MHD characteristics of compression zone in plasma stream generated by MPC
An investigation of local MHD plasma parameters in flow and characterizations of plasma streams, generated by different types of plasma accelerators and magneto-plasma compressors, is one of actual and important from point of view basic plasma dynamics research and plasma applications in different t...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , , , , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/109147 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | MHD characteristics of compression zone in plasma stream generated by MPC / V.V. Chebotarev, T.N. Cherednychenko, D.V. Eliseev, I.E. Garkusha, A.N. Kozlov, N.V. Kulik, M.S. Ladygina, A.K. Marchenko, Ya.I. Morgal, Yu.V. Petrov, D.G. Solyakov, V.V. Staltsov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 123-125. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-109147 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1091472016-11-21T03:02:35Z MHD characteristics of compression zone in plasma stream generated by MPC Chebotarev, V.V. Cherednychenko, T.N. Eliseev, D.V. Garkusha, I.E. Kozlov, A.N. Kulik, N.V. Ladygina, M.S. Marchenko, A.K. Morgal, Ya.I. Petrov, Yu.V. Solyakov, D.G. Staltsov, V.V. Динамика плазмы и взаимодействие плазмы со стенкой An investigation of local MHD plasma parameters in flow and characterizations of plasma streams, generated by different types of plasma accelerators and magneto-plasma compressors, is one of actual and important from point of view basic plasma dynamics research and plasma applications in different technologies. The present paper devoted to analysis of magneto-hydrodynamic characteristics of the plasma stream generated by the MPC compact geometry. Such important parameters as spatial distributions of electric current and spatial distribution of electromagnetic force in plasma stream, plasma density and velocity in compression zone have been investigated. Исследование локальных МГД параметров плазмы в потоке и характеристик плазменных потоков, генерируемых различными видами плазменных ускорителей и магнито-плазменных компрессоров, является актуальной фундаментальной задачей физики плазмы. Настоящая работа посвящена анализу магнито- гидродинамических характеристик плазменного потока, генерируемого MПК. Были исследованы такие важные параметры, как пространственные распределения электрического тока и электромагнитной силы в плазменном потоке, плотность плазмы и скорость в зоне компрессии. Дослідження локальних МГД параметрів плазми в потоці та характеристик плазмових потоків, що генеруються різними видами плазмових прискорювачів і магніто-плазмових компресорів, є актуальною фундаментальною задачею фізики плазми. Дана робота присвячена аналізу магніто-гідродинамічних характеристик плазмового потоку, який генерується MПК. Були досліджені такі важливі параметри, як просторові розподіли електричного струму та електромагнітної сили в плазмовому потоці, густина плазми та швидкістьу зоні компресії. 2012 Article MHD characteristics of compression zone in plasma stream generated by MPC / V.V. Chebotarev, T.N. Cherednychenko, D.V. Eliseev, I.E. Garkusha, A.N. Kozlov, N.V. Kulik, M.S. Ladygina, A.K. Marchenko, Ya.I. Morgal, Yu.V. Petrov, D.G. Solyakov, V.V. Staltsov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 123-125. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 52.30.Cv, 52.50.Dg, 52.25Xz http://dspace.nbuv.gov.ua/handle/123456789/109147 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Динамика плазмы и взаимодействие плазмы со стенкой Динамика плазмы и взаимодействие плазмы со стенкой |
spellingShingle |
Динамика плазмы и взаимодействие плазмы со стенкой Динамика плазмы и взаимодействие плазмы со стенкой Chebotarev, V.V. Cherednychenko, T.N. Eliseev, D.V. Garkusha, I.E. Kozlov, A.N. Kulik, N.V. Ladygina, M.S. Marchenko, A.K. Morgal, Ya.I. Petrov, Yu.V. Solyakov, D.G. Staltsov, V.V. MHD characteristics of compression zone in plasma stream generated by MPC Вопросы атомной науки и техники |
description |
