior of variables on the
conic shock wave where jump of all values is observed
is kept at use of the various gases. However the value of
the velocity jump on a shock wave decreases at
transition to heavier gases. With the increasing ion mass
we observe increasing the corner between conic surface
of the shock wave and system axis.
The decreasing of the stream velocity at the
transition to heavier gas leads to decrease of the plasma
compression parameters. In table the maximal values of
concentration and temperature in the compressible
plasma stream generated from various gases are
presented. The value maxn for hydrogen is essentially
more than for helium, argon and xenon.
CONCLUSIONS
On the basis of the numerical MHD-model the
comparative analysis of the compressible plasma
streams generated by QSPA from the various gases was
performed. For all gases the zone of compression
contains the conic shock wave on which there is the
discontinuous change of density, temperature and
pressure. As a whole the compression zone represents
an area of the compressed and heated plasmas. At
transition to heavier gases the stream velocity in the
channel accordingly compression of plasma and value
of the velocity jump on the conic shock wave decreases.
The work has been executed at the financial support
of Russian Foundation of Basic Research (grants N 12-
02-90427 and N 11-01-12043) and Russian Academy of
Science (the program N 25 of Presidium RAS).
REFERENCES
1. A.I. Morozov. Introduction in Plasmadynamics.
Moscow: “Fizmatlit”, 2nd issue, 2008 (in Russian).
2. V.I. Tereshin, A.N. Bandura, O.V. Byrka,
V.V. Chebotarev, I.E. Garkusha, I. Landman,
V.A. Makhlaj, I.M. Neklyudov, D.G. Solyakov,
A.V. Tsarenko. // Plasma Phys.Contr.Fusion.2007,
v.49, p. А231-A239.
3. N. Klimov, V. Podkovyrov, A. Zhitlukhin,
D. Kovalenko, B. Bazylev, I. Landman, S. Pestchanyi,
G. Janeschitz, G. Federici, M. Merola, A. Loarte,
J. Linke, T. Hirai, J. Compan. // J. Nuclear Materials.
2009, v. 390-391, p.721-726.
4. S.I. Ananin, V.M. Astashinskii, E.A. Kostyukevich,
A.A. Man’kovskii, L.Ya. Min’ko // Plasma Physics
Reports. 1998, v. 24, p. 936.
5. A.N. Kozlov // J. Plasma Physics. 2008, v. 74, №2,
p. 261-286.
6. A.N. Kozlov, S.P. Drukarenko, N.S. Klimov,
A.A. Moskacheva, V.L. Podkovyrov. // Problems of
Atomic Science and Technology. Series «Plasma
Physics». 2009, № 1, p. 92-94.
7. I.E. Garkusha, V.I. Tereshin, V.V. Chebotarev,
D.G. Solyakov, Yu.V. Petrov, M.S. Ladygina,
A.K. Marchenko, V.V. Staltsov, and D.V. Yelisyeyev //
Plasma Physics Reports. 2011, v. 37, p. 948-954.
8. V.V. Uglov, V.M. Anishchik, V.V. Astashynski,
V.M. Astashynski, S.I. Ananin, V.V. Askerko,
E.A. Kostyukevich, A.M. Kuzmitski, N.T. Kvasov,
A.L. Danilyuk // J. Surface and Coating Technology.
2002, v. 158-159, p. 273-276.
9. K.V. Brushlinsky, A.M. Zaborov, A.N. Kozlov,
A.I. Morozov, V.V. Savelyev // Sov. J. Plasma Phys.
1990, v. 16, №2, p. 79.
10. A.N. Kozlov // Problems of Atomic Science and
Technology. Series «Plasma Physics». 2008, № 6,
p. 101-103.
Article received 20.09.12
СРАВНИТЕЛЬНЫЙ АНАЛИЗ КОМПРЕССИОННЫХ ПОТОКОВ ПЛАЗМЫ,
ГЕНЕРИРУЕМОЙ В КСПУ ИЗ РАЗЛИЧНЫХ ГАЗОВ
А.Н. Козлов, М.А. Величкин, С.П. Друкаренко, Э.И. Сейтхалилова, Д.Г.Соляков
Проведено численное исследование динамики потоков в канале и компрессионных течений на выходе из
КСПУ для плазмы, генерируемой из водорода, гелия, аргона и ксенона. В основе численной модели
двумерных осесимметричных течений плазмы лежат МГД-уравнения в одножидкостном приближении с
учетом конечной проводимости среды, теплопроводности и эффективных потерь энергии на излучение.
Выявлены особенности компрессионных потоков плазмы генерируемой из различных газов.
ПОРІВНЯЛЬНИЙ АНАЛІЗ КОМПРЕСІЙНИХ ПОТОКІВ ПЛАЗМИ, ЯКІ
ГЕНЕРУЮТЬСЯ В КCПУ ІЗ РІЗНИХ ГАЗІВ
А.Н. Козлов, М.А. Велічкін, С.П. Друкаренко, Е.І. Сейтхалілова, Д.Г.Соляков
Проведено чисельне дослідження динаміки потоків в каналі і компресійних течій на виході з КСПУ для
плазми, яка генерується з водню, гелію, аргону і ксенону. В основі чисельної моделі двовимірних
осесиметричних течій плазми лежать МГД-рівняння в однорідинному наближенні з урахуванням кінцевої
провідності середовища, теплопровідності і ефективних витрат енергії на випромінювання. Виявлено
особливості компресійних потоків плазми, які генерується з різних газів.
hydrogen helium argon xenon
15
max 10−⋅n 3.45 5.32 4.19 4.16
eVT ,max 0.67 6.75 9.107 4.130
|