An investigation of local MHD plasma parameters in flow and characterizations of plasma streams, generated by different types of plasma accelerators and magneto-plasma compressors, is one of actual and important from point of view basic plasma dynamics research and plasma applications in different technologies. The present paper devoted to analysis of magneto-hydrodynamic characteristics of the plasma stream generated by the MPC compact geometry. Such important parameters as spatial distributions of electric current and spatial distribution of electromagnetic force in plasma stream, plasma density and velocity in compression zone have been investigated. |
format |
Article |
author |
Chebotarev, V.V. Cherednychenko, T.N. Eliseev, D.V. Garkusha, I.E. Kozlov, A.N. Kulik, N.V. Ladygina, M.S. Marchenko, A.K. Morgal, Ya.I. Petrov, Yu.V. Solyakov, D.G. Staltsov, V.V. |
author_facet |
Chebotarev, V.V. Cherednychenko, T.N. Eliseev, D.V. Garkusha, I.E. Kozlov, A.N. Kulik, N.V. Ladygina, M.S. Marchenko, A.K. Morgal, Ya.I. Petrov, Yu.V. Solyakov, D.G. Staltsov, V.V. |
author_sort |
Chebotarev, V.V. |
title |
MHD characteristics of compression zone in plasma stream generated by MPC |
title_short |
MHD characteristics of compression zone in plasma stream generated by MPC |
title_full |
MHD characteristics of compression zone in plasma stream generated by MPC |
title_fullStr |
MHD characteristics of compression zone in plasma stream generated by MPC |
title_full_unstemmed |
MHD characteristics of compression zone in plasma stream generated by MPC |
title_sort |
mhd characteristics of compression zone in plasma stream generated by mpc |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2012 |
topic_facet |
Динамика плазмы и взаимодействие плазмы со стенкой |
url |
http://dspace.nbuv.gov.ua/handle/123456789/109147 |
citation_txt |
MHD characteristics of compression zone in plasma stream generated by MPC / V.V. Chebotarev, T.N. Cherednychenko, D.V. Eliseev, I.E. Garkusha, A.N. Kozlov, N.V. Kulik, M.S. Ladygina, A.K. Marchenko, Ya.I. Morgal, Yu.V. Petrov, D.G. Solyakov, V.V. Staltsov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 123-125. — Бібліогр.: 3 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT chebotarevvv mhdcharacteristicsofcompressionzoneinplasmastreamgeneratedbympc AT cherednychenkotn mhdcharacteristicsofcompressionzoneinplasmastreamgeneratedbympc AT eliseevdv mhdcharacteristicsofcompressionzoneinplasmastreamgeneratedbympc AT garkushaie mhdcharacteristicsofcompressionzoneinplasmastreamgeneratedbympc AT kozlovan mhdcharacteristicsofcompressionzoneinplasmastreamgeneratedbympc AT kuliknv mhdcharacteristicsofcompressionzoneinplasmastreamgeneratedbympc AT ladyginams mhdcharacteristicsofcompressionzoneinplasmastreamgeneratedbympc AT marchenkoak mhdcharacteristicsofcompressionzoneinplasmastreamgeneratedbympc AT morgalyai mhdcharacteristicsofcompressionzoneinplasmastreamgeneratedbympc AT petrovyuv mhdcharacteristicsofcompressionzoneinplasmastreamgeneratedbympc AT solyakovdg mhdcharacteristicsofcompressionzoneinplasmastreamgeneratedbympc AT staltsovvv mhdcharacteristicsofcompressionzoneinplasmastreamgeneratedbympc |
first_indexed |
2025-07-07T22:37:53Z |
last_indexed |
2025-07-07T22:37:53Z |
_version_ |
1837029522616090624 |
fulltext |
ISSN 1562-6016. ВАНТ. 2012. №6(82) 123
MHD CHARACTERISTICS OF COMPRESSION ZONE IN PLASMA
STREAM GENERATED BY MPC
V.V. Chebotarev1, T.N. Cherednychenko1, D.V. Eliseev1, I.E. Garkusha1, A.N. Kozlov2,
N.V. Kulik1, M.S. Ladygina1, A.K. Marchenko1, Ya.I. Morgal1, Yu.V. Petrov1,
D.G. Solyakov1, V.V. Staltsov1
1Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
2Keldysh Institute of Applied Mathematics, RAS, Moscow, Russia
An investigation of local MHD plasma parameters in flow and characterizations of plasma streams, generated by
different types of plasma accelerators and magneto-plasma compressors, is one of actual and important from point of
view basic plasma dynamics research and plasma applications in different technologies. The present paper devoted to
analysis of magneto-hydrodynamic characteristics of the plasma stream generated by the MPC compact geometry.
Such important parameters as spatial distributions of electric current and spatial distribution of electromagnetic force in
plasma stream, plasma density and velocity in compression zone have been investigated.
PACS: 52.30.Cv, 52.50.Dg, 52.25Xz
INTRODUCTION
As was shown in [1] the average radius and width of
plasma flux tube should decrease along tube to achieved
compression mode of MPC operation. The process of
energy transformation, which passed into MPC channel,
can be described by Bernoulli equation
. According with this
equation energy that passed from energy supply system
transforms to kinetic energy of plasma stream in MPC
channel, then, in the compression zone, kinetic energy
should transform to plasma thermal energy and then,
when plasma stream passed through compression zone,
thermal energy should transform to kinetic energy again.
Maximum value of plasma density in compression
zone for compression mode of MPC operation can be
estimated, based on Bernoulli equation. For discharge
current Id = 400 kA, initial density n0=2.1016 cm-3
maximal density in compression equal
nmax=(1.4…1.6)·1018 cm-3.
In present paper described results of experimental
investigations of spatial MHD characteristics
distributions in compression zone generated by MPC
compact geometry (are/was described).
1. EXPERIMENTAL SETUP
Experiments were caring out in MPC compact
geometry [2-3]. The MPC channel was formed by
coaxial cooper electrodes. The outer electrode (anode)
with outlet diameter 70 mm consists of solid cylindrical
part and output rod structure including 12 copper rods
with diameter of 10 mm and of 147 mm in length. The
solid inner electrode (cathode) has outlet diameter
40 mm. MPC channel width, distance between anode
and cathode surface, decreased along axis, thus flux
tube geometry correspond to requirement for
compression mode of operation.
Condenser bank (90 μF) with voltage up to 25 kV
was used as power supply system of MPC discharge.
Maximum value of discharge current was 500 kA and
half period duration equal 10 μs. The general view of
MPC is presented in Fig. 1. MPC was installed into
vacuum chamber 40 cm in diameter and 200 cm in
length. All experiments were performed in mode of
MPC operation in residual Helium with pressure from
0.5 to 10 Torr. All experimental results, described in
present paper, were obtained at capacitor voltage 20 kV,
discharge current in MPC channel 420 kA.
Fig. 1 General view of MPC electrode system
Numbers of magnetic probes were applied for
measurements of electric current spatial distribution in
plasma stream. Plasma stream density was measured by
Stark broadening of different spectral lines. Plasma
stream velocity was measured by time flight method
between electric probes, installed on different distances
from MPC output. Rogowski coil and voltage divider
were applied for discharge current and voltage
measurements.
2. EXPERIMENTAL RESULTS
To understand process of compression zone
formation we have to investigate spatial distributions of
electric current and electromagnetic force in plasma
stream generated by MPC. Spatial distributions of
electric current in plasma stream, generated by MPC
was investigated in two modes of operation with
residual helium pressure 2 and 10 Torr. Experimentally
measured spatial distribution of electric current in
124 ISSN 1562-6016. ВАНТ. 2012. №6(82)
plasma stream is presented in Fig. 2 for MPC mode of
operation with residual helium pressure 2 Torr.
As we can see from this figure maximum value of
electrical current flows outside the MPC channel not
more than (15…20) % of total discharge current.
Magnetic field displacement from near axis region on
distance 5…7 cm from cathode output is discovered.
This effect will used for plasma temperature estimation
from pressure balance equation. Toroidal vortex of
electric current with current value up to 50% of total
discharge current has been observed in plasma stream.
This vortex generated at distance 12…15 cm from MPC
output, when plasma stream passed through
compression zone.
10 5 0 5 10 15 20 25 30
0
5
10
r,
c
m
z, cm
120 10070
50I = 0
Fig. 2. Electric current spatial distribution in plasma
stream. Helium pressure 2 Torr, t = 10 μs
Spatial distributions of electromagnetic force
in plasma stream were calculated based
on electric current distributions. The result is presented
in Fig. 3.
Fig. 3. Electromagnetic force spatial distribution in
plasma stream. Helium pressure 2 Torr, t = 10 μs
Each vector shows electromagnetic force direction
only and not corresponds to the force value. As we can
see plasma stream can be separated on four different
areas. The first one is area r<2.5 cm and z<16 cm where
plasma stream decelerate and compress in axis
direction. The second area r<2.5 cm and z>16 cm is area
where plasma stream accelerated, but still compress in
axis direction. The third area r>2.5 cm and z<16 cm is
area where plasma stream decelerated, but moved in
vacuum chamber wall direction. Finally, forth area
r>2.5 cm and z>16 cm is area where plasma stream
accelerated and moved to vacuum chamber wall
direction. Thus, we can expect compression zone
formation at distance 5…7 cm from cathode output.
The spatial distribution of electric current in plasma
stream changed when residual helium pressure
increased up to 10 Torr. The total value of current that
flows in plasma stream, increased up to 30% of total
discharge current. Magnetic field displacement in near
axis region close to MPC output and toroidal current
vortex in plasma stream not observed.
Plasma densities in near axis region for MPC mode
of operation with pressure 2 and 10 Torr as function of
distance from cathode output for time of moment t=10
μs from discharge ignition are presented in Fig. 4.
As we can see from Fig. 4 plasma density strong
depends on pressure in vacuum chamber and on
distance from cathode output. Maximum plasma density
up to (2…3)·1018 cm-3 was measured at helium pressure
2 Torr at distance 5…7 cm. When helium pressure in
vacuum chamber increased up to 10 Torr maximum
plasma density decreased up to (6…8)·1017 cm-3.
0 2 4 6 8 10 12
0
10
20
30
P=10 torr
Pl
as
m
a
de
ns
ity
, 1
01
7
cm
-3
Distance from cathode output, cm
P=2 torr
t =10 μs
Fig. 4. Plasma density distribution
Time dependencies of plasma density at a distance 5
cm from cathode output are presented in Fig. 5. As we can
see from this picture compression zone with density more
than 1018 cm-3 forms starting from t = 8 μs in mode MPC
operation with helium pressure 2 Torr. Then, plasma
density keeps value (2…3).1018 cm-3 during 20 μs. It
demonstrates quasi-steady-state mode of compression zone
formation. Compression zone forms and situated in a
distance 3…5 cm from cathode output. In MPC mode of
operation with helium pressure 10 Torr compression zone
start forms close to cathode output and plasma density
decreased with time from (2…4).1018 cm-3 at time t = 5 μs
to (0.5…1).1017 cm-3 at t = 35 μs.
0 10 20 30 40
1
10
Pl
as
m
a
de
ns
ity
, 1
01
7
cm
-3
Time, μs
40 Z = 5 cm
P = 2 torr
P = 10 torr
Fig. 5. Time dependencies of plasma density
The velocity of different parts of plasma stream in
different distances from MPC output was estimated by
time of flight between several double electric probes
that was installed along vacuum chamber.
As was discovered the velocity of plasma stream of
different parts strong depends on MPC mode of
operation and distance from MPC output. For time of
moment t = 10 μs from discharge ignition the velocity
of plasma stream at distance 1...3 cm from cathode
output is equal (2…3).107 cm/s. Then, at distance
4…7 cm from cathode output where plasma stream
densityreached maximum value stream velocity
decreased up
ISSN 1562-6016. ВАНТ. 2012. №6(82) 125
to 106 cm/s. Then, the stream velocity weakly increased
along axis and reach value (8…10)·106 cm/s at distance
22…30 cm from cathode output.
3. DISCUSSION AND CONCLUSIONS
As was discovered, the magnetic field displaced
from compression zone and plasma density in
compression zone reach value (2…3)·1018 cm-3. Thus,
plasma temperature in compression zone can be
estimated, based on pressure balance equation and it
value T = (Te+Ti) = (60…100) eV.
Experimentally there was found that plasma density
in compression zone decreased with increasing residual
gas pressure, in another words, with increasing initial
density (n0) in the input cross section of MPC channel.
As follow from Bernoulli equation maximal value of
plasma density in compression zone depends on
discharge current and initial density as ,
where T0 – initial temperature. As we have seen from
experimental data, plasma density in compression zone
decreased in 3…4 times with increasing initial gas
pressure in vacuum chamber in 5 times.
Experimentally there was discovered that plasma
stream parameters, namely: the density, the velocity and
the magnetic field, strong depend on distance from
cathode output. As follow from Bernoulli equation,
energy that passed from capacitor bank to MPC channel
will transform to three different parts: to kinetic energy
of plasma stream, or plasma thermal energy, or the
energy of magnetic field, or their mix (Fig. 6).
As we can see plasma accelerated in MPC channel
up to velocity v=(2…3).107 cm/s, so, the energy
transformed to stream kinetic energy. Then, in
compression zone the stream velocity decreased up to
106 cm/s, or less, but plasma density and temperature
increased up to (2…4)·1018 cm-3 and (60…100) eV
respectively, so kinetic energy transformed to thermal
energy. When plasma stream passed through
compression zone thermal energy transformed to kinetic
energy and energy of magnetic field with formation of
toroidal current vortex ( see Fig. 6). Finally, the energy
of toroidal current vortex converted to plasma stream
kinetic energy.
Fig. 6. Energy transformation and plasma parameters
for different stream parts
This investigation has been supported by the
Ukrainian National Academy of Science under Grant #
15/20-2012.
REFERENCES
1. A.I. Morozov. Introduction in Plasmadynamics.
Moscow: “Fizmatlit”, 2nd issue, 2008 (in Russian).
2. V.V. Chebotarev et al. // Chechoslovak Journal of
Physics. 2006, v. 56, Suppl. B, p. 335-341.
3. I.E. Garkusha et al. // Plasma Physics Report. 2011,
v. 37, №11, p. 948-954.
Article received 21.11.12
МГД ХАРАКТЕРИСТИКИ ОБЛАСТИ КОМПРЕССИИ ПЛАЗМЕННОГО ПОТОКА, ГЕНЕРИРУЕМОГО МПК
В.В. Чеботарев, Т.Н. Чередниченко, Д.В. Елисеев, И.Е. Гаркуша, А.Н. Koзлов, Н.В. Кулик,
М.С. Ладыгина, А.К. Марченко, Я.И. Moргаль, Ю.В. Петров, Д.Г. Соляков, В.В. Стальцов
Исследование локальных МГД параметров плазмы в потоке и характеристик плазменных потоков,
генерируемых различными видами плазменных ускорителей и магнито-плазменных компрессоров, является
актуальной фундаментальной задачей физики плазмы. Настоящая работа посвящена анализу магнито-
гидродинамических характеристик плазменного потока, генерируемого MПК. Были исследованы такие
важные параметры, как пространственные распределения электрического тока и электромагнитной силы в
плазменном потоке, плотность плазмы и скорость в зоне компрессии.
МГД ХАРАКТЕРИСТИКИ ОБЛАСТІ КОМПРЕСІЇ ПЛАЗМОВОГО ПОТОКУ, ЩО ГЕНЕРУЄТЬСЯ МПК
В.В. Чеботарьов, Т.Н. Чередниченко, Д.В. Єлісєєв, І.Є. Гаркуша, А.М. Koзлов, Н.В. Кулик,
М.С. Ладигіна, А.К. Марченко, Я.І. Moргаль, Ю.В. Петров, Д.Г. Соляков, В.В. Стальцов
Дослідження локальних МГД параметрів плазми в потоці та характеристик плазмових потоків, що
генеруються різними видами плазмових прискорювачів і магніто-плазмових компресорів, є актуальною
фундаментальною задачею фізики плазми. Дана робота присвячена аналізу магніто-гідродинамічних
характеристик плазмового потоку, який генерується MПК. Були досліджені такі важливі параметри, як
просторові розподіли електричного струму та електромагнітної сили в плазмовому потоці, густина плазми
та швидкістьу зоні компресії.
